
Improved Speed on Intelligent Web Sites

ZSOLT NAGY

Institute of Mathematics and Computer Science

College of Nyiregyhaza

Nyiregyhaza, Sostoi u. 31/B

HUNGARY

info@nagyzsolt.hu

Abstract: - Intelligent web systems collect, process and serve information and knowledge to users, however the

form and the speed of it definitely does matter. Based on statistical reports 57 percent of users abandon web sites

if the page does not load in 3 seconds, therefore it is a key question to display information produced by

profound AI algorithms in time. This paper investigates the best practises of web system speed optimization,

collect and implement the rules and recommendations which can speed up our intelligent web systems. This

article tests and measures the top web portals and through a real optimization process presents the efficiency of

the discussed technologies.

.

Keywords: - web optimization, high performance web, page speed, intelligent web

1 Introduction

Significant segment of today's research work on the

improvement of intelligent web systems,

development of recommender systems enjoys

focused attention and priority. It is comprehensible

as the available information on the web is

continuously growing thus only web services that

can serve personalized content will remain on feet in

the future [1]. Numerous excellent articles discuss

about content-based [3], collaborative [2] or

knowledge-based [4] filtering, researching ontology

[5] [12] and knowledge-base systems is a separate

field of science, although it is not enough now. The

spreading of mobile devices and the age of Internet

of Things requires a device dependent content

service and responsive web site [6] development.

No matter how brilliant is the mathematical model,

how effective is the AI algorithm behind the scenes,

if it can not provide and display information on the

website in a given time, we loose our visitors. After

waiting 3 seconds for loading web pages 57 percent

of online consumers will abandon a site. 80 percent

of these people will not return and almost half of

them go on to tell others about their negative

experience (Fig. 1) [7].

Based on Google and Microsoft engineers'

experience New York Times expounded that people

will visit a Web site less often if it is slower than a

close competitor by more than 250 milliseconds [8].

Fig. 1 Online consumer behaviour

Making it worse only 1 second delay in page load

time produces 7 percent loss in conversions, 11

percent fewer page views and 16 percent decrease in

customer satisfaction [9]. Due to slow loading

speeds, online retailers lose an estimated £1.73

billion in global sales each year, according to new

research from online customer data platform QuBit

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 215

[10].

On top of all, an average user perceives page load

time as being about 15 percent slower than actual

page load time. When sharing their experience to

others, they will recall that the page was 35 percent

slower than it actually was [11].
It is a cardinal problem as all the intelligent web

services, recommender systems were born to serve

eCommerce, increase visitor number, profit and

revenue. Naturally intelligent systems are playing

important role in education, research and also in

several areas of science. Therefore web pages must

be faster, smarter, web developers and performance

optimizers have to tie down the page load time

under the critical 3 seconds [13]. In addition

Google recognized the importance of webpage

speed and included a new site speed signal in their

search ranking algorithms [14].

2 Optimization techniques
This article has collected several recommendation

and rules in order to make web pages faster. Beyond

our optimization experience, this paper applies the

suggestions of Google Developer (G) [15], Yahoo

YSlow (Y) [16], Soulder's great books about High

Performance Web Sites (H) [17] and Even Faster

Web Sites (E) [18]. We organized, categorized and

summarized these rules and chose the most

recommended ones to optimize our web portal

(Table 1).

 Best practices from

Best practices Y G H E

Add Expires or Cache-Control

Header x x x

Avoid 404s / bad requests x x

Avoid CSS @import x x

Avoid CSS Expressions x x x x

Avoid document.write x

Avoid Empty Image src x

Avoid Filters x

Avoid, minimize iframes x x

Avoid, minimize redirects x x x x
Combine external CSS and

JavaScript x
Combine images using CSS

sprites x x x

Configure ETags x x x
Defer / split JavaScript

payload x x

Defer parsing of JavaScript x

Develop Smart Event Handlers x
Do Not Scale Images in

HTML x x

Don’t block the UI thread x

Enable Gzip compression x x x x

Flush buffer / document early x x

Inline scripts before stylesheet x
Keep Components Under 25

KB x

Leverage browser caching x

Leverage proxy caching x

Load scripts asynchronously x

Make Ajax Cacheable x x x
Make favicon.ico Small and

Cacheable x

Make Fewer HTTP Requests x x x
Make JavaScript and CSS

External x x x
Make landing page redirects

cacheable x

Minify HTML x

Minify JavaScript and CSS x x x x

Minimize DOM Access x

Minimize request size x

Minimize uncompressed size x

Optimize images x x x
Pack Components Into a

Multipart Document x
Parallelize downloads across

domains x x x

Postload Components x

Prefer asynchronous resources x

Preload Components x

Put Scripts at Bottom x x x x

Put Stylesheets at Top x x x x

Reduce Cookie Size x

Reduce DNS Lookups x x x x
Reduce the Number of DOM

Elements x

Remove Duplicate Scripts x x x

Remove unused CSS x
Serve resources from a

consistent URL x
Serve static content from a

cookieless domain x x
Simplify and use efficient CSS

selectors x x

Specify a character set x

Specify image dimensions x
Use a Content Delivery

Network (CDN) x x x

Use GET for Ajax Requests x

Write efficient JavaScript x
Table 1: Best Practises

2.1 Analyzer tools
There are several useful collections about free

website speed testing tools; one of them is collected

by Sixrevisions.com. They collected the top 20

testing tools [19]; we have tried them and selected 5

for our optimization purpose namely: Google's

PageSpeed Insights [20], Yahoo's Yslow [21],

AOL's WebPageTest [22], GTMetrix [23] and

Pingdom [24].

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 216

The two major tools are PageSpeed and Yslow; the

others are based on them and on their manufacturer's

recommendations discussed in the previous section.

WebPageTest and Pingdom are built up from a

subset of Google's rules; GTMetrix uses PageSpeed

and Yslow best practises. In our research we chose

GTMetrix which combines the advices of the two

major and additionally gives ergonomic and smart

user interface with detailed reporting possibilities.

2.2 Preparation

In order to present a wide overview about the

performance states of the most visited websites we

measured statistics of the top 5 most visited

websites in the following categories: top 5 websites

of the world, top 5 of travel category and top 5 of

Hungarian travel web sites. Our top selections were

made in June 2013 based on Alexa's ranking (Table

2) [25].

By visitors PageSpeed Yslow Average

Top 5 USA sites

facebook.com 98 97 97,5

google.com 98 94 96

youtube.com 95 86 90,5

yahoo.com 89 77 83

amazon.com 94 82 88

Average 94,8 87,2 91

Top 5 Travel sites

booking.com 93 82 87,5

tripadvisor.com 94 92 93

xe.com 89 73 81

expedia.com 81 60 70,5

priceline.com 88 78 83

Average 89 77 83

Top 5 Hungarian Travel sites

itthon.hu* 90 78 84

iranymagyarorszag.hu 83 77 80

limba.com 87 83 85

utisugo.hu 86 69 77,5

szallasinfo.hu 76 72 74

Average 84,4 75,8 80,1

*we have changed the most visited szallas.hu as it was unable to be
measured by analysers because of some redirection issues. Itthon.hu is

maintaned by the state Hungarian Tourism Plc.

Table 2: Grades of the most visited websites

Our sixth Hungarian travel site is

BelfoldiSzallasok.hu [26] - which one is 12
th

 in

the Hungarian travel category- will be the

object of our optimization research.

Merging categories into one descending list we

can identify that our website reached the poor

12
th

 place in the overall table (Table 3).

Overall before PageSpeed Yslow Average

1 facebook.com 98 97 97,5

2 google.com 98 94 96

3 tripadvisor.com 94 92 93

4 youtube.com 95 86 90,5

5 amazon.com 94 82 88

6 booking.com 93 82 87,5

7 limba.com 87 83 85

8 itthon.hu 90 78 84

9 yahoo.com 89 77 83

10 priceline.com 88 78 83

11 xe.com 89 73 81

12 belfoldiszallasok.hu 86 76 81

13 iranymagyarorszag.hu 83 77 80

14 utisugo.hu 86 69 77,5

15 szallasinfo.hu 76 72 74

16 expedia.com 81 60 70,5

Table 3: Overall grades before optimization

2.3 Suggested tasks
Using GTMetrix we have received and selected the

following rules to make our travel portal reaching

better performance. We left the original website

untouched, made a separate subdirectory instead to

apply all the following performance practises.

2.3.1 Specify image dimensions
Specifying a width and height for all images allows

for faster rendering by eliminating the need for

unnecessary reflows and repaints. When the browser

lays out the page, it needs to be able to flow around

replaceable elements such as images. It can begin to

render a page even before images are downloaded,

provided that it knows the dimensions to wrap non-

replaceable elements around. If no dimensions are

specified in the containing document, or if the

dimensions specified do not match those of the

actual images, the browser will require a reflow and

repaint once the images are downloaded. To prevent

reflows, specify the width and height of all images,

either in the HTML tag, or in CSS.

2.3.2 Leverage browser caching
Web page designs are getting richer and richer,

which means more scripts, stylesheets, images, and

Flash in the page. Browsers use a cache to reduce

the number and size of HTTP requests, making web

pages load faster. A web server uses the Expires

header in the HTTP response to tell the client how

long a component can be cached. Setting an expiry

date or a maximum age in the HTTP headers for

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 217

static resources instructs the browser to load

previously downloaded resources from local disk

rather than over the network. Set Expires to a

minimum of one month, and preferably up to one

year, in the future. (Google prefer Expires over

Cache-Control: max-age because it is more

widely supported.)

Expires headers are most often used with images,

but they should be used on all components including

scripts, stylesheets, and Flash components.

Based on GTMetrix suggestion we have created

an .htaccess file with the following content:

<IfModule mod_expires.c>
Enable expirations
ExpiresActive On
Default directive
ExpiresDefault "access plus 1 month"
My favicon
ExpiresByType image/x-icon "access plus 1 year"
Images
ExpiresByType image/gif "access plus 1 month"
ExpiresByType image/png "access plus 1 month"
ExpiresByType image/jpg "access plus 1 month"
ExpiresByType image/jpeg "access plus 1 month"
CSS
ExpiresByType text/css "access 1 month"
Javascript
ExpiresByType application/javascript "access
plus 1 year"
</IfModule>

As it is shown in the first line, this technique

requires mod_expires module configured and we

have to make sure .htaccess file is allowed to

process by our Apache web server.

2.3.3 Combine images into CSS sprites
Combining images into as few files as possible

using CSS sprites reduces the number of delays in

downloading other resources, reduces request

overhead, and can reduce the total number of bytes

downloaded by a web page. Similar to JavaScript

and CSS, downloading multiple images incurs

additional request-round. A site that contains many

images can combine them into fewer output files to

reduce latency. Spriting services such as CssSprites

[31], SpriteMe [32] or SpritePad [33] can make it

easier to build CSS sprites. SpritePad is free,

beautiful and an easy-to-use tool; after combining

all the images we can easily download both the CSS

and the created PNG file.

2.3.4 Minify CSS

Compacting CSS code can save many bytes of data

and speed up downloading, parsing, and execution

time. Minifying CSS has the same benefits as those

for minifying JavaScript: reducing network latency,

enhancing compression and faster browser loading

and execution. Several tools are freely available to

minify JavaScript, including the YUI Compressor

[30] or even QTMatrix can offer the minimized

version of our CSS file. We can easily save it and

rewrite our existing CSS file.

2.3.5 Use a Content Delivery Network

A content delivery network (CDN) is a collection of

web servers distributed across multiple locations to

deliver content more efficiently to users. Deploying

web content across multiple, geographically

dispersed servers will make our pages load faster

from the user's perspective. The server selected for

delivering content to a specific user is typically

based on a measure of network proximity. For

example, the server with the fewest network hops or

the server with the quickest response time is chosen.

Generally these are charged services; Techyfuzz

[27] collected and offer us 5 free CDN networks.

We have tried two of them, however at the final

optimization phase we have skipped using CDN.

The simple reason is CDNs require modifying DNS

records of our web domain and we do not want to

meet this requirement at this moment.

2.3.6 Use Cookie-free Domains for

Components
When the browser makes a request for a static

image and sends cookies together with the request,

the server does not have any use for those cookies.

So they create unnecessary. We should make sure

static components are requested with cookie-free

requests. It is advised to create a subdomain and

host all static components there. We have created

static.belfoldiszallasok.hu subdomain to serve all

the static images from.

2.3.7 Compress components with Gzip

Compressing resources can reduce the number of

bytes sent over the network. Most modern browsers

support data compression for HTML, CSS, and

JavaScript files. This allows content to be sent over

the network in more compact form and can result in

a dramatic reduction in download time.

To enable compression, we should configure our

web server to set the Content-Encoding header

to gzip [34] or deflate [35] format for all

compressible resources. The .htaccess file gives the

possibility again to configure our web server for

compressing resources, it requires the mod_deflate

module. Our advice is to use <IfModule

mod_deflate.c> condition in order to check the

existence of a module and avoid Internal Server

Error message.
<IfModule mod_deflate.c>
#compress text, HTML, JavaScript, CSS, and XML

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 218

AddOutputFilterByType DEFLATE text/plain
AddOutputFilterByType DEFLATE text/html
AddOutputFilterByType DEFLATE text/xml
AddOutputFilterByType DEFLATE text/css
AddOutputFilterByType DEFLATE application/xml
AddOutputFilterByType DEFLATE

application/xhtml+xml
AddOutputFilterByType DEFLATE

application/rss+xml
AddOutputFilterByType DEFLATE

application/javascript
AddOutputFilterByType DEFLATE application/x-

javascript
</IfModule>

Due to the overhead and latency of compression and

decompression, we should only gzip files above a

certain size threshold; Google Developer suggests a

minimum range between 150 and 1000 bytes.

2.3.8 Combine external JavaScript
Combining external scripts into as few files as

possible cuts down delays in downloading other

resources. Good front-end developers build web

applications in modular, reusable components.

While partitioning code into modular software

components is a good engineering practice,

importing modules into an HTML page one at a

time can drastically increase page load time. First,

for clients with an empty cache, the browser must

issue an HTTP request for each resource, and incur

the associated round trip times. Secondly, most

browsers prevent the rest of the page from being

loaded while a JavaScript file is being downloaded

and parsed.

2.3.9 Minify JavaScript
Compacting JavaScript code can save many bytes of

data and speed up downloading, parsing, and

execution time. Minifying or reducing code refers to

eliminating unnecessary bytes, such as extra spaces,

line breaks, and indentation. Keeping JavaScript

code compact has a number of benefits. First, for

inline JavaScript and external files that we do not

want cached, the smaller file size reduces the

network latency incurred each time the page is

downloaded. Secondly, minification can further

enhance compression of external JavaScript files

and of HTML files in which the JavaScript code is

inlined. Thirdly, smaller files can be loaded and run

more quickly by web browsers.

Several tools are freely available to minify

JavaScript, including JSCompress [28], JSMini [29]

or YUI Compressor [30]. We can create a build

process that uses these tools to minify and rename

the development files and save them to a production

directory. Google recommends minifying any

JavaScript files that are 4096 bytes or larger in size.

We should see a benefit for any file that can be

reduced by 25 bytes or more (less than this will not

result in any appreciable performance gain).

3 Final results

After completing the suggested optimization tasks

we identified that total number of HTTP requests

decreased almost with 35 percent, the total page size

to 32% of the original and as Fig. 3 shows both the

PageSpeed and Yslow grades were improved.

Fig. 2 Before optimization

Fig. 3 After optimization

As a result of this optimization process our website

not only qualified as a second best optimized travel

database in the Hungarian market but had raised

above the average of the top travel sites of the

world. It could overtake pages like Yahoo or

Priceline; improve its result from the overall 12
th

position to the 8
th
 place (Table 4).

Overall before PageSpeed Yslow Average

1 facebook.com 98 97 97,5

2 google.com 98 94 96

3 tripadvisor.com 94 92 93

4 youtube.com 95 86 90,5

5 amazon.com 94 82 88

6 booking.com 93 82 87,5

7 limba.com 87 83 85

8 belfoldiszallasok.hu 88 81 84,5

9 itthon.hu 90 78 84

10 yahoo.com 89 77 83

11 priceline.com 88 78 83

12 xe.com 89 73 81

13 iranymagyarorszag.hu 83 77 80

14 utisugo.hu 86 69 77,5

15 szallasinfo.hu 76 72 74

16 expedia.com 81 60 70,5

Table 4: Grades after optimization

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 219

4 Conclusions
As we can clearly conclude from this research,

webpage speed is going to be one of the most

important factors in the world of online business.

Every second page delay could potentially cost

millions in lost sales every year for online

companies, improving speed performance tend to

become a significant factor in business life. After

optimizing browser rendering and network transfer,

our next task should be to dig deeper down into

client and server-side code (AJAX [36], PHP, ASP)

and SQL database optimization. Completing and

combining all known issues could result an effective

and valuable web application either on desktop or

mobile devices.

References
[1] Rossi, G., Schwabe, D., Guimarães, R.,

Designing personalized web applications. In

Proceedings of the 10th international conference on

World Wide Web, ACM, 2001, pp. 275-284.

[2] X. Su and T. M. Khoshgoftaar, A Survey of

Collaborative Filtering Techniques. Advances in

Artificial Intelligence, vol. 2009, Nr. 4, 2009.

[3] M. J. Pazzani and D. Billsus., Content-Based

Recommendation Systems. The Adaptive Web,

Lecture Notes In Computer Science, Vol. 4321,

2007, pp 325–341

[4] D. Dell’Aglio, I. Celino, D. Cerizza:, Anatomy

of a Semantic Web-enabled Knowledge- based

Recommender System, http://www.larkc.eu, 2010

[5] Gašević, D., Djurić, D., Devedzic, V., Model

driven engineering and ontology development.

Springerverlag Berlin Heidelberg, 2009

[6] Marcotte, E. , Responsive web design. A List

Apart, 306., 2010,

http://alistapart.com/article/responsive-web-design

[7] StrangeLoop Networks, Website abandonment

happens after 3 seconds,

http://www.strangeloopnetworks.com/resources/info

graphics/web-performance-and-user-

expectations/website-abandonment-happens-after-3-

seconds/

[8] Lohr, S., Impatient web users flee slow loading

sites, New York Times, 2012

http://www.nytimes.com/2012/03/01/technology/im

patient-web-users-flee-slow-loading-sites.html

[9] Kissmetrics.com, Loading time,

http://blog.kissmetrics.com/loading-time/

[10] Ecoconsultancy.com, Slow loading websites

cost retailers 1,73 bn in lost sales each year,

http://econsultancy.com/hu/blog/9790-slow-loading-

websites-cost-retailers-1-73bn-in-lost-sales-each-

year

[11] StrangeLoop Networks, Internet users have

faulty perceptions of time,

ttp://www.strangeloopnetworks.com/resources/infog

raphics/web-performance-and-user-

expectations/internet-users-have-faulty-perceptions-

of-time/

[12] Iordan, V; Naaji, A; Cicortas, Al , Deriving

Ontologies Using Multi-agent Systems, “Wseas

Transaction on Computers”, Volume 7, Issue 6

(June 2008), ISSN: 1109-2750, 2008, p. 814-826.

[13] StrangeLoop Networks, Visualizing web

performance,

http://www.strangeloopnetworks.com/assets/images/

visualizing_web_performance_poster.jpg

[14] Blogspot, Using site speed in web search

ranking,

http://googlewebmastercentral.blogspot.hu/2010/04/

using-site-speed-in-web-search-ranking.html

[15] Google Developer, Make the web faster,

https://developers.google.com/speed/

[16] Yahoo, Exceptional Performance,

http://developer.yahoo.com/performance/

[17] Souders, S., High Performance Web Sites.

O'Reilly Media, 2007

[18] Souders, S., Even faster web sites: performance

best practices for web developers. O'Reilly Media,

2009

[19] Sixrevisions.com, Free website speed testing,

http://sixrevisions.com/tools/free-website-speed-

testing/

[20] PageSpeed Insights,

https://developers.google.com/speed/pagespeed/

[21] Yslow, http://developer.yahoo.com/yslow/

[22] WebPageTest, http://www.webpagetest.org

[23] GTMetrix, http://gtmetrix.com

[24] Pingdom, http://tools.pingdom.com/fpt/

[25] Alexa Top Sites, http://www.alexa.com/topsites

[26] Belfoldiszallasok.hu,

http://www.belfoldiszallasok.hu

[27] Techyfuzz.com, http://techyfuzz.com/free-cdn-

content-delivery-network-services-website/

[28] JSCompress, http://www.jscompress.com

[29] JSMini, http://www.jsmini.com

[30] YUI Compressor, http://refresh-sf.com/yui/

[31] CSSSprites, http://www.csssprites.com

[32] SpriteMe, http://www.spriteme.org

[33] SpritePad, http://wearekiss.com/spritepad

[34] Gzip, http://www.ietf.org/rfc/rfc1951.txt

[35] Deflate, http://www.ietf.org/rfc/rfc1951.txt

[36] Zs, Nagy, Ajax-Based Data Collection Method

for Recommender Systems, Proceedings of the 16th

WSEAS International Conference on Computers,

2012. pp. 446–451

Recent Advances in Computer Science

ISBN: 978-960-474-311-7 220

