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Abstract: - Fictitious training data points complementing empirical training examples have been observed 

within several contexts to enhance out-of-sample performance of classification methods. Investigating some 

simple generating rules for fictitious credit client scoring data, we showed in past work that the degree to which 

this desirable effect is achieved varies markedly. When using Support Vector Machines (SVM) as a modelling 

tool, effective performance enhancement depends on the combination of kernels and generating rules for 

fictitious training data. In past work fictitious training data were slight variations of some selected original 

training examples.  For instance, they were chosen to be in the close vicinity of support vectors which belong to 

a SVM trained on the original data, while all the class labels of the fictitious data were assumed to be equal to 

those of the respective generating data points. In this paper we introduce more complex transformations of 

original data examples, which generate unlabelled fictitious training data. Hence we explore a generating 

mechanism for fictitious credit clients, without fixing their defaulting behavior in advance. In order to propose 

labels for the new examples for which no a priori assumption was placed on their class membership, we use 

transductive SVM, a semi-supervised classification method.We also discuss how to adapt model performance 

validation to the enlarged training data sets. 
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1 Introduction 

In past work on credit scoring by mainly using 

Support Vector Machines (SVM) in order to model 

different aspects of the data (as in [8], [10]), we find 

some hints at not yet detected possibly non-linear 

structure in the data.  

Recently [11] we started investigating possibilities 

of extracting such additional structure by means of 

fictitious training data, i.e. data artificially 

generated by the modeler in order to hopefully 

reinforce some underrepresented but potentially 

useful aspects of the empirical data. Abu-Mostafa 

[1] describes the beneficial effects of reinforcing 

symmetries, e.g. in images by emphasizing certain 

neighborhoods via fictitious training examples.  

In [9] and in [5] we find work which reinforces 

manifold geometry information, e.g. of “feasible” 

handwritten digits via fictitious training examples 

formed in the immediate vicinity of support vectors 

of pre-trained SVM. Finally, new approaches 

presented in [2] point towards the usefulness 

instance based constraints, i.e. “example i and j 

must (or cannot) be in the same class” – without 

specifying the classes, which can provide clues of 

how to construct useful fictitious training examples. 

 

Our present interest in credit scoring data leads us 

into asking if similar principles of constructing 

fictitious training examples as those in the above 

cited applications can be found here too. Unfortu-

nately, we do not know of any geometrically related 

input features or neighborhoods induced by sym-

metries in credit client data and we cannot (as yet) 

justify any instance based constraints applicable to 

pairs of credit clients. 
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2 Types of Fictitious Data in Credit 

Scoring 

Given a training set  Niii yx ,...,1},{ = ,  with m-dimen-

sional input features ix and with associated label 

}1,1{ +−∈iy . Think of ix as being the personal 

characteristics of client i , for instance age, income, 

demographic data, professional history and many 

other features which can be legally (if only 

confidentially) used in order to derive decisions 

regarding client crediting and of iy as being a binary 

label, which denotes if this credit client was 

defaulting on the credit in the past.   The input 

vectors are such that 

 

 
 

where just a subset of all 
b2  configurations with b 

entries can be realized due to an imposed binary 

block coding }{ jB , where j = 1,...,d,  with d < b. 

In a sense, all possible ∏
=

d

j

jB
1

||  configurations of 

the binary part of the above input representation are 

feasible credit clients. 

The real part of the input vectors is not changed but 

transcribed from parents (original examples) to 

offspring (fictitious examples). In principle we can 

choose one of the following methods: 

 

(a) Transform ix  into jx  by choosing jx  within a 

small distance ε<),( jj xxd  (local mutation), a 

choice taken in [11]. 

 

(b) Transform the binary parts of two parents into 

two offspring by information exchange  (crossover, 

semi-local conservative action, this paper):  

21 ii xx ⊗    leads to   
21 jj xx ⊗ . 

More specifically the follwing possibilities exist: 

1.  ayy ii ==
21

   leads to   ayy jj ==
21

, 

2.  ayy ii ==
21

   leads to  unlabelled 
1j

x and ,
2j

x  

3.  
21 ii yy ≠    leads to  unlabelled  

1j
x and 

2j
x . 

 

(c) Global, unrestricted mutation within the feasible 

binary configurations }{ jB  leads to unlabeled  input 

vector sections 
1j

x and 
2j

x . 

 

2.1 The role of SVM classification   
An SVM decision or classification rule derived from 

N training examples is then given by [12]: 
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with Ci ≤≤ *
0 α .  The user selected constant C  

determines the amount of misclassification or error 

tolerance, which is permitted in order to avoid 

overtraining (no error tolerance at all would be 

detrimental in all cases of noisy training data, as is 

for instance the case with credit scoring data). The 

SVM optimization procedure uses the training 

examples Niii yx ,...,1},{ =  as inputs to find N optimal 

dual variables 0
* ≥iα  and  ∈*b R,  in order to 

predict a class membership y  for a new (as yet 

unseen) input x .   

The training examples verifying Ci << *
0 α  are 

called essential support vectors to be used in the 

sequel. Such support vectors separate regions in 

input features space which can be classified without 

error from those which are populated by both 

positive and negative cases, which hence cannot be 

functionally separated by a classification rule, which 

is deliberately kept too simple as to permit perfect 

classification (remember the role of C ).  

 

Furthermore, the SVM model uses a kernel function 

0),( ≥jj xxk , in general a nonlinear function re-

lated to the distance between ix and jx , which ex-

tracts some information about the vicinity of all 

training pairs in the feature space.  

 

In the SVM literature (as in [7], [12]) this feature 

space refers to a hypothetical dimension blow-up of 

the input space until all differently labelled cases 

(classes) can be separated linearly, however subject 

to the constraint that the “distance order“ between 

point pairs in the original input space is preserved in 

this new feature space.  Kernel based methods like 

SVM can make implicily use of such feature spaces 

without requiring their explicit construction. 
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2.2 The use of the empirical credit client data  
The empirical data set for our credit scoring models 

is a sample of N = 658 clients for a building and 

loan credit with seven metric, two ordinal and seven 

nominal input variables which are coded into a 40 

dimensional input vector (m = 40). It contains 323 

defaulting and 335 non defaulting credit clients. 

 

Fictitious training data are generated in two dif-

ferent ways: Using a binary encoding of the cate-

gorical input variables, the genetic operators mu-

tation and recombination are applied in order to ge-

nerate offsprings, which are both feasible and new: 

 
(a) Fictitious data generated by mutation are con-

structed by switching categories in nominal or 

ordinal input variables. A new nominal category is 

generated by switching the outcome of the original 

variable to any of the other possible categories. 

For ordinal variables, only switches to the 

neighboring (or to those of type not available) 

categories are allowed. 

 
(b) A recombination procedure of two existing data 

points is generating a fictitious training example by 

a simple crossover recombination of the two parents 

using a randomly chosen, but feasible crossover 

point. 

 

In general, the label y of such a fictitious data point 

is unknown and has to be determined by semi-

supervised classification using transductive SVM 

(see section 3). 

Furthermore, for SVM model building we follow a 

two step procedure, proposed by [9]. In a first step, 

a SVM is trained using the initial data set of 658 

clients. The resulting support vectors are then 

extracted and fictitious data points are generated by 

(i) mutation and (ii) crossover recombination, as 

outlined before. 

 

 

3  Semi-supervised classification 
 

As the data of a supervised classification problem 

are given by a set of N training examples 

Niii yx ,...,1},{ = , with vector ),...,,( 21 imiii xxxx = as 

m−dimensional input pattern of object (or credit 

client) i, and with }1,1{ +−∈iy the associated class 

labels, inductive linear SVM has to solve the 

following quadratic optimization problem: 
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The (forecasted) SVM class label is then given by  

 

),sgn( bwx +〉〈   =  







+〉〈∑

=

*

1

*
,sgn bxxy ii

N

i

iα  ,  

with ii

N

i

i xyw ∑
=

=
1

*α   and with   Ci ≤≤ *
0 α   as be-

fore.  With additional unlabeled training examples 

(where the value of the target variable y  is un-

known), the inductive SVM cannot be used any-

more. For such cases transductive SVM  were 

developed [12] as a method to learn a large margin 

hyperplane classifier using labeled training data, but 

simultaneously force this hyperplane to be far away 

from the unlabeled data [4].  

In transductive learning some additional K unlabe-

led training examples **,...,*, 21 Kxxx  are given. In 

some cases, K may be much bigger then N, denoting 

that unlabeled data – being of less commercial value 

– are more readily available or can be collected 

more easily. The modified optimization problem to 

be solved for transductive learning then reads [7]:   
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    s. t.       iii bwxy ζ−≥+〉〈 1),(      and   0≥iζ , 

           *1)*,(* jjj bwxy ζ−≥+〉〈   and   0*≥jζ , 

                  and }1,1{* +−∈jy   for all  Kj ,...,1= .  

 

Note that transductive SVM in general include sol-

ving a combinatorial search problem to determine 

the class labels *jy   (as in [3], [4], [6]). The classi-

fication function which forecasts y from a new x is 

given by including the K unlabelled cases, namely 

by  
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In practice, using an appropriately modified kernel 

function as described in section 2.1, e.g.  *),( jxxk  

instead of scalar product 〉〈 *, jxx  allows for non-

linear semi-supervised classification.  In the sequel, 

SVM with different kernel functions are used for 
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classifying good and bad credit clients. Detailed 

information about diffrent kernels,  hyperparameters 

and SVM tuning can be found in [10]. 

 

 

4  Empirical results 

 
We trained SVM with four different kernels using 

three different data sets. The linear kernel is used as 

reference (benchmark) and the remaining kernels 

implement different non-linerities. The RBF kernel 

is the most flexible. This kernel can be easily 

adapted to complicated input-output maps but 

equally so to useless noise. In Table 1 for each 

kernel the number of essential support vectors (SV, 

see section 2), the number of bounded support 

vectors (BSV, those who’s associated dual variables 

verify Ci =
*α ) and the tenfold cross validation 

classification error is shown for four different 

models trained on essential support vectors (where 

Ci << *
0 α ) plus two types of fictitious data:  mu-

tated support vectors with labels preserved from the 

origin (L-SV Fict.) and (ii) unlabeled crossover 

recombinations of essential support vectors (UL-SV 

Fict.). Results from (i) and (ii) are compared to (iii) 

the empirical initial credit data set as a benchmark 

with 658 clients without any fictitious data points. 

 

 

 

 

Table 1:  Evaluation and comparison of four SVM with different kernel functions. Each model is trained and 

evaluated on two fictitious data sets that were generated from labeled and unlabeled support vectors (L-SV Fict. 

and UL-SV Fict.). Real data models are trained and evaluated without using any additional fictitious data 

points. Tenfold cross validation error for all SVM models is evaluated for real data points only. 

   

SVM-Kernel No. of Cases No. of SV No. of BSV Alpha Error Beta Error Total Error* 

Linear 

L-SV Fict. 

UL-SV Fict. 

Real data 

 

768 

2041 

658 

 

43 

43 

41 

 

0 

0 

316 

 

32.2% 

39.3% 

29.1% 

 

22.4% 

27.2% 

29.9% 

 

27.2% 

33.1% 

29.5% 

Polyn. 2
nd
 deg. 

L-SV Fict. 

UL-SV Fict. 

Real data 

 

1060 

2031 

658 

 

94 

131 

63 

 

96 

237 

392 

 

19.5% 

22.5% 

27.2% 

 

31.6% 

31.6% 

28.1% 

 

25.7% 

26.0% 

27.7% 

Polyn. 3
rd
 deg. 

L-SV Fict. 

UL-SV Fict. 

Real data 

 

3715 

2216 

658 

 

532 

419 

216 

 

119 

155 

211 

 

23.8% 

23.8% 

27.9% 

 

30.5% 

27.4% 

29.0% 

 

27.2% 

25.7% 

28.4% 

RBF 

L-SV Fict. 

UL-SV Fict. 

Real data 

 

3113 

2179 

658 

 

419 

327 

179 

 

97 

149 

252 

 

25.7% 

28.5% 

28.2% 

 

31.6% 

31.6% 

28.1% 

 

25.7% 

26.0% 

27.7% 

*computed on the N=658 real data set only. 

 

 

Data from type (i) and (iii) is used for supervised 

classification via inductive SVM, whereas data from 

type (ii) is used for semi-supervised classification 

via transductive SVM. Three classification measures 

are reported: The total error is the percentage of 

those clients classified incorrectly relative to all 

credit clients. The alpha (beta) error is the percen-

tage of accepted bad (rejected good ) relative to all 

bad (good) clients. In all cases error rates are 

recorded for 658 real credit clients only. We detect 

higher classification accuracy in six out of eight 

models trained with fictitious data when compared 

to the Real data performance. Labeled and unlabeled 

fictitious data points, however, do not seem to con-
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tribute to out-of-sample performance in the same 

way.  

Whereas inductive learning (supervised) leads to 

smaller error rates for every single model, trans-

ductive learning (semi-supervised) just improves 

two out of four models. The structure of the SVM 

models differs vastly as can be seen by the varying 

alpha and beta errors as well as by the varying  

numbers of support vectors of the different types. 

 

 

5 Conclusion 
 

After investigating the effect of the simplest  

placement of fictitious training points, namely 

seeding the vicinity of each training point with 

randomly drawn points, having the same label as the 

original data point (see also [11]) we now turn to the 

problem of whether new training points generated 

by semi-local methods do still express feasible 

domain data. This would in fact be the case (it 

would be indirectly confirmed) when the validated 

misclassification error can be reduced. First we 

generate fictitious data points by switching 

categories of nominal or ordinal variables. 

 

In the context of supervised SVM model training the 

validation error computed on the original data 

decreases, when adding fictitious training data. 

Semi-supervised classification with more involved 

crossover recombinations of two parent support 

vectors also leads to improvement of some models. 

Classification results in this case, however, are 

ambiguous and need further investigation. 
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