
 

 

An Automatic Sequential Smoothing Method for Processing 
Biomechanical Kinematic Signals  

 
F.J. ALONSO*, F. ROMERO, D.R. SALGADO  

Department of Mechanical, Energetic and Material Engineering 
University of Extremadura 

Escuela de Ingenierías Industriales, Avda. de Elvas s/n, 06006, Badajoz 
SPAIN 

fjas@unex.es   http://www.unex.es/investigacion/grupos/dedalo 
 
 
Abstract: - The combined application of Singular Spectrum Analysis (SSA) and Cluster Analysis to the 
automatic smoothing of raw kinematic signals is an alternative to the use of traditional digital filtering and 
spline based methods. SSA is a non parametric technique that decomposes original time series into a number of 
additive time series each of which can be easily identified as being part of the noise present in the acquired 
signal. Nevertheless, the smoothing automation is not a trivial task. This work presents a heuristic automatic 
smoothing procedure for processing kinematic biomechanical signals based in sequential SSA. Cluster analysis 
is used to group the SSA decomposition in order to obtain several independent components in the frequency 
domain. The procedure eliminates iteratively the noise present in the signal in a simple and intuitive way. The 
new method is applied to several signals to demonstrate its performance.  
 
Key-Words: - Signal processing, Smoothing, Noise removal, Singular Spectrum Analysis, Signal 
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1 Introduction 
Motion capture systems used in biomechanical 
analysis introduce introduce systematic and random 
measurement errors that appear in the form of high-
frequency noise in the recorded displacement 
signals. Raw displacement signals must be filtered 
or smoothed prior to differentiation to avoid noise 
amplification due to the ill-posed derivative 
estimation process [1-3]. 

The filtering of displacement signals to 
obtain noiseless velocities and accelerations has 
been extensively treated in the literature. Traditional 
filtering techniques include Digital Butterworth 
filters, splines, and filters based on spectral analysis 
[1-5]. In order to filter non-stationary signals, 
advanced filtering techniques like Discrete Wavelet 
Transforms [6], the Wigner Function [7-8], non-
stationary Butterworth filter [9] and Singular 
Spectrum Analysis (SSA) [10] have been used. 
Nonetheless, the drawback in these cases is the 
complexity of devising an automatic and systematic 
procedure. A mother wavelet function must be 
selected when using Discrete Wavelet Transforms, 
the filtering function parameters must be chosen 
when using the Wigner Function, window length 
and grouping strategy must be selected when using 
SSA [10]. 

The goal of this paper is to demonstrate the 
advantages of automatic smoothing methods based 

on sequential Singular Spectrum Analysis (SSA) 
and cluster analysis techniques.  

SSA is a non-parametric technique that 
decomposes original time series into a number of 
additive time series each of which can be easily 
identified as being part of the noise present in the 
acquired signal.  

This work presents a heuristic automatic 
smoothing procedure for processing kinematic 
biomechanical signals based on sequential SSA. 
Cluster analysis is used to group the SSA 
decomposition in order to obtain several 
independent components in the frequency domain. 
The procedure then applies sequential SSA to 
eliminate iteratively the noise present in the signal 
in a simple and intuitive way. 
 
 
2 Singular Spectrum Analysis 
Singular spectrum analysis is a novel nonparametric 
technique of time series analysis based on principles 
of multivariate statistics. It decomposes a given time 
series into an additive set of independent time 
series. The set of series resulting from the 
decomposition can be interpreted as consisting of a 
trend representing the signal mean at each instant, a 
set of periodic series, and an aperiodic noise [11]. 

The original application of SSA was to 
extract trends from climatic and geophysical time 

Recent Advances in Mechanical Engineering Applications

ISBN: 978-960-474-345-2 25



 

 

series and to identify periodic motion in complex 
dynamical systems. 

The SSA method builds a Hankel matrix, 
called the trajectory matrix, from the original time 
series in a process called embedding. This matrix 
consists of vectors obtained by means of a sliding 
window that traverses the series. The trajectory 
matrix is then subjected to a singular value 
decomposition (SVD).  

The SVD decomposes the trajectory matrix 
into a sum of unit-rank matrices known as 
elementary matrices. Each of these matrices can be 
transformed into a reconstructed time series. 
Elementary matrices are no longer Hankel matrices, 
but an approximate time series may be recovered by 
taking the average of the diagonals (diagonal 
averaging). The resulting time series are called 
principal components [11]. The sum of all the 
principal components is equal to the original time 
series. 

The objective is to obtain a frequency 
decomposition of the original signal in which the 
latent low-frequency signal can be detected in a 
simple fashion. The SSA decomposition algorithm 
will be described in the following. A more detailed 
explanation may be found in Golyandina et al. [11]. 
The above description of SSA may be expressed in 
formal terms as follows: 
 
Step 1. Embedding 
Let )1,,1,0( −= Nfff F  be the length N  time series 
representing the original signal. Let L  be the 
window length, with NL <<1 and L  an integer. 
Each column jX  of the Hankel matrix corresponds 
to the "snapshot" taken by the sliding window: 

Kjfff T
Ljjjj ,,2,1,),,,( 21  == −+−X  where 

1+−= LNK  is the number of columns, i.e., the 
number of different possible positions of the said 
window. The matrix )X,,X,(XX K21=  is a 
Hankel matrix since all elements on the diagonal 

cji =+  are equal. This matrix is sometimes 
referred to as the trajectory matrix. The form of this 
matrix is: 
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Step 2. Singular value decomposition (SVD) of the 
trajectory matrix. 

It can be proven that the trajectory matrix (or any 
matrix, for that matter) may be expressed as the 
summation of d  rank-one elementary matrices 

dEEEX +++= 21 , where d  is the number of 
non-zero eigenvalues of the LL × matrix TXXS ⋅= . 
The elementary matrices are given by 

TVUE iiii ⋅= λ , di ,,2,1 = , where dλλλ ,,, 21   
are the non-zero eigenvalues of TXXS ⋅=  in 
decreasing order, dU,,U,U 21  are the 
corresponding eigenvectors, and the vectors iV  are 

obtained from iii λ/UXV T ⋅= . 
The norm of elementary matrix iE  

equals iλ , so that, the contribution of the first 
matrices to the norm of  X  is much higher than the 
contribution of the last matrices. Therefore, it is 
likely that these last matrices represent noise in the 
signal. The plot of the eigenvalues in decreasing 
order is called the singular spectrum, and gives the 
method its name. 
 
Reconstruction (diagonal averaging) 
At this step, each elementary matrix iE  is 
transformed into a principal component of length N  
by applying a linear transformation known as 
diagonal averaging or Hankelization. The 
elementary matrices are not themselves Hankel 
matrices, so that to reconstruct each principal 
component one calculates the average along the 
diagonals cji =+ . The diagonal averaging 
algorithm [11] is as follows: 
 
Let Y  be any of the elementary matrices iE  of 
dimension KL× , the elements of which are 

KjLiyij ≤≤≤≤ 1,1, . The time series 

110 ,,, −= Nggg G  (the principal component) 
corresponding to this elementary matrix is given by: 
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Where ),max(),,min( ** KLKKLL == , and 

the length 1−+= KLN . It can be shown that the 
squared norm of each elementary matrix equals the 
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corresponding eigenvalue, and that the squared 
norm of the trajectory matrix is the sum of the 
squared norms of the elementary matrices [11]. 
Thus the ratio: 

 ∑
=

d

i
ii

1
/ λλ      (3) 

represents the contribution of the elementary matrix 
iE  in the expansion of the trajectory matrix 

dEEEX +++= 21 . 
 

The largest eigenvalues in the singular 
spectrum represent the large amplitude components 
in the decomposition. Contrariwise, the low-
amplitude components of the signal are represented 
in the singular spectrum by the smallest eigenvalues. 
 
 
2.1 Separability 
The obtained SSA decomposition is a function of 
the window length choice.  This choice therefore 
conditions whether the components obtained will be 
correlated to a greater or lesser degree in the 
frequency domain. To study whether these 
components are mutually independent, one defines 
the following necessary (but not sufficient) 
separability condition [11]: 
 

Two principal components 1F  and 2F  
obtained from the elementary matrices 1E and 

2E are separable (w-orthogonal) if the inner product 
of series 1F  and 2F  is null, i.e.: 
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where the weights iw are defined by 
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and ),min(* KLL = , and ),max(* KLK =  
 

If the original series F is decomposed using 
SSA into a sum of separable components 

LF,,F,F 21  that match equation (4) then this sum 
can be interpreted as an expansion of the original 
signal F with respect to a certain w-orthogonal 
basis generated by the original series itself [11]. The 
weights in the inner product have the form of a 
trapezium and reduce the influence of data close to 
the end-points of the components with respect to the 
central terms in the series, particularly for large 
window lengths. Real-life signals do not match 
equation (4). In practice, one speaks only about 

approximate separability. To quantify the quality of 
separation between two components, one defines the 
weighted correlation or w-correlation of two 
components  1F  and 2F : 
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This coefficient is a measure of the 
deviation of two series, 1F and 2F , from w-
orthogonality. If the absolute value of the w-
correlation is near zero, then the two series are 
separable. If it is large (near 1), the two components 
are badly separable. 

It is desirable to obtain a decomposition 
such that the principal components are mutually 
independent in order to extract the noise present in 
the displacement signal. 

Figure 1 shows the SSA decomposition of a 
displacement signal (described in the results section) 
using a window length 10=L . Figure 1 shows the 
decomposition obtained together with the original 
signal (see figure caption for details). Figure 1(b) 
shows a graphical representation of the w-
correlation matrix corresponding to the 
decomposition obtained. Cell ij  represents the 
correlation between components i and j , gray-scale 
coded from black for 0=w

ijρ  to white for 1=w
ijρ  

 
 
Fig. 1. (a) Singular spectrum. (b) w-correlation 
matrix. (c) Original time series and principal 
components obtained in the time domain. 
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3 Cluster Analysis 
As was discussed above, the statistical 
independence of the principal components depends 
on the size of the window length chosen. With large 
values ( )15≥L  while the separation is good, the 
number of principal components obtained for the 
representation of the trend signal is impractically 
large. In order to reduce the number of principal 
components with which to extract the trend signal 
and ensure their statistical independence, we apply a 
cluster analysis procedure. 

Namely, we perform K -means clustering 
on the w-correlation matrix in order to obtain K  
groups of independent components. The K -means 
algorithm classifies a given data set through a 
certain number K of clusters fixed a priori [12]. The 
main idea is to define K centroids, one for each 
cluster. Since different locations of these centroids 
cause different results, the best choice is to place 
them as far as possible from each other.  

The next step is to take each point 
belonging to a given data set and associate it to the 
nearest centroid. When no point is left, the first step 
is completed and a putative grouping is made. At 
this point, one needs to recalculate K new centroids 
as barycenters of the clusters resulting from the 
previous step.  

After one has these K  new centroids, a new 
binding procedure has to be carried out between the 
same data set points and the nearest new centroid. A 
loop has thus been generated. As a result of this 
loop, the K centroids change their location step by 
step until no more changes are made, i.e., the 
centroids do not move any more. Finally, the 
algorithm aims at minimizing an objective function, 
in this case the following squared error function: 

2

1 1

)(∑ ∑ −=
= =

k

j

n

i
j

j
i cxJ     (7) 

Where 
2)(

j
j

i cx − , a distance measure 

between a data point )( j
ix  and the cluster centre jc , 

is an indicator of the distance of the n  data points 
from their respective cluster centers. 

This simple version of the K -means 
procedure can be viewed as a greedy algorithm for 
partitioning the n  samples into K clusters so as to 
minimize the sum of the squared distances to the 
cluster centers. Unfortunately there is no general 
theoretical solution to find the optimal number of 
clusters for any given data set. A simple and 
systematic heuristic approach to obtain an optimal 
number of clusters is to compare the obtained error 
function (Equation 7) of multiples runs with 

different K classes and chose the number of clusters 
that minimize this function. 
 
 
4 Smoothing Automation 
The SSA smoothing procedure presented in Alonso 
et al. [10] is based on the fact that raw-displacement 
acquired signals present a very large signal-to-noise 
ratio. In this situation, the contribution of the first 
matrices to the norm of X is much higher than the 
contribution of the last matrices, that represent 
noise. To eliminate the noise present in the 
displacement signal it is sufficient to choose the 
leading eigenvalues that represent a large percentage 
of the entire singular spectrum. 
 As it has been pointed out [10-11], one of the 
drawbacks of SSA application is the lack of general 
rules for selecting the values of the parameters L  
and r  that arise in the SSA algorithm. Moreover, 
certain window lengths and grouping strategy 
choices produce a poor separation between signal 
trend and noise. In other words, trend components 
would be mixed with noise components in the 
reconstruction of the signal. 
 A way to overcome the uncertainty in the choice 
of the truncation value r  is to apply sequential SSA. 
This means that we extract some components of the 
initial series by the standard SSA and then extract 
the components of interest by applying SSA 
smoothing to an already smoothed record. Such a 
recursive SSA application produces a gradual 
elimination of the noise present in the signal. To 
ensure that any significant part of the noise is 
eliminated, the number of eigenvalues rL −  to 
eliminate in each iteration was chosen to satisfy the 
following criteria: 
 

Lr

r

L λ
λ

λ
λ 1

1
log1log <

−
    (8) 

 
 This criterion ensures that the eigenvalues whose 

logarithmic difference 
1

log
−r

r

λ
λ  is lower than the 

average logarithmic range of the entire singular 

spectrum: 
LL λ
λ1log1  are eliminated. This criterion 

ensures that we eliminate eigenvalues in a zone 
where the singular spectrum has sufficient flatness. 
 The convergence of the sequential procedure 
may be measured by means of the percentage root 
mean square (RMS) difference between the current 
and previous acceleration signals obtained in each 
iteration. The algorithm stops when this difference 
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is sufficiently small, namely the stop criterion at 
iteration i  is: 

1100
)(

)( 1 =<⋅
−

= − ε
i

ii

RMS
RMSE

G
GG



    (9) 

 Where iG  is the smoothed acceleration 
reconstructed at iteration i . 
 
 The automatic filtering procedure is summarized 
in the following way: 
 
• Choose an arbitrary window length L . 
• Perform 4 -means clustering on the w-correlation 
matrix in order to obtain 3  groups of independent 
components and extract the trend signal. 
• Apply sequential SSA to the extracted trend signal 
(truncation value r  is fixed to account for the 
grouping criterion, Equation 8). 
• Calculate the acceleration signal numerically in 
each iteration. 
• Stop the procedure according to the stop criterion 
(Equation 9). 
 
 
5 Results 
In order to study the performance of the filtering 
procedure three signals were tested. Two reference 
acceleration signals were taken from the literature. 
A double differentiation is performed on each signal 
in order to quantify the effect of smoothing. First 
order central finite differences are used to calculate 
the higher derivatives. The sequential SSA 
algorithm stops when the percentage difference 
between the current and previous values of the RMS 
acceleration is smaller than 1% in order to prevent 
excessive smoothing. 

The first signal is the motion of a vertical 
slider moved by hand to obtain a non-stationary 
mono-dimensional motion of biomechanical origin. 
A subject was asked to move the slider randomly 
with fast upward and downward movements. The 
vertical position (Figure 2) was acquired with the 
use of a marker attached to the slider and the 
Qualisys camera system (Qualisys Medical AB). 
The second derivative of this record, or of the record 
obtained after smoothing, is compared to the 
acceleration obtained directly from an accelerometer 
attached to the slider. Displacement and acceleration 
were sampled at 200 Hz during 5.90 seconds, 
obtaining records of 1182 elements each.  

SSA decomposition was attained using a 
window length 10=L  (see Figure 1). Various 
window lengths were tested in order to study the 
influence of this parameter on the obtained 
decomposition. 

 
 
Fig. 2. (a) Experimental layout. (b). Noisy vertical 
displacement signal acquired.  
 

Figure 3 shows the w-correlation matrices 
obtained using 5=L , 20=L , 50=L  and 100=L . It 
is clear from Figure 3 that the smaller window 
lengths do not adequately separate the high and low 
frequency components. The greater window lengths, 
however, yield a good separation of the high and 
low frequencies. 
 

 
 
Fig. 3. w-correlation matrices. (a) 5=L . (b) 20=L . 
(c)  50=L . (d) 100=L .  
 

After the SSA decomposition, a 4-means 
cluster analysis was performed in order to obtain 
four frequency independent components for each 
vibration signal. The principal components forming 
the low-frequency signal are T]3,2,1[=I . It is 
important to stress that four components would also 
have obtained using a window length of 4=L  in a 
SSA decomposition of the original series, but 
without performing the cluster analysis, these four 
components would not, however, have been 
independent in frequency, which is the fundamental 
point of this smoothing method. 

In order to eliminate the noise present in the 
obtained reconstruction sequential SSA-cluster 
analysis was applied. Such a recursive SSA 
application produces a gradual elimination of the 
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noise present in the reconstructed signal. Figure 4 
shows the results obtained for two iterations of the 
method using 10=L . Figure 4 (top) shows the 
acceleration calculated from original raw 
displacement data (dotted line) and acceleration 
measured by the accelerometer (continuous line). 
Figure 4 (middle) shows the acceleration calculated 
after having been passed through a 4 Hz cut-off 
frequency Butterworth filter (dotted line) and 
acceleration measured by the accelerometer 
(continuous line). This figure shows the large end-
point errors associated to the usage of this filter. 
Finally, Figure 4 (bottom) represents the 
acceleration calculated after smoothing the raw 
displacement signal using sequential SSA-cluster 
analysis ( 10=L ) and acceleration measured by the 
accelerometer (continuous line). 
 
 

 
 
Fig. 4. Signal 1 results. See descriptions in the text. 
 

Figure 5 shows the singular spectrum 
evolution in each of the two iterations required to 
achieve the convergence criterion. It is clear from 
the figure that the proposed procedure sequentially 
reduces the noise amplitude in each iteration. 

Comparison with traditional and advanced 
filtering techniques is quantified by taking the root 
mean square of the error signal (RMSE) of the 
acceleration. The error signal is the difference 
between the measured reference signal 
(accelerometer) and the signal obtained after 
filtering and differentiating the raw data. The errors 
in terms of RMSE are 2/54.29 sm for the 
Butterworth filter and 2/82.1 sm using SSA-cluster 
analysis respectively. 
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Fig. 5. Singular Spectrum evolution for the first 
signal  
 

Table 1 summarizes the results obtained 
using several window lengths. It can be concluded 
that the results are robust to variations of the 
window length L and number of clusters. 
 

L RMSE N. iterations 
10 1.82 2 
50 1.51 3 

100 1.52 2 
 
Table 1. Summary of the results for several window 
lengths. 
 

The second signal corresponds to the 
’woman’ file from GAITLAB (Vaughan et al., 
1992). The signal measures the lateral displacement 
of a marker attached on the right tibial tubercle. 
Data was acquired for 0.94 seconds using a 
sampling frequency of 50 Hz. The reference signal 
is taken as that obtained after filtering the raw data 
at 6.25 Hz, but different amplitude white noises are 
added in order to test smoothing methods. An 
amplitude 1, time generated, white noise was used 
for comparisons, see Giakas and Baltzopulos, 1997 
[5]. 
 

For signal 2, using 20=L  the automatic 
procedure achieved 2/87.298 smmRMSE =  versus 

2/400 smmRMSE =  obtained by Giakas and 
Baltzopoulos, [5] using Power Spectrum 
Assessment (PSA) and 2/89.256 smmRMSE =  using 
a SSA non-automatic approach. The accuracy of the 
obtained acceleration may also be appreciated in 
Figure 6 (bottom), where the acceleration obtained 
from the reference signal is plotted along with the 
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acceleration calculated from SSA–smoothed 
displacement data.  
 
 

 
 
Fig. 6. (Top) Singular Spectrum evolution. (Bottom) 
Acceleration obtained from reference signal 2 
(continuous line) and acceleration calculated from 
SSA-smoothed displacement data (dotted line). 
 

The third signal is a measure of the angular 
coordinate of a pendulum impacting against a 
compliant wall [4]. The angular acceleration 
obtained from the motion capture system is 
compared to that obtained directly (after dividing by 
pendulum length) from accelerometers. Three 
accelerometers were used in order to average their 
measurements to reduce noise. The average signal, 
logged at a sampling rate of 512 Hz is used as the 
acceleration reference signal. 

The same procedure was performed on the 
third signal. Using 50=L  the automatic procedure 
achieved 2/37.24 sradRMSE = (Figure 7). The result 
is similar to the value 2/60.23 sradRMSE =  
obtained by Giakas et al. [8] with the help of the 
Wigner distribution. The slight loss of accuracy in 
the SSA method is compensated by the ease with 
which the method is applied and the fact that one 
must not extend the ends of the record in order to 
eliminate end–point errors. Moreover, the automatic 
filtering procedure obtain similar results for a 
reasonable range of window lengths. 
 
 
6 Conclusions 
The present work has studied the applicability of the 
sequential SSA method and cluster analysis to 
automatic smoothing of biomechanical kinematic 
signals. 

The SSA algorithm decomposes the original 
signal into independent additive components of 
decreasing weight. This fact allows the method to 
successfully extract the latent trend in the signal 
from the random noise inherent to the motion 
capture system. An automatic heuristic procedure 
based in sequential SSA and cluster analysis to 
extract the trend signal has been presented.  
 

 
Fig. 7. (Top) Singular Spectrum evolution. (Bottom) 
Acceleration obtained from reference signal 3 
(continuous line) and acceleration calculated from 
SSA-smoothed displacement data (dotted line). 
 

The method does not use any information 
from the reference acceleration signal (which is not 
available in practice) to perform the smoothing. One 
of the main advantages to the method is the fact that 
the algorithm requires the selection of just one 
parameter. Namely, the window length L , 
moreover, the results are robust to variations of the 
window length. In conclusion, we believe that this 
new automatic smoothing technique, that has proven 
its effectiveness with complex signals, will help to 
improve the accuracy of raw kinematic data 
processing in biomechanical analysis. 
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