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Abstract: - Cartesian grid generation method is a special class of unstructured techniques under the general grid 
generation methodology. In this paper, examples of the Cartesian grid are presented which were obtained by 
using quad-tree approach. Quad-tree data structure is utilized in order to connect the Cartesian cells to each 
other. The dynamic data structure stores connectivity information for each cell and can create or destroy cells 
repeatedly, anywhere in the flow domain as the programmer wills. Another benefit of Cartesian grid 
formulation is the requirement of minimal input to describe the geometry. In this study, the solution algorithm 
is implemented in FORTRAN programming language and the code employs Cartesian grid technique to model 
complex geometries. Two distinct test cases are presented at the end of the paper to clarify the use of the 
methodology. 
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1 Introduction 
In computational fluid dynamics (CFD), a suitable 
grid is to be produced on the physical domain of the 
problem. Basically, there are three main grid 
generation techniques employed: structured, 
unstructured and Cartesian methods. Cartesian 
methods are simply a special class of unstructured 
methods. Historically, they were first proposed at 
the beginning of the 1970s as an alternative to 
structured and ordinary unstructured methods. The 
aim was to enhance automatic grid generation and 
facilitate solution adaptation. On the other hand, 
Cartesian methods involve complicated data 
structures requiring more efficient computers. 

Peskin [1] reported simulations of the blood flow 
in the heart/mitral-valve system by using a two-
dimensional very low Reynolds number flow. 
Three-dimensional heart flows caring the elastic 
nature of the boundaries were also considered 
successively by Peskin. In Peskin’s formulation, the 
governing equations (incompressible Navier-Stokes 
equations) are solved on uniform Cartesian grids 
and the elastic fibers of the heart walls are immersed 
in the flow: Fluid and fibers exert time varying 
forces on one another. The obvious advantage of 
these methods over the conventional body-

conformal approach is that irrespective of the 
geometric complexity of the immersed boundaries, 
the computational grid remains unchanged. 
Cartesian grid methods free the underlying 
structured computational grid from the task of 
adapting to the moving boundary, thus allowing 
large changes in the geometry due to boundary 
evolution. 

An important advantage of Cartesian methods is 
that any kind of adaptation is very easy to 
implement. By means of solution adaptation, for 
instance, a finer grid can be obtained around a shock 
wave. Hence, very high accuracy levels can be 
obtained without increasing number of cells and the 
computational time required significantly. The 
governing equations are discretized on a Cartesian 
grid which does not conform to the immersed 
boundaries. This greatly simplifies grid generation 
task and also retains the relative simplicity of the 
governing equations in Cartesian coordinates. In 
addition, this method also has a significant 
advantage over the conventional body-fitted 
approach in simulating flows such as with moving 
boundaries, complicated shapes, or involving 
topological changes. 
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Structured and ordinary unstructured methods 
require user interference to some extent. Cartesian 
methods, on the other hand, permit automatic grid 
generation. Therefore, in order to handle problems 
and reduce the user intervention through the grid 
generation process, both the grid generation and 
adaptation processes are automated. In this respect, 
what remains to the user as a task is the proper 
definition of the problem. 

 

2 Cartesian Grid Generation 
The code utilizes Cartesian grid techniques to 

model complex geometries, regardless of body 
shape. An important advantage of Cartesian 
methods is that any kind of adaptation can easily be 
implemented. Hence, relatively high accuracy levels 
can be obtained with a relatively low number of 
cells. This saves computational time and memory 
allocation required significantly. 

The multiplication of the maximum length by the 
user-defined size factor defines the domain size. 
This domain size is actually the length of the each 
edge of the mother cell. A uniform grid for the two 
dimensional Cartesian geometry is obtained by 
dividing squares successively starting from this 
mother cell to the smallest child cells so that these 
child cells have an appropriate cell size near the 
solid body. This gives a multi-grid system with fine 
cells near the solid body, where higher resolution is 
needed for high gradients. The one-level rule is 
applied between each level of the successive 
divisions [2]. The mother-children connectivity is 
provided by the quad-tree approach. 
 
2.1 Quad-tree Data Structure 

In the literature, there are various methods used for 
fluid flow problems to identify connectivity 
information such as two dimensional arrays, linked 
list, binary tree, quad-tree data structures [2]. 

The Cartesian grid is obtained by using the quad-
tree approach in two dimensions. In the quad-tree 
approach, a square containing the whole domain is 
divided into its four quadrants to form the grid in a 
tree structure. Hence, the procedure followed is 
much simpler than the methods for generating 
triangular unstructured meshes. In this paper, the 
basic data structure used is a cell-based quad-tree 
structure; “mother” cells are refined by division into 
four ”children” cells which is done in coarsening 
part of the FORTRAN program. The information is 
treated in allocatable arrays using pointers. 

The grid typically begins with a single mother 
cell, and grows by a recursive subdivision of each 
cell into its four children. Each child is 

geometrically contained within the boundaries of the 
parent cell, and is located logically below the parent 
cell in the tree. Figure 1 illustrates this concept for 
the subdivision of a single cell, child 4, isotropically 
into 4 cells, cells D, E, B and C. 

Arbitrary subdivisions of the cells are allowed 
during the process, only requiring that the newly 
created cells be non-overlapping polygons that fill 
the space occupied by the mother cell. To take 
advantage of the smooth grid that can be achieved, 
the root cell is taken to be a square Cartesian cell of 
having unit aspect ratio, and cell division is obtained 
by isotropically splitting each cell into four, equal 
area children. Since N-sided cut cells are obtained 
by “cutting” them out of their background, Cartesian 
cell, they are always logically locatable in the tree 
[2]. 

 
 

Fig. 1: An illustration of quad-tree data structure. 
 

2.2 Geometry-Based Adaptive Grid Refinement 

Generation of the initial grid begins with the 
creation of the ‘root’ cell. Its size is determined 
from the size of the flow field and by what the user 
determines to be the coarsest acceptable grid for that 
flow field. Then, cells without children, initially just 
the root cell, are refined until the grid reaches the 
coarsest acceptable grid. This grid serves as the 
initial grid for cases in which no body is cut out of 
the grid. The procedure for computing the 
intersections of the body with the grid depends upon 
how the body has been defined. 

Each cell in the Cartesian grid is classified as; 
• inside the body 
• cut by the body 
• outside of the body, or in the outer 
boundary based on the information found at the 
corners of that cell. With this approach, very small 
cells can appear in the grid. The only limit placed on 
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the cell size is that a node that is within a very small 
(machine-zero level) tolerance of a body is 
considered on that body, which in effect ‘pulls’ the 
body out to the node. The remaining cell areas vary 
as much as six orders of magnitude from one cell to 
its immediate neighbor. 
 

2.2.1 Initial grid refinement 

An initial uniform grid is formed in the solution 
domain which will be refined in the later stages to 
form the grid on which the solution is to be 
performed. The reason for forming this initial grid is 
to have a prescribed resolution at the outer 
boundaries of the domain. 

Uniform grid generation is fairly straightforward: 
Starting from the root cell, refinement is performed 
when the cell level is less than the desired level. If a 
cell is to be refined, first the level of the edge and 
vertex neighbors must be investigated. If a neighbor 
is at a lower level, then that neighbor must be 
refined prior to the refinement of the cell. In this 
way, the one level rule is preserved in the process 
of; 
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for the 1st quadrant to 4th quadrant children, 
respectively, where d  is the domain size and l is the 
level of the cell. Once this information is obtained, 
the neighbors of each cell must also be determined. 
The procedure followed is similar to the one 
outlined by De Zeeuw [3]. For any cell two edge 
neighbors and one vertex neighbor will be known 
automatically since they will be the children of the 
cell’s parent. 

Grid generation for two-dimensional Cartesian 
grids can be achieved in three steps. Initial step is 
the creation of the domain and uniform grid 
generation. When sufficient resolution around the 
geometry is not obtained during the uniform grid 
generation, sometimes small parts of multi-
component geometries are not realized; therefore, 
adaptation steps do not notice these parts due to the 
insufficient resolution. As a result, incorrect grid 

generations may result. In order to overcome this 
sort of shortcomings, some identification and curing 
techniques are implemented in the developed code. 
However, this does not mean, in no way, that these 
implementations will prevent all possible illnesses 
that may come through. Stating simply, the user 
should always be on alert about the possible 
emergence of these types of poor solutions. 
 The growth of the total number of cells during 
the construction of the uniform grid is exponential. 
However, in the developed code, there is no 
restriction on the desired number of levels for the 
uniform grid formation because coarsening of cells 
is allowed in this code. Higher levels may be desired 
and possibly necessary in some cases where small 
geometry components exist [4]. 
 

2.2.2 Box adaptation 

The next step after the initial grid generation is the 
box adaptation. An imaginary rectangular box is 
generated around the input geometry and finer grids 
are flagged for refinement near the input body. An 
illustration of box adaptation around NACA0012 
airfoil geometry is shown in Figure 2. 
 

 
 

Fig. 2: Box adaptation to NACA0012 airfoil. 
 
2.2.3 Cut-cell adaptation 

Marching squares method is used to determine 
interfaces of cut and split cells [4]. The corners of 
sufficiently small cells are tested whether they are 
inside the boundary of the given geometry or not. 
This is called inside-outside testing. This step is 
obligatory for Cartesian grids because the cells that 
are cut by the given geometry are determined by this 
test, see Figure 3. 
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Fig. 3: Example of types of cells. 
 

2.2.4 Curvature adaptation 

The last step in the grid generation process is the 
curvature adaptation. The purpose of the curvature 
adaptation is to ensure that regions of a body that 
have high curvatures are resolved enough to be 
represented accurately (Since these regions will 
most probably be associated with high gradients 
they deserve special treatment, see Reference 5 for 
more detailed information). The result of curvature 
adaptation, generated by the developed code, to the 
nose of RAE2822 airfoil is shown in Figure 4. 
 

 
 

Fig. 4: Curvature adaptation to RAE2822 airfoil. 
 

3 Example Grids 
Two cases are exemplified to demonstrate the 
effectiveness of the grid generation scheme in 
symmetric and complex geometries. 
 

3.1 NACA0012 Airfoil 

The applications of cut-cell refinement and the 
curvature adaptation processes to NACA0012 airfoil 
are given in Figures 5 and 6, respectively. The 
remarkable change in mesh resolution around the 
nose and tail of the profile can easily be seen in 
these figures. Note also the formation of 
symmetrical mesh distribution near the tail of the 
profile, Figure 7. 

 
 

Fig. 5: NACA0012 cut-cell adapted grid. 
 

 
 

Fig. 6: NACA0012 curvature adapted grid. 

 

 
 

Fig. 7: NACA0012 symmetric grid near the tail. 
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3.2 Three-element Airfoil 

The presentation purpose of this second example is 
to show resolution ability of the curvature 
adaptation technique between the elements of a 
complex airfoil. As it can be seen in Figure 8, the 
spaces between the elements are effectively meshed 
without any skewness or erroneous shape change. A 
close look at the near right-hand sided element 
shows that the split cells are generated effectively in 
Figure 9. 

 

 
 

Fig. 8: Adapted grid on three-element airfoil. 
 

 
 

Fig. 9: Close look on three-element airfoil grid. 
 

4 Conclusion 
In the present paper, it is aimed to enhance 
automatic grid generation using Cartesian Methods, 
which will constitute the basis for the solution 
adaptation. Dynamic data structures are preferred in 
order to maintain faster computation. A cell-based 

quad-tree data structure is selected. A geometry-
based adaptive refinement scheme for generating an 
initial grid is developed as the first step of the code. 
An adaptive refinement/coarsening scheme for 
generating the final grid is prepared by using some 
special Cartesian algorithms, namely marching 
squares algorithm, inside/outside test, cut/split cell 
determination and curvature adaptation algorithm. 
At the end of this work, a “hands-off” grid generator 
is implemented in FORTRAN programming 
language. Current study focuses on improving the 
adaptation near the highly skewed and highly 
curved elements. Two different cases are simulated 
at the end of the paper. The adaptation techniques 
are applied on the test domains effectively. 
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