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Abstract: We consider the problem of minimizing the makespan when scheduling a Parameter Sweep Application
(PSA, set of independent jobs) on identical machines of a parallel computational infrastructure. However, there is
no a priori information on the job lengths, and the user intends to execute the whole PSA multiple times and is
able to measure individual machine completion times. We also require that any set of jobs assigned to a machine
has to be briefly described so an arbitrary schedule may not be suitable.
This paper proposes an iterative framework which repeats computing an approximation schedule, executing the
PSA and updating the historical database according to the machine completion times. After each iteration, the
approximation algorithm further improves some upper bound of the makespan until a 2-approximation is reached.
The scheduling algorithm always assigns consecutive jobs called chains to machines keeping the historical database
and the machine assignment descriptions brief.
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1 Introduction
We investigate the problem of scheduling a Parame-
ter Sweep Application (PSA) on a parallel computa-
tional infrastructure. In a PSA, the same computa-
tion has to be executed for many different values of a
parameter, which is common in engineering or scien-
tific computations. To each parameter value, we as-
sign a non-interruptible job. We call the domain of all
possible parameter values the parameter space, cor-
responding to the set of jobs. Every job requires a
processing time to complete called its length, and a
machine’s completion time is the total length of jobs
assigned to it. We consider the cost of a schedule the
makespan, i.e. the maximal completion time. Hence
the underlying problem is the widely known NP-hard
optimization problem of scheduling independent jobs
to identical parallel machines while minimizing the
makespan, often denoted as P ||Cmax, except that we
have no a priori knowledge of the job lengths. To
maintain tractability, we focus on a 2-approximation.

Our inspiration was a supposedly common usage
scenario. When a user develops a PSA for a project,
sometimes executes it several times during the project,
as observed by others [8], because of different rea-
sons: testing, fixing bugs, adding new features such as
more detailed output, improved precision etc. To ex-
ploit a parallel infrastructure, the user has to partition

somehow the parameter space by creating a schedule,
i.e. a mapping from the parameter space to the set of
machines. We call the work of a machine, which is the
set parameters assigned to it, an assignment. In many
PSAs, the processing times of the parameters may be
significantly different and hard to predict, so the first
partition may result in a makespan far from optimal.
So after the execution, assuming the measured ma-
chine completion times are available, the user may
notice that some assignments took extremely short or
long time to complete. To minimize the makespan,
the user should adjust the partition intuitively or sys-
tematically in order to shorten the longest assignments
at the next execution. If the makespan still turns out
to be too high, further adjustments are made until the
makespan meets the requirements.

Our most essential assumption is that most users
tend to repeat executing their PSAs. Naturally not to
optimize the makespan, but for various reasons such
as executing later a revised version of PSA. This kind
of user behaviour is assumed throughout this paper:

Conjecture 1. The user submits for execution a PSA
multiple times.

It also is important to notice that the process
above is validated by another strong assumption: the
parameter space and processing times of the param-
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eters remain constant between the executions, never-
theless, the user may do changes to the PSA (e.g. fix a
program bug).

The main goal of this paper is proposing a
generic, iterative framework to help automating this
process. In each iteration the framework updates
its historical database with the measured completion
times of the execution of the previously computed
schedule. If it is not clear whether the approximation
ratio of 2 has already been reached, then splits the long
assignments into parts estimating proportionally their
lengths, contracts the small ones, and re-computes the
schedule for the next execution. We state that, under
all assumptions above, after a finite number of itera-
tions the approximation ratio of 2 is always reached
for any PSA. For a demonstration, we implemented
a preliminary version of the framework as a Saleve
client [9]. The demonstration includes a simple syn-
thetic example as well as a real, previously published
PSA. We believe this framework can be incorporated
into existing PSA execution supporting tools or even
scheduling techniques.

According to Conjecture 1, the PSA is not re-
peated because our framework needs more iteration.
It is repeated regardless of the framework because this
is the wish of the user. So the framework does not
cause additional execution costs, instead it gradually
decreases the execution costs.

To keep in sight easy implementation and small
historical database, let us suppose the parameter space
is an ordered set. Our scheduling algorithm only as-
signs a set of consequtive jobs called a chain to any
machine, which keeps the machine assignment de-
scriptions brief so the historical database. So in a nut-
shell, based on historical data, the framework splits
the long chains and contracts the small ones in each
iteration.

The approximation ratio of 2 cannot be further
improved unless we give up our restriction of schedul-
ing only chains of jobs. Hence we say, inspired by the
“price of anarchy” [20], the price of chaining is 2.

Due to space limitations, the proofs of our state-
ments have been omitted from this paper.

2 Related Work
The classical scheduling problem P ||Cmax has re-
ceived much attention through the past decades.
There are simple 2-approximation algorithms, e.g. list
scheduling [11] or rounding a fractional schedule [1].
However, these algorithms cannot be used in the iter-
ations of the framework as shown in Section 4, so we
present yet another 2-approximation for P ||Cmax.

Scheduling chains is usually referred to as one

dimensional array partitioning or chain partitioning.
In our setting, the optimal chain partitioning can be
found in polynomial time [4], and exact solutions are
surveyed in e.g. [21]. Despite the efficiency of ex-
act solutions, we are not interested in them because
even an optimal chain partitioning is just another 2-
approximation for the original problem P ||Cmax.

There are a number scheduling techniques when
uncertainty arises. Some surveys characterize tech-
niques as proactive (more robust to unplanned
changes) and reactive (less committed to existing
plan) [13, 2]. For instance the online list schedul-
ing, also known as self-scheduling is reactive. While
self-scheduling is a good approximation in theory, ob-
viously effects an enormous overhead in a system.
Guided self-scheduling and factoring algorithms of-
fer a compromise: they form chunks of jobs (similar
to our chains) to reduce the overhead. Initally these
algorithms dispatch large chunks, then the chunk size
will gradually decrease to improve balancing [15].

However, reactive behaviour usually implies the
algorithm intervenes during the execution of the
schedule based on some quasi real-time feedback of
the system state, aiming to improve one schedule. In-
stead, our long-term goal is simpler: we aim to col-
lect historical data to improve the next schedules. We
note that getting real-time feedback may be very ex-
pensive in distributed systems. Our framework uses
only a historical database which is not real-time, thus
we believe it is more generally applicable and easier
to implement.

A notable idea to deal with uncertainty in jobs
is requiring the users to provide the processing times
[17]. AppLeS [3] and GrADS [6] require the user to
provide explicit performance model of the application
to predict processing times. Probabilistic estimation
was also studied, assuming the lengths are indepen-
dent random variables [7].

In work of others, the application properties are
learnt by building a historical database from measure-
ments from previous executions. Probabilistic estima-
tion could be backed up by a database to estimate the
average of the distribution [5]. A database can support
machine learning techniques to automatically develop
performance models from the application source code
[23], or to predict processing times using records of
similar jobs where similarity is calculated from job at-
tributes e.g. user and job id, requested resources [19].

Some work focus on collecting processing times
of the whole application [22, 12] in order to optimize
resource performance such as utilization. Others, as
well as this work, measure the parts of an application
to optimize application running time [10, 14, 24, 18].
Some of them model the processing time to be de-
pending on the input data size so a time can be pre-
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dicted by projecting a previously measured time on
the same resource for another data set (e.g. [18, 12]).
In our case, we cannot use this prediction system for
the chain lengths because then every job (or parame-
ter) would have uniform processing time, contradict-
ing to our setting. In [14] and [24], the goal is de-
termining the optimal number of machines to achieve
the desired speed-up and efficiency. MARS [10] col-
lects both application-specific and system-specific in-
formation to balance loads, but it was designed for
more general parallel applications than a PSA, and it
does not exploits that the tasks may be divisible as our
chains.

3 The Proposed Framework
In this section we formalize our objective and present
the framework.

We wish to schedule n non-interruptible jobs
of length p1, . . . , pn onto m identical machines. A
schedule f is a mapping f : [1 . . n] 7→ [1 . . m], and
we say f is a chain partitioning iff either f(j + 1) =
f(j) or f(j+1) = f(j)+1 holds for all 1 ≤ j < n, so
each assignment is a chain. A chain c is a subinterval
within [1 . . n], its cardinality is its size, its processing
time is its length, denoted by `(c). The completion
time of machine i is the total length of its assignment:
Ci(f) =

∑
f(j)=i pj . A chain containing only one

job is a singleton, its size is 1. Let C∗max denote the
makespan of the optimal schedule (NP-hard to com-
pute), and C1D∗

max the makespan of the optimal chain
partitioning (computable in polynomial time). We call
the price of chaining the supremum of the quotient
C1D∗
max/C

∗
max over all valid scheduling problems. To

demonstrate the price of chaining is 2, we have

Example 1. Let n = 2m, and the processing times
p1 = . . . = pm = m, pm+1 = . . . = p2m = 1.

Clearly, for this inputC∗max = m+1 andC1D∗
max =

2m, so if the price of chaining exists, it is at least 2.
On the other hand, as the 2-approximation framework
presented by this paper is a chain partitioning as well,
we have C1D∗

max ≤ 2 · C∗max. We note that [1] also
admits a 2-approximation chain partitioning.

According to our assumption on uncertainty, af-
ter executing a schedule f , all measured completion
times C(f) become known and can be used to op-
timize future schedules. C(f) stands for the vec-
tor C1(f), . . . , Cm(f). It is easy to see that any
chain partition f can be unambiguously described in
O(m log n) space.

The working of the framework is outlined in Al-
gorithm 1, details are elaborated in this section. Given

m, n, the historical database contains initially an ar-
bitrary initial schedule f0, and its measured, accurate
completion times C(f0). f0 can be obtained e.g. by
splitting the parameter space into equally sized parts.
In the qth iteration, starting with q = 1, the schedule
fq has to be computed based on the database. After the
execution of fq, the measurements C(fq) are merged
into the database.

Algorithm 1 Iterative framework
1: procedure FRAMEWORK(m,n, f0, C(f0))
2: q ← 0
3: while Cmax(fq) > 2max{TLB, smax} do
4: q ← q + 1
5: P ← a synthetic scheduling problem of

the chains of the database and their length
6: for all chain c in P s.t. `(c) > 2TLB do
7: Split chain c in half
8: Estimate the length of the half chains
9: Replace c with the half chains in P

10: fq ← FRUGALLYSCHEDULE(P , TLB)
11: Execute schedule fq, measure C(fq)
12: Merge C(fq) into the database
13: Recalculate TLB and smax

We define the chains of the database after merg-
ing C(fq) in line 12 as follows, which we rely in lines
5 and 13 on. A chain assignment c of fq may or may
not contain a chain c∗ of estimated length as a sub-
set. If it does not, then we say c is a chain of the
database with is its measured length (some comple-
tion time). Otherwise it is easy to verify that c \ c∗
is also a chain. In addition, its length `(c \ c∗) was
already known as stated later by Proposition 2 (previ-
ously measured or calculated), so finally after execut-
ing fq the exact length of c∗ can be calculated from
measurements: `(c∗) = `(c) − `(c \ c∗). So in this
case we say c∗ and c \ c∗ are chains of the database.
Hence for each assignment c, we have either one or
two chains in the database, so the database consists of
less than 2m chains.

The goal of the framework is to assure that
Cmax ≤ 2C∗max after a finite number of itera-
tions. For this purpose, two lower bounds on
the optimal makespan C∗max are determined in each
iteration: the average completion time TLB :=∑n

j=1 pj/m and the maximal length smax of the sin-
gleton chains of the database, if there is any, otherwise
smax := 0. The framework stops when Cmax(fq) ≤
2max{TLB, smax} is guaranteed. We note that we
could omit the recalculation of TLB in every iteration
(line 13), but it provides the framework some adap-
tivity: if the processing times change because of some
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alteration in the PSA, the recalculation of TLB restores
the convergence.

In each iteration, a synthetic scheduling problem
is prepared from the chains of the database after an
adjustment: the longest chains (longer than 2TLB) are
split in half. The length of the half chains are un-
known, so they are estimated temporarily as the half
of the original length. Each chain corresponds to a
synthetic job of the same length, where a synthetic
length is either provided by the database or estimated
as above. The synthetic jobs are scheduled by the al-
gorithm called FRUGALLYSCHEDULE, presented in
Algorithm 2, which is a simple array partitioning al-
gorithm for jobs of known length, with important fea-
tures though. FRUGALLYSCHEDULE returns a sched-
ule f ′ which can be trivially interpreted also as a
schedule f of the original jobs of unknown length.
We mention that line 5 of Algorithm 2 is optional and
does not improve the bounds of the framework stated
in Section 4. Still, we keep it for illustration purposes
because without it the algorithm would radically con-
tract machine assignments and use much less machine
than m in our examples.

Algorithm 2 Subroutine: schedules frugally
Require: P : jobs of known length p′1, . . . , p

′
n′

1: function FRUGALLYSCHEDULE(P , T )
2: i← 1
3: for all job j do
4: ifCi > 0 andCi+p

′
j > 2T then i← i+1

5: if Ci > T then i← i+ 1 . optional
6: if i > m then ABORT! T is too small
7: Assign job j to machine i, i.e. f ′(j) := i

8: return the computed schedule f ′

The next section formally states that the frame-
work meets the requirements, while Section 5
strengthens it via an example.

4 Analysis of the Framework
Although the framework and the scheduling subrou-
tine look primitive, together they successfully man-
age some nontrivial issues. Most important one is
the convergence (finite number of iteration), achieved
by the framework by keeping decreasing the sizes of
the longest chains in the database until every non-
singleton chain is under 2TLB. To assist in that, the
scheduling subroutine should not map more than one
synthetic job of estimated size (“half chain”) to a ma-
chine. If each estimation is specified with exact mea-
surements by the end of the iteration, long chains

will keep getting smaller and shorter. Even an opti-
mal chained partitioning may map more than one es-
timated chain to a machine as well as other approx-
imations such as the one in [1], so the existence of
FRUGALLYSCHEDULE (Algorithm 2) is justified.

Thus the framework and the subroutine has to in-
teract to succeed. We begin the discussion with the
properties of FRUGALLYSCHEDULE.

Proposition 1. Given the number of machines m
and n′ jobs of length p′1, . . . , p

′
n′ by the problem

P , let p′max := max1≤j≤n′{p′j}. For the schedule
f ′ returned by FRUGALLYSCHEDULE(P, T ) in Algo-
rithm 2, we have the following:

(i) if T ≥ TLB, then the algorithm does not abort
and f is a valid chain partitioning,

(ii) if the algorithm does not abort, thenCmax(f
′) ≤

max{2T, p′max},

(iii) if the algorithm does not abort, no machine gets
two jobs longer than T , even if Cmax(f

′) > 2T .

According to part (ii), FRUGALLYSCHEDULE is
not an ordinary 2-approximation. It is of importance,
because while p′max is a lower bound on the optimal
makespan of the synthetic scheduling problem P , it is
usually not a lower bound for the original scheduling
problem, as the longest synthetic job may not corre-
spond to a singleton chain. The algorithm is frugal be-
cause it does not allow the makespan to reach 2p′max,
as an ordinary approximation would.

Proposition 1 enables us to finish the analysis.
Let x(q) be the maximum size of the chains in the
database of length more than 2TLB at the end of the
qth iteration, and 0, if every length is under 2TLB.

Proposition 2.

(i) In any schedule executed by the framework, the
assignment of a machine can contain at most one
half chain of estimated length, so the length of
the complement of the estimated chain is known.

(ii) x(q + 1) ≤ dx(q)/2e for all q.

(iii) The framework stops when x(q) is 1 or 0. If
x(q) = 1, then Cmax(fq) = smax, if x(q) = 0,
then Cmax(fq) ≤ 2TLB.

Finally, we summarize the results in

Theorem 1. The framework presented in Algorithm 1
yields a makespan at most 2C∗max using a database
of size O(m log n), after at most dlog ne iterations,
starting from any initial schedule f0.
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5 Demonstration of the Framework
In this section we present a graph generation PSA (Ex-
ample 2) to test the framework with.

Example 2 (Graph generation PSA [16]). Shown on
Fig. 1 (top), n = 49566, and let m = 12.

The whole process is illustrated on Fig. 1. The
first diagram (on top) visualizes the processing times.
The second diagram of Fig. 1 shows the initial sched-
ule f0 and its completion times C(f0). The initial
schedule assigns the uniform-sized chains to the 12
machines. The assignment intervals are separated by
vertical lines with machine indices displayed. There
are 12 rectangles on the second diagram, and the
width of the ith rectangle corresponds to the size (num-
ber of jobs) of the assignment of machine i, while its
height corresponds to the length of this assignment.
Obviously the makespan of f0 is the height of the
highest rectangle: Cmax(f0) = 760177.

The average completion time is TLB = 194851,
so the first iteration splits the first and the second
chains, estimate their sizes (not shown on the fig-
ure) and computes the next schedule f1, executes it
and measures its completion times. f1 and C(f1)
are shown on the third diagram. In this iteration,
FRUGALLYSCHEDULE did not assign any jobs to ma-
chines 10,11 and 12 so we have 9 rectangles. The
makespan is still Cmax = 433898.

The second iteration splits only the third chain of
f1, computes and executes the schedule f2, updates
the database with C(f2), shown on the fourth, last di-
agram of Fig. 1. The only difference from the previous
iteration is that the one chain split in half is dispatched
to two distinct machines. Finally, the makespan is
Cmax = 368580, so the framework stops with the sat-
isfying schedule f2.
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[9] P. Dóbé, R. Kápolnai, A. Sipos, and I. Sze-
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