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Abstract: - This paper suggests novel optimal approach by progressive mapping search method (PMSM) of 
neural network aided particle swarm optimization (PSO) that can obtain global optimal solution easily and 
speed searching time up by PMSM. The PMSM by NN and PSO has an important role as navigation when PSO 
is going to search all areas to have an optimal solution, it can help to increase searching capability of PSO. That 
is, the PMSM by NN and PSO is also trained to capture the PSO-searched data in system. To prove the method, 
we use four test function: De Jong’s function-1, Rosenbrock’s valley (De Jong’s function-2), Himmelblau 
function, Rastrigin’s function-6. The PMSM method suggested in this paper is faster than the traditional PSO 
method in four test function. We also apply this optimal approach into AVR (Automatic Voltage Regulator) 
system in thermal power plant. The response is quite faster and more stable. 
  
Key-Words: - PSO, Neural Network, Hybrid system, Optimization, Learning system, Artificial intelligence. 
 

1 Introduction 
Over the past several years, artificial intelligence 
such as fuzzy logic, neural networks, genetic 
algorithm have been giving a significant advance on 
intelligence and optimal solution tool [1, 2, 13, 14, 
23]. They have also been a considerable interest in 
the past few years in exploring the applications of 
fuzzy and neural network systems, which combine 
the capability of fuzzy reasoning to handle uncertain 
information and the capability of artificial networks 
to learn from processes [24-26], to deal with 
nonlinearities and uncertainties of control systems 
[8-10]. 
    Recently, many have been interesting in bio based 
intelligence such as IN (Immune network), PSO 
(Particle Swarm Optimization, GA (Genetic 
Algorithm), BF (Bacterial Foraging), and so on to 
have an optimization solution for their science and 
engineering areas [3, 4, 12, 26, 27] because of their 
robustness and flexibility against a dynamically 
changing system or complex system. 

The PSO has some similarities with genetic 
algorithm (GA) in computing processing. That is, 
the PSO (Particle Swarm Optimization) is an 
algorithm for finding optimal regions of complex 
search spaces through interaction of individuals in a 

population of particles. It is usually using a 
parameter of two iterative equations, one for the 
positions and the other one for the velocities of the 
particles, with several parameters. It gives more 
“freedom” to the system but it is also then quite 
difficult to find the best parameters values to each 
case, although some researchers have been applying 
in engineering. 
This kind of algorithm is still largely experimentally 
studied. There is still, however, no sure way to 
choose a priori the best parameters, the parameters 
of the velocity and position coefficients are also 
randomly tuned or selected at each time step when 
we apply to engineering area. There are different 
versions of particle swarm optimization algorithms, 
but we should study from an engineering and 
optimal approach point of view, to two question. 
That is, what kind of information each particle has 
access to, and how we speed it up for solution. To 
illustrate this, we study here two approaches, the 
hybrid system based on PSO. When we use this 
PSO, we can have an additional advantage 
comparatively simple in operation and it is easier to 
understand dynamic equation compared to other 
computational techniques [8, 9]. Especially, PSO 
shows a faster speed in computing processing as it 
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uses a smaller number to tune in parameters [7, 9]. 
Therefore, some researchers in industrial areas and 
sciences have been interesting to have solution with 
more simple and efficient algorithm. PSO can also 
be very useful to acquire a global optimization [6].  

As the Proportional-Integral-Derivative (PID) 
controller has been widely used owing to its 
simplicity and robustness in power plant, its tuning 
technology is important as engineer. However, using 
only the P, I, D parameters, it is often very difficult 
to control a plant with complex dynamics for power 
plants having a high nonlinear characteristics. To 
get over these problem, recently, there has been a 
growing interest in the usage of intelligent 
approaches such as fuzzy inference systems, neural 
network, evolutionary algorithms, and their hybrid 
approaches [1, 18, 19]. In this paper, the NN is 
satisfactorily trained to change the performance of 
the PSO accurately depending on a situation to 
provide it. The variables of PSO can be suitably 
chosen depending on the application for which the 
system is intended to be developed. Section 2 in this 
paper describes the PSO algorithm and the role of 
NN used in this paper. Section 3 shows the entire 
scheme employing the NN trained PSO for optimal 
search methods. That is, how it works the PMSM 
system suggested in this session. Section 4 shows 
the experimental studies carried out using four test 
functions. Section 5 presents the conclusion. 
 
 
2 Characteristics of PSO and NN in 
Hybrid System 
 
2.1 Characteristics of PSO 
The PSO conducts searches using a population of 
particles which correspond to individuals in GA [4, 
5]. A population of particles is randomly generated 
initially. Each particle represents a potential solution 
and has a position represented by a position vector.  

A swarm of particles moves through the 
problem space, with the moving velocity of each 
particle represented by a velocity vector. At each 
time step, a function representing a quality measure 
is calculated by using the results of crossover and 
mutation as input. Each particle keeps track of its 
own best position, which is associated with the best 
fitness it has achieved so far in a vector. 
Furthermore, the best position among all the 
particles obtained so far in the population is kept 
track as output.  In addition to this global version, 
another local version of PSO keeps track of the best 
position among all the topological neighbors of a 
particle. At each time step, by using the individual 

best position, and global best position, a new 
velocity for particle is updated by equation (1).  

In equation (1), positive constants and are 
uniformly distributed random numbers in [0, 1]. The 
term is limited to the range. If the velocity violates 
this limit, it is set at its proper limit. Changing 
velocity this way enables the particle to search 
around its individual best position, and global best 
position. The computation of PSO is easy and adds 
only a slight computation load when it is 
incorporated into GA. Furthermore, the flexibility of 
PSO to control the balance between local and global 
exploration of the problem space helps to overcome 
premature convergence of elite strategy in GA, and 
also enhances searching ability.  
 
2.2 Dynamic Equation of PSO  
The characteristic for hybrid system of PSO and GA 
have been studied [1, 14-20]. And also, many 
researchers have been studying hybrid system for 
real intelligent system [1, 16-20]. A number of 
approaches have been also proposed to implement 
mixed control structures that combine a PID 
controller with intelligent approaches [1, 20]. 

This paper focuses on novel hybrid system using 
NN and PSO. Position and speed vector of PSO is 
given by 
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n : The number of agent in each group 
m : The number of member in each group 
t : Number of reproduction step 
vj,gt : The speed vector of agent j in reproduction step 

of 
tht .  𝑣𝑔𝑚𝑖𝑛 ≤ 𝑣𝑗,𝑔

𝑡 ≤ 𝑣𝑔𝑚𝑎𝑥 
kj,gt : The position vector of agent j in reproduction 

step of 
tht . 

𝑤: Weighting factor 
c1, c2: Acceleration constant 
𝑟𝑎𝑛𝑑 ( ), 𝑅𝑎𝑛𝑑 ( ): Random value between 0 and 1  

𝑝𝑏𝑒𝑠𝑡(𝑗, 𝑔): Optimal position vector of agent j  
𝑔𝑏𝑒𝑠𝑡: Optimal position vector of group 
 

The value of position vector and speed vector is 
determined by acceleration constant c1, c2. If these 
values are large, each agent moves to target position 
with high speed and abruptly variation. If vice versa, 
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agents wander about target place. As weighting 
factor w  is for the searching balance of agent, the 
value for optimal searching is given by 
 

iter
iter

wwww ×
−

−=
max

minmax
max

,               (2) 
 
where vmax: Max mum value of w  (0.9), 

minw
: Minimum value of w  (0.4), 

maxiter : The number of iterative number, 
iter : The number of iterative at present.  
 
 

The speed vector is limited by  𝑣𝑔𝑚𝑖𝑛 ≤ 𝑣𝑗,𝑔
𝑡 ≤

𝑣𝑔𝑚𝑎𝑥. In this paper, the value of speed vector for 
each agent is limited with 1/2 to avoid abrupt 
variation of position vector. Computing algorithm 
for each step in hybrid system by PSO and NN is as 
shown in Fig.3. 
 

2.3 The Characteristics of NN as Learning 
Tool in This paper 
In this paper the adaptive linear learning method 
(Adaline), suggested by Widrow and Hoff [1962] is  
         
 

w1 
 
 
 
                                                              Output 
                                 SUM 
 
                    wn 
                                                             Target 
 
Fig.1. Adaptive linear learning. 
 
 
use and it has the structure of learning diagram as 
shown in Fig.1.  

This neural network is a supervised learning 
method and the input patterns 𝑥𝑖 = [𝑥1,
𝑥2, … , 𝑥𝑛]T are linearly independent. That is, the 
input-output relationship is linear in an Adaline. 
When the desired vector is 𝑑𝑖 = [𝑑1, 𝑑2, … , 𝑑𝑛]𝑇 
and the network  output is 𝑦𝑖, the output is a weight 
linear combination of the input vectors plus a 
constant bias value as the following Equation: 
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To find the optimal weights to get the desired 
output from Equation (3), a cost function P(w) is 
defined to measure the system’s performance error 
by  
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If P(w) is smaller, the better w will be, and P(w) 
is normally positive. However, it approaches zero 

when output iy  approaches target vector id  for i=1, 
2,…,n. Usually, the mean squared error method is 
used to minimize P(w). Eventually, running rule for  
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3 PMSM for Optimal Solution by NN 
Aided PSO 
This paper suggests novel optimal solution by NN 
aided PSO learning algorithm. The NN has a role of  
function to increase memory and training function 
to avoid overlap search and data in the past region 
and data when the PSO is going to search. 
  

Search 
Algorithm

Mapper Map

 
 
Fig.2. Learning structure of Progressive mapping 
search method (LSPM). 
 
3.1 Navigation of a Mapping for Optimal 
Solution 
The architecture of mapping has like a navigation of 
car to search by map. When PSO search optimal 
position and parameters, PSO should search all area 
without using map where to go. However, in this 
paper, PSO can search where and how to go to 
optimal parameter or region by using neural 
network. Therefore, it can be faster and global 
optimal solution than the traditional approaches. 
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3.2 Apply the PMSM for particle swarm 
optimization 
To start the algorithm in Eq. (6), we need to select 
the initial values of θo  and Po . One way to avoid 
determining these initial values is to collect the first 
n data points and solve θn and Pndirectly from 
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Fig.3. Computing process of PSO with PMSM 
algorithm. 

 
 
where [An: Yn] is the data matrix composed of the 
first n data pairs. We can then start iterating the 
algorithm from the (n + 1) th data point. 
 
In summary, the recursive least-squares estimator 
for the problem of Aθ = Y . Where the kth 

( )mk ≤≤1  row of [An: Yn], denoted by �akT: yk �, is 
sequentially obtained. It can be calculated as follows: 
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where k ranges from o to m-1, the estimator using 
all m data pairs. 
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         (8) 
Fig.3 shows computing process by this equation 
with Matlab software 
 
 
4. Experimental Verification by Test 
Function 
 
4.1 Test Function for Proof 
 
We use four test function to prove optimal algorithm 
suggested by PMSM of NN aided PSO. 
 
4.1.1 De Jong’s function 1 
The simplest test function is De Jong’s function 1. It 
is also known as sphere model. It is continuous, 
convex and unimodal.  
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The global minimum: 
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4.1.2 Rosenbrock’s valley (De Jong’s function 2) 
Rosenbrock’s valley is a classic optimization 
problem, also known as Banana function. The 
global optimum is inside a long, narrow, parabolic 
shaped flat valley. To find the valley is trivial, 
however convergence to the global optimum is 
difficult and hence this problem has been repeatedly 
used in assess the performance of optimization 
algorithms.  
 

Begin; 
Generate random population of N solutions 

(particles);  
For each individual i : calculate fitness (i);  
Initialize the value of the weight factor, w;  
Generate the initial map based on all 

particles according to Eq.(6);  
For each particle;  

Set pBest as the best position of 
particle i;  

If fitness (i) is better than pBest;  
pBest(i) = fitness (i);  

End;  
Set gBest as the best fitness of all 

particles;  
For each particle;  

For each candidate particle m;  
Calculate candidate particle 

velocity;  
Update candidate particle position;  

End;  
Choose the best candidate based on 

the map according to Eq. (8);  
End;  
Update the value of the weight factor, w;  
Update the map based on new all 

particles according to Eq. (7);  
Check if termination = true;  

End;  
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4.1.3 Himmelblau function 
In mathematical optimization, the Himmelblau’s 
function is a multi-modal function, used to test the 
performance of optimization algorithms. 
 

( ) ( ) ( ) 55,711
22

21

2

2
2
1 ≤≤−−++−+= xxxxxxf H  

(11) 
The global minimum: 
 

( )
( ) ( ) 0011.085.1,58.3,0085.013.3,81.2

,0054.028.3,78.3,0)2,3(

=−=−
=−−=

HH

HH

ff
ff  

 
 
4.1.4 Rastrigin’s function 6 
Rastrigin’s function is based on function 1 with the 
addition of cosine modulation to produce many 
local minima. Thus, the test function is highly 
multimodal. However, the location of the minima is 
regularly distributed. 
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Fig.4(a) 3D-maping at initial point of De Jong’s 
function 1 
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Fig.4(b) 3D-maping at initial point of Rosenbrock’s 
valley (De Jong’s function 2). 
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Fig.4(c) 3D-maping at initial point of 
Himmelblau’s function. 
 
 
 

x1
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Fig.4(d). 3D-maping at initial point of Rastrigin’s 
function 6 
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Fig.5(a). Experimental results after 100 
iterations: De Jong’s function 1. 
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Fig.5(b). Experimental results after 100: 
Rosenbrock’s valley.  
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Fig.5(c). Experimental results after 100: 
Himmelblau’s function. 
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Fig.5(d). Experimental results after 100:  
Rastrigin’s function 6. 

 
 
 

 
 
Fig.6(a). Optimal speed between PSO and PMSM-
PSO: De Jong’s function 1. 
 
 
 

 
 
Fig.6(b). Optimal speed between PSO and PMSM-
PSO: Rosenbrock’s valley. 
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Fig.6(c). Optimal speed between PSO and PMSM-
PSO: Himmelblau’s function. 

 
  

 

Fig.6(d). Optimal speed between PSO and PMSM-
PSO: Rastrigin’s function 6. 
 
 
 

 
 
Fig.7(a). Optimal speed between PSO and PMSM-
PSO: De Jong’s function 1. 

 
Fig.7(b). Optimal speed between PSO and PMSM-
PSO: Rosenbrock’s valley. 
 
 

 

Fig.7(c). Optimal speed between PSO and PMSM-
PSO: Himmelblau’s function. 
 
 
 

 
 
 
Fig.7(d). Optimal speed between PSO and 
PMSM-PSO: d Rastrigin’s function 6. 
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4.1.5 Application of AVR system 

 

 
 
 
 
 
 
 
 
In this session, we apply this optimal approach to 
AVR system of power plant as shown in Fig.8. The 
transfer function of PID controller of AVR system is 
given by [19-24] 
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s
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i
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and block diagram of AVR system is shown as Fig. 
8. The performance index of control response is 
defined by   
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β    : Weighting factor   

Mo  : Overshoot 

st    : Settling time (2%) 

ess   : Steady-state error 
t  : Desired settling time. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

In equation (13), if the weighting factor, β  
increases, rising time of response curve is small, and 
β  decreases, rising time is big. Performance 

criterion is defined as %,61.50=Mo
( ) ( )ststess sr 9834.6,2693.0,0909.0 === . 

Simple crossover and dynamic mutation of GA is 
used and the number of individuals is 50, 200, and 
initial value of crossover and mutation are 0.6, 0.5, 
respectively. 
 

 
Fig.9. Response of PID controller with PSO, PSO-
NN in AVR system. 
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5. Experiments and Discuss 
In 3D mapping at initial point of Fig.4, some results 
are good. However, in case of initial point of 
Rastrigin’s mapping, Fig.4(d) is so much 
complicated. That means it is difficult to search 
optimal solution. After training 100 iteration, 
Fig.5(d) has quite good response in optimal solution. 
This paper also compare training speed between 
traditional PSO and PSO using PMSM approach. 
Fig.7 and Fig.8 show both results. The optimal 
algorithm with PMSM by NN aided PSO in this 
paper is faster to final target. In AVR control system 
of Fig.8, it is more stable than tradition PSO as 
showed in Fig.9. 
 
 

6. Conclusions 
In this paper, as we intend to implement a 
completely application in the industrial area and we 
have been obtaining optimal solution that it is 
simpler to implement PSO compared to GA or so, 
we chose PSO as the optimization technique. 
Especially, computing speed in industrial fields is 
very important in order to obtain fast response and 
stability. 

This paper suggests the novel search method 
that can speed up and to obtain global optimal in 
PSO as employing efficient training of a NN into 
PSO. The NN trained PSO can has milestone during 
search for optimal solution as if car has a navigation 
or map to search route or way to get final 
destination. From Fig.5, 6, 7 show that PMSM 
method has been successfully trained as hybrid 
system. The NN can perform increasing of the PSO 
performance and hybrid system of NN and PSO can 
provide faster optimal solution. The present system 
suggested in this paper can be further improved by 
making the entire PSO completely trained by others 
tool such as different type of neural network or FNN.  
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