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Abstract: In this paper we provide an overview of the visual SLAM problem we address the problem of building
3D maps from the data recorded by a Red, Green, Blue, and Depth (RGB-D) sensor. This problem is challenging
because it requires the sensor data to be interpreted correctly into the map, minimizing the error while aligning
observations to achieve consistency. We also present a comparison of different algorithms used in optimizing a
visual graph-based SLAM system on a standard 3D datasets of indoor environments.
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1 Introduction

Simultaneous Localization and Mapping (SLAM) is
a well known problem in the computer vision and
robotics communities. It refers to the problem of
building a map of an unknown environment and at
the same time knowing the robot location in this map.
SLAM represents the core task of a truly autonomous
robot. A wide range of applications such as naviga-
tion, object modelling and scene reconstruction de-
pend on the maps generated by the robot.

There has been many approaches to solve the
SLAM problem, most of which can be categorized
into two main paradigms: filtering and optimization-
based approaches [23]. The filtering approaches like
extended kalman filter, particle filters and information
filters were used widely over the past years due to the
fact that the data provided by the robot sensors suf-
fer from noise and inconsistency and these approaches
can model different sources of noise and their effects
on the measurements, but recently optimization-based
approaches have proven to be be more efficient, scal-
able, and stable than solutions based on filtering algo-
rithms. Optimization-based approach usually uses an
underlying graph structure to represent the robot mea-
surements. The graph nodes represent the robot poses
and the measurement acquired at this position and the
edges represent a spatial constraint relating two robot
poses.

Various type of sensors has been used to generate
3D Maps. Classical examples are laser [13][6], stereo
cameras [12][16] monocular cameras [11][15][7],
and recently RGB-D sensors[4][10][8]. RGB-D

sensors provide a trade of between accuracy and
complexity. They provide rich visual scenes when
compared to laser sensors and at the same time
simplify the calibration and rectification processes
when compared to monocular or stereo cameras. The
most popular RGB-D sensor is the Microsoft Kinect
[1]. It has a frame rate of 30Hz and an angular field of
view of 57 degrees horizontally and 43 degrees in the
vertical axis its depth sensor range is between 1.2m
and 3.5m.

This paper presents a comparison of the recent
methods for graph optimization in terms of transla-
tion, rotation, and trajectory errors. The rest of the
paper is organized as follows. An overview of the
Graph-based SLAM along with the tested methods are
presented in section 2, and the results are detailed in
section 3.

2 Graph-based SLAM

The SLAM problem can be represented in a graph
based manner. The graph is constructed out of
the raw sensor measurements. Each node in the
graph represents a robot position and a measurement
acquired at that position. An edge between two nodes
represents a spatial constraint relating the two robot
poses. A constraint usually consists of the relative
transformations between the two poses. These
transformations are either odometry measurements
between sequential robot positions or are determined
by aligning the observations acquired at the two
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Figure 1: The front-end and back-end of the SLAM
process.

robot locations. Once the graph is constructed the
optimization process starts to find the configuration
of the robot poses that best satisfies the constraints.
Thus, in graph-based SLAM the problem is decou-
pled in two tasks: 1) graph construction in which the
graph is built from the raw measurements 2) graph
optimization in which the most likely configuration of
the poses is determined given the edges of the graph.
Fig 1 summarizes the process. The graph construction
is usually called front-end and it is heavily sensor
dependent, while the second part is called back-end
and relies on an abstract representation of the data.

There has been many successful approaches
to the visual SLAM problem using the RGB-D
sensor. In [8] a hand held approach uses 3D point
clouds provided by an RGB-D sensor. The front-
end relies on Speeded up robust features (SURF)
for feature extraction and matching and then the
location is estimated using RANdom SAmple Con-
sensus (RANSAC). The generated map is refined
using Hierarchical Optimization for Pose Graphs
on Manifolds (HOGMAN). In [10] followed the
same path but with some changes, scale invariant
feature transform (SIFT) are used to align consecutive
data frames then RANSAC and an RGBD-Iterative
closest point (ICP) algorithm is used for refining
the alignment. This new variant of ICP combines
shape and visual information for scan alignment.
The SIFT features, verified with RANSAC, act as an
initialization for ICP, which reduces the computation
time. The Tree-based network optimizer (TORO)

was used for global optimization. This approach
makes a new addition when compared to the previous
ones by using surface elements (SURFELS). The
SURFELS reduce the generated map size by a factor
of 32 and present a better map quality for viewing,
but unfortunately they affect the computation time
preventing the whole system from operating in real
time. In [4] a graph-based SLAM system is built
using the oriented FAST and rotated BRIEF (ORB)
as a feature detector and descriptor. The poses
were calculated using RANSAC and further refined
using the Generalized Iterative Closest point (GICP).
Finally global optimization was achieved using the
General (Hyper) Graph Optimization g2o.

The approach used to complete this study follows
the related work presented above. Fig 2 provides an
overview of the system. In the front-end the graph is
constructed as the camera moves, new areas are dis-
covered and new poses are added to the graph. When
adding a new pose registration is required to align the
data together. After a while small errors in registration
accumulate resulting in inconsistency in the generated
map. This is obvious if the robot visited a previously
mapped place, the error will result in presenting the
same place twice in the map. Here comes the need
for the back-end to adjust the accumulative error and
align the complete data sequence.

Figure 2: A Block diagram of the working system.

Recent Advances in Information Science

ISBN: 978-960-474-344-5 217



2.1 SLAM Front-End

The SLAM front-end uses the registration step to
align consecutive data frames. The alignment is
usually done by estimating an approximate trans-
formation between the consecutive frames and then
refining this initial estimate. The approach used in
this study is similar to the one presented in [4]. It can
be summarized into 3 main steps:

1. Computing the correspondence between succes-
sive frames

(a) Find 2D feature correspondence between
RGB Images.

(b) Reject bad correspondence.

(c) Transform the 2D features to their equiva-
lent 3D features.

2. Estimate the initial alignment of the frames.

3. Refine the alignment.

We have presented different techniques for
feature detection and description and pose refinement
and compared them in our earlier work [3] and as
a result we found that the best configuration used
is the Binary Robust Invariant Scalable Keypoints
(BRISK) as a feature detector and descriptor and the
generalized iterative closest point (GICP) as a pose
refiner.

The loop detection is an important part of the
front-end without it the graph will be like a linear
chain, loops are represented as edges between nodes
that are not temporally adjacent. Once a loop is de-
tected the new correspondence between nodes can be
used as an additional constraint in the graph. Fig 3
shows an example. The question now is how to de-
tect the loop in an efficient way. There has been many
loop closing techniques presented in the literature and
according to [20] they can be classified into 3 main
categories:

1. Map to map as the name indicates this is used in
approaches that depends on building small sub-
maps of the environment, the correspondence
between sub-maps is investigated taking into
account the visual appearance and the relative
position between the sub-maps.

2. Image to map the most recent image captured
is compared with the built map features looking
for correspondence. The pose of the camera is

Figure 3: An additional constraint is added to the
graph when a loop is detected.

determined relative to a map of point features by
finding correspondences between the image and
the features in the map.

3. Image to image the correspondence is inves-
tigated between images of the world being
mapped, the most recent image is compared with
previously captured images looking for matches.

In this study a simple image to image loop detec-
tion approach is used. A set of key nodes is stored
with the features detected and described in the regis-
tration step are kept for each key node. When a new
observation is processed its location is examined if it
is close to any of the key nodes it is further checked
and its features are matched with this close node, if
the number of matches passes a certain threshold in
our case 40 features then this node is considered as
a loop closing node and a constraint represented as an
edge is added to the graph connecting the two matched
nodes.

2.2 SLAM Back-End

Registration between successive frames is a good
method for tracking the robot position over moderate
distances. But noise and errors in depth values and in
pairwise frame alignment cause the estimated robot
pose to drift over time resulting in an erroneous map.
The SLAM back-end role is to optimize the map
reducing this error by optimizing the underling graph
structure provided by the front end, this graph is
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composed of n vertices storing the observation at
certain poses, and edges representing the neighbour
relations between these poses. Global optimization
techniques tries to estimate optimally all poses to
build a consistent map of the environment. It can
be considered as choosing the best solution that
minimize an error function from all the feasible
solutions.

If we assume that X = (x1, ..., xn)T is a vector
describing the robot poses where xi describe the pose
of node i and zij is the mean and Ωij is the infor-
mation matrix of the transformation matrix that aligns
the observation at node i and node j together. Let
ẑ(xi, xj) be the estimated measurement at nodes xi
and xj . The log likelihood lij of zij can be calculated
as lijα[zij − ẑij(xi, xj)]

TΩij [zij − ẑij(xi, xj)] If we
consider e(xi, xj) as an error function that computes
the difference between the estimated measurement ẑij
and the real measurement zij such that eij(xi, xj) =
zij − ẑij(xi, xj). The goal of a maximum likelihood
approach is to find the configuration of the nodes x
that minimizes the negative log likelihood F (x) of all
the observations

F (x) =
∑

<i,j>∈C
eTijΩijeij︸ ︷︷ ︸

Fij

(1)

where C is the set of pairs of indices for which a con-
straint (observation) z exists. This means that we tries
to find the solution to

x∗ = argmin
x

F (x) (2)

The function value of F (x) at the minimum is not
important, what matters is the value of the variable
x∗ where that minimum occurs, further details about
graph optimization in SLAM can be found in [21]
[23].

In our study we have compared the performance
of 3 different global optimizers:

1. General (Hyper) Graph Optimization
Known also as g2o [9]. It is a C++ frame-
work for performing the optimization of nonlin-
ear least squares problems that can be embedded
as a graph or in an hyper-graph.

2. Georgia Tech Smoothing and Mapping
Known also as GTSAM [5]. It is a C++ library
based on factor graphs. A factor graph consists
of factors connected to variables. The factors
represent probabilistic information on the un-
known random variables in the estimation prob-
lem.

3. Hierarchical Optimization on Manifolds
Known also as HOG-Man [22] it applies Gauss-
Newton with sparse Cholesky factorization that
considers a manifold representation of the state
space to better deal with the camera rotations.

The following open source projects were used to
implement different techniques subject to our compar-
ison: The point cloud library (PCL) [14] was used
in the transformation estimation and refinement. It
is a large scale, open source project for 2D/3D im-
age and point cloud processing, the Open source com-
puter vision library (OpenCV) [2] which has been
used in feature detection, description and matching.
The different algorithms used in this comparison were
tested on the Computer vision and pattern recognition
group (CVPR) [18] datasets. These datasets contain
the color and depth images of a Microsoft Kinect sen-
sor along with the ground-truth trajectory.

3 Results

All the tests were performed using an Intel Core
i7-3610QM CPU @ 2.30GHz × 8 running a 32
bit Linux 3.2.0. We used four of the CVPR group
[18] datasets in our tests: Freiburg2 xyz which
contains data for debugging translations where the
Kinect was moved along the principal axes in all
directions, Freiburg2 desk which captures the details
of a typical office scene with two desks, a computer
monitor, keyboard, phone, chairs, etc. with the Kinect
moving around two tables so that the loop is closed,
Freiburg1 room which has been recorded through
a whole office environment and is well suited for
evaluating how well a SLAM system can cope with
loop-closures, and Freiburg2 pioneer slam which
was recorded from a Kinect mounted on top of a
Pioneer robot which was joysticked through a maze
of tables, containers and other walls, so that several
loops have been closed for map building.

We have used the CVPR group evaluation tools
to compare the global optimization algorithms. Two
error metrics have been used: the absolute trajectory
error (ATE), and the relative pose error (RPE). The
ATE is useful for measuring the performance of
visual SLAM systems. It measures the absolute tra-
jectory error by comparing the difference between the
estimated and the groundtruth path after associating
them using the timestamps. It also computes the
mean, median and the standard deviation of these
differences. The RPE is useful for measuring the
drift of visual odometry systems. It computes the er-
ror in the relative motion between pairs of timestamps.
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Figure 4: The result trajectory compared to the
groundtruth of the Freiburg1 room dataset using g2o.

Table 1: The absolute trajectory error on the
Freiburg1 room dataset in meters.

Absolute Trajectory
Error

g2o GTSAM HOG-Man

rmse 0.079022 0.083895 0.079756
mean 0.068790 0.074727 0.070692

median 0.064971 0.069797 0.065114
std 0.038891 0.038135 0.036927
min 0.009273 0.015323 0.010718
max 0.154001 0.156559 0.163685

Table 2: The relative translation error on the
Freiburg1 room dataset in meters.

Relative Translation
Error

g2o GTSAM HOG-Man

rmse 0.078440 0.089116 0.077349
mean 0.073345 0.081969 0.071589

median 0.076118 0.085064 0.073415
std 0.027809 0.034967 0.029291
min 0.014281 0.015838 0.014209
max 0.147132 0.162746 0.147075

The evaluation results of the Freiburg1 room
dataset are presented. The ATE results are detailed in
Table 1 and the RPE in Tables 2, 3. Fig. 4 shows
the difference between the estimated trajectory and
the groundtruth using g2o.

The average error on the tested four datasets is
described in Table 4 in which all three produce similar
scores but g2o performs slightly better.

4 Conclusion

In this paper a detailed algorithm for building 3D vi-
sual Maps using only an RGB-D sensor is presented.
We have used various open source libraries to com-
plete our study. All the algorithms were tested on the
CVPR datasets. In the future we would like to perform

Table 3: The relative rotation error on the
Freiburg1 room dataset in degrees.

Relative Rotation Error g2o GTSAM HOG-Man
rmse 3.773067 4.346548 3.628420
mean 3.398897 3.847612 3.127450

median 0.053414 0.065668 0.042559
std 1.638149 2.021969 1.839698
min 0.884001 0.511624 0.282858
max 7.021277 8.317298 7.151021

Table 4: The average absolute trajectory error and rel-
ative pose error on the tested four datasets.

Average
rmse

g2o GTSAM HOG-Man

Absolute
trajectory

0.157364 m 0.158508 m 0.160902 m

Relative
translation

0.081775 m 0.109753 m 0.085200 m

Relative
rotation

4.279843 deg 2.436107 deg 5.969135 deg

a study on different loop closures techniques to find
the best in terms of accuracy and memory consump-
tion, also we would like to investigate the possibility
of Building a SLAM system using multiple RGB-D
sensors each exploring a part of the environment.
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