

Design of Software Network Traffic Generator

PETR ZACH, MARTIN POKORNY, ARNOST MOTYCKA
Department of Informatics
Mendel University in Brno
Zemedelska 1, 61300 Brno

CZECH REPUBLIC
petr.zach@mendelu.cz, martin.pokorny@mendelu.cz, mot@mendelu.cz

Abstract: - This contribution focuses on the issue of the network traffic generation tools. Firstly, current state of
the existing network traffic generators is considered. Based on the state of currentnetwork traffic generators and
based on own requirements on the network traffic generatora core of new traffic network generator is proposed.
After that, usage of the developed network traffic generator is presented on an example where QoS parameters
of a voice traffic floware examined.

Key-Words: -network traffic generator, realistic network traffic, computer network, end-user emulation,
network traffic capturing, Java

1 Introduction
Development of computer network technologies and
growth of Internet services change meaning and
usage of the Internet continuously. The whole
system consists of a broad spectrum of
heterogeneous services and technologies with
different operation requirements. With increased
demand for real-time multimedia services, several
types of traffic flows traverse the network
infrastructure, thus a QoS (Quality of Service)
testing is required. Moreover, number of the Internet
users grows continually, thus security assurance is
one of primary goals of current private networks.
Network traffic generators help network
administrators, developers and researchers to
prepare, validate and install technologies ensuring
secure and properly working network infrastructure.

Traffic generators can be classified according to
several criteria but essentiallytraffic generatorsare
either hardware devices or software tools. Hardware
generators (e.g. Ixia IxChariot) usually achieve
higher performance and accuracy in comparison
with software tools whose performance is dependent
on many circumstances (end-device performance,
operating system, etc.). On the other hand, hardware
devices are usually commercial products, whereas
software tools are generally open source or cost-
effective tools developed by researchers and
enthusiasts. Despite these arguments, software
network traffic generators are widely used in
networking area due to economics aspects and their
flexibility and customization [1].

Several network experiments are performed in
the Laboratory of computer networking at the
Department of Informatics (Faculty of Business and
Economics, Mendel University in Brno) [2].The
network traffic generator is employed by students
and researchers. Couple of network generators was
examined during the time but none of them fully
meets our requirements (see below). A group of
university staff and students participate on the
development of a new solution that can extend the
set of network traffic generators used in research as
well as in production networks.

Contribution of this article is to propose a core of
our own software network traffic generator (NTG),
the extent of this article covers main features and
architecture of NTG.First, requirements on network
traffic generators are specified. After that, a
comparison of selected existing network generators
is presented (in section 2). According to specified
requirements and features of existing tools, new
solution is proposed and basic network experiment
is described (in section 3). Conclusion follows in
section 4.

2 Problem Formulation
Generation of network traffic is fundamental for
several networking research areas as mentioned
above, for example performance of networks and
network devices [3], security (e.g. firewalls [4],
intrusion and anomaly detection, background and
malicious workload), quality of service and quality
of experience, new protocols, frameworks [5] or

Recent Advances in Circuits, Systems, Telecommunications and Control

ISBN: 978-960-474-341-4 244

proposal verification [6,7], available bandwidth
measurement in real networks, etc. [1].

Regardless of a specific use, the main goal of
the network generator is to produce various types
and characteristics of traffic that emulate realistic
behavior of large amount end-users. Many articles
deal with network traffic simulation, analysis and
modeling. Authors in [8] propose a solution for
traffic simulation in ns-2 network simulator, [9]
deals with traffic modeling, authors in [10, 11]
propose a solution for realistic HTTP traffic
generation. Articles in [12, 13, 14] analyze the
production network traffic behavior.

According to authors in [15], network traffic
can be generated in three ways:

• stochastic generation,
• replication of production network traffic,
• using list of instructions (communication

scenario) for applications in the tested
network.

Authors in [16] divide network generators according
to the layer on which they work:

• Application-level traffic generators: They
emulate the behavior of specific network
applications in terms of the traffic they
produce.

• Flow-level traffic generators: They are used
when the replication of a realistic traffic is
requested only at the flow level (e.g.,
number of packets and bytes transferred,
flow duration). For example, Bit-Twist [19]
represents this group.

• Packet-level traffic generators: With this
term we refer to generators based on
packet’s Inter departure time (IDT) and
packet size (PS). The size of each packet
sent, as well as the time elapsed between
subsequent packets, are chosen by the user,
typically by setting a statistical distribution
for both variables. Most of current packet
generators belong to this group.

Authors in [8, 10, 16, 17], recognize two
approaches of network traffic generation: open-loop
and closed-loop. In the closed-loop mode, there is a
fixed number of users using the network and their
services. Each of these N users repeats these two
steps, indefinitely: (i) submit a job, (ii) receive the
response and then wait for some time before a next
job is submitted (“think” time). In the closed
system, a new request is triggered by the completion
of a previous requestonly. In the open system model
there is a stream of arriving requests with average
arrival rate. The differentiating feature of an open
system is that a request completion does not trigger

a new request: a new request is only triggered by a
new request arrival [17]. A hybrid approach,
discussed in [10], combines aspects of the closed-
and open-loop approaches. With a hybrid approach,
user sessions are initiated at specified time. This is
similar to the open-loop approach in that a new
session can be initiated before the previous sessions
are finished. However, similar to the closed-loop
approach, within each session a request can be
issued only after the response to the previous
request in that session has been received. Authors in
[17] claim that the hybrid mode is more
representative of real systems than closed- or open-
loop approach.

2.1 Comparison of open-source software
traffic generators
Several software-based network traffic generators
were reviewed.Following text compares selected
five free network traffic generators in alphabetical
order. These generators were chosen with intention
to cover application level, flow-level as well as
packet-level traffic generators. Detailed list of
alternative tools is summarized in [18]. The
comparison (see Tab. 1) takes into account five
criteria. The desired tool should be platform-
independent (PI), distributed (D), no proprietary
receiver is needed (R), generation of the multimedia
traffic (RTP) has to be supported, data analysis (A)
and statistics have to be present.

Table 1: Comparison of selected open-source
software traffic generators.

Name PI D R RTP A
Desired tool Yes Yes No Yes Yes
Bit-twist Yes No No Yes No
D-ITG Yes Yes Yes Yes Yes
Karat No No No No Yes
Ostinato Yes Yes No No Yes
Scapy No No No No Yes

Bit-Twist [19] is a libpcap-based Ethernet packet

generator that replicates traffic from captured PCAP
files [20]. D-ITG [21] is one of leading application
and packet-level network generators. This
distributed andplatform-independent tool enables
many features and has great future potential.The
architecture of the NTG is inspired by the D-ITG in
several ways. Scapy [22] as well as Karat Packet
Builder [23] are packet-level traffic generators
particularly suitable for firewall testing using variety
of network protocols. Packet-level traffic generator

Recent Advances in Circuits, Systems, Telecommunications and Control

ISBN: 978-960-474-341-4 245

Ostinato [24] treats the user with a sophisticated
GUI and detailed packet header customization.

2.2 User requirements on proposed solution
Regardless of characteristics and features of the
reviewed open source tools we tried to specify user
requirements on the network traffic generator
(NTG) we would like to use for network
experiments in our network laboratory.

2.2.1 Brief description of NTG
The primary purpose of this tool is to emulate
network end-users by a real network traffic
generation. Besides essential network traffic
generation, data collection and analysis as well as
advanced user interface should be present in the
end.
 The data analysis contains calculation of
severalmeasured parameters/statistics described e.g.
in [25]: number of task failures, mean time between
failures (MTBF), bitrate, download speed, one-way
delay, round-trip time (RTT), jitter, packet loss, etc.

NTG should be designed asplatform-
independent, distributed and centrally controlled
software running on network end-devices in the
form of an application or a service. NTG should
behave as real end-users initiating regular client
requests and exchanging real data with native server
services. Some of the listed use cases (performance
testing, quality of service testing) implythe
emulationof a large amount of end-users. A
communication scenario (CS) is necessary to
schedule the sequence of particular tasks. The use of
the tool has to betransparent and intuitive
considering implementation of all required
functions, accurate traffic generation and ability of
future development.

2.2.2 Functional requirements
To meet requirements from previous paragraph
main NTG features (Fig. 1) are listed:

• Communication scenario management.
• Management of remote entities generating

network traffic (senders) on particular end-
devices.

• Network traffic generation from particular
senders.

• Collecting data about ongoing test.
• Statistics reporting based on collected data.
• User interface (including management of

the whole test and remote components).

2.2.3 Operational and limiting requirements
Because of the end-user emulation, the NTG
assumes presence of properly configured network
services, for example a web server. If a user using
an end-device A accesses a web page on an non-
responding server B, communication will fail. NTG
behaves in the same manner as the end-user that
means it treats the server as an unreachable one.

Fig. 1: Schema of the main functions.

3 Problem Solution
Despite the fact that many tools for the traffic
generation are available, none of the reviewed tools
fully suits all the requirements on network traffic
generator required for network experiments and
education at the Mendel University in Brno.
Proposed NTG is proposed according to our
requirements and pros and cons of other described
solutions as well. NTG is considered as application-
level traffic generator working in hybrid-close mode
(described in 3.3).

3.1 Design of NTG components and their
relationships
NTG has to be a distributed system spread across
tested network infrastructure to generate traffic and
analyze data about tested network accordingly.The
NTG’s complexity (traffic generation, data
collection, statistics) requires heterogeneous
components, while the whole system should be
easily manageable from a single host. Considering
these facts, four types of componentswere specified:
Control component (M - management), Sender (S,
particular traffic generator), Capture (C), Statistics
(ST). Component schema and relationships between
them shows Fig. 2.

Essential component of whole system is
sender that represents end-user by generating
network traffic. The S can occur more than oncein
tested topology (described in subsection 3.2).

Recent Advances in Circuits, Systems, Telecommunications and Control

ISBN: 978-960-474-341-4 246

TheNTG initiates correct communication sessions
and exchanges data with native server services (Fig.
2, black dashed arrow). Currently, ICMP, HTTP,
POP3, SMTP and RTP protocols are supported. The
set of supported protocols is easily extensible.

Fig. 2: Component schema.

The component C acts as a capture of the data
that travels through the tested topology. The C can
occur more than once in the tested topology and the
user of NTG can decide at which places the desired
data about traffic should be collected in the tested
network.

Components S and C are driven by the
management (control) component. The component
M is NTG’s head point, which is represented by the
GUI where user is able to manage the entire
toolcentrally. The M delivers the particular
communication scenarioto the S component. The
scenario contains instructionswhen where, and what
has to be generated. In the same manner, the C
receives instructions from the M about how long
and which type of traffic has to capture.

The Data collected by C components are
transferred to the ST after the test. The ST extracts
the data from captured PCAP files received from all
Cs and calculates measured parameters. After
processing the data, the ST supplies statistics to the
M where user can view/export the desired report.

Multiple types of control communication
between components are required: (i) management
(Fig. 2, red arrow), (ii) logging (Fig. 2, blue arrow),
(iii) captured data transfer (Fig. 2, black arrow).
Management control communication is used by the
M to control the remote components S and C. The
logging control communication acts in the opposite
direction (from S/C to the M) in comparison with
the management traffic and is used to inform the M
about S/C behavior. In case of the S, the logs also
contain information about result of a particular task
execution. In case of C, the information about
success or failure of the packet capture is part of the
logs as well. Consequently, the user of the NTG is
informed about testing process immediately. After

the test, captured data is transferred from each
participating C component to the ST. It should be
also possible to transmit captured data during the
test in smaller quantity due to limited memory space
for storing captured data on the end-device running
the particular C.

According to previous paragraphs, the network
testing process using this tool can be depicted as
simplified process diagram (see Fig. 3).

Fig. 3: Testing process using NTG.

3.2 Component deployment in the tested
topology
Due to the distributed system architecture and
required control communication, there is a question
how to avoid interference with an ongoing test by
the control communication. There is a risk that the
generated traffic completely consumes all the
available bandwidth and the remote components
may be temporarily unreachable. Management
control communication is delivered to the S and C
components before the own test but logs as well as
PCAP files can traverse the infrastructure during the
test phase. Each logged message is represented by
one UDP packet, their frequency depends on
scenario content. Size of individual PCAP files
reach megabytes. Each PCAP file is transferred to
the ST component once its threshold size is
reached.Essentially, two problems must be resolved

Recent Advances in Circuits, Systems, Telecommunications and Control

ISBN: 978-960-474-341-4 247

in relation to the control communication in the
tested network: (i) influencing the test results, (ii)
risk of temporary remote components unreachability
caused by link saturation. This problem can be
solved in two ways: (i) using the tested network for
both the generated and control traffic, (ii) using
dedicated infrastructure for the control traffic only.

Fig. 4:Deployment of NTG components with
control communication in tested network.

Transferring the control communication inside
the tested infrastructure (Fig. 4) is easier to set up
theexperiment but measured parameters can be
distorted in some cases. For exampleQoS test results
(delay, jitter, packet loss) can be affected by control
communication presence. To avoid this issue, a
dedicated management network has to be involved,
as depicted on Fig. 5. Using this approach, the
control communication is completely isolated from
tested network, thus no measured parameters can be
affected in the tested topology. On the contrast, two
disadvantages are associated with this approach –
two network interfaces are required on all active
end-devices in the tested topology and it takes
longer to prepare experiment. Both ways offer some
pros and cons, the choice depends on a nature of the
test. Anyway, NTG provides both of them.

Fig. 5: Deployment of NTG components with
control communication in dedicated network.

Considering these issues, it is necessary to define
required number of particular components. The
NTG contains always only one M and one ST.
Multiple instances of the S and C components can
be placed in the tested topology as mentioned
above. Generally, the S has to be on each end-
device dedicated to the traffic generation, and the C
has to be on each end-device where traffic capture is
required. There are two solutions how to place the C
component on the end-devices in the tested
topology: (i) Deploy the Cs on all end-devices with
the S components only (Fig. 4) to gain view about
the generated traffic on each S. Using this, there is
no information about measured parameters on the
receiving device. Anyway, some parameters such as
Round Trip Time can be discovered in this way. (ii)
Deploythe Cs on each end-device that acts in the
tested topology (Fig. 5) to be able to gain measured
parameters from both the sending and the receiving
device. This is necessary for one-way delay or
packet loss of UDP flow calculation.

Each particular end-device can host only one
instance of each component type, although all four
NTG components (M, ST, S and C) can be
presenton one end-device. Required numbers of
components are described in (1) where Smrepresents
the set of S components (similarly toMm, STm, Cm).

3.3 Communication scenario
Traffic generation parameters are stored in the
communication scenario. NTG enables to construct
the communication scenario as a “long story” about
all events that occur in the tested infrastructure
during the test. Each particular record contains
instructions what the S should generate on end-
device. The record is represented by a set of these
attributes: sender ID, execution time, number of
repetitions, wait (“thing”) time between two
repetitions, selected protocol and protocol details.
Protocol attributes differ according to selected
protocol. Once the scenario is completed, it is
delivered to all the active S components and each S
receives only its relevant part of the scenario, as
depicted on Fig. 6.Considering closed-, open-loop-
or hybrid mode, NTG acts as hybrid mode network
traffic generator.

(1)

Recent Advances in Circuits, Systems, Telecommunications and Control

ISBN: 978-960-474-341-4 248

Fig. 6: Communication scenario concept.

NTG as a distributed tool is highly dependent on
precise synchronized time in tested infrastructure.
To provide traffic generation in scheduled time and
capture traffic with proper timestamps equal time on
all end-devices is a must. NTG relies on preceding
time synchronization, for example using NTP
(Network Time Protocol).

3.4 NTG core implementation
NTG was developed in Java programming language
that provides platform-independent usability.
Currently, the core (back-end) of NTG is
implemented including complete functionality of the
components S and C. Component M is controlled
from CLI. There is an API available for the GUI
(front-end) implementation, which has to contain its
own scripting language for advanced
communication scenario management. Component
ST communicates with the others components but
its whole functionality is matter of future work.

Multithreading is incorporated in the NTG
software design. Each task of the communication
scenario on the component S is maintained by
separate thread to accurately follow predefined
scenario and mitigate task execution delays.

Third-party software and frameworks are
employed. Especially, the tcpdump[20] is embedded
in the C componentto capture packets.

3.5 Example of NTG usage
Object of this experiment is to analyze the impact of
insufficient bandwidth (BW) on voice streaming and
HTTP flows.There are one RTP flow (UDP) and
several HTTP flows (TCP) traversing the topology
as defined in the communication scenario. The
whole test was performed twice – in the first case,
network bandwidth is unlimited (respectively to
1Gigabit). In the second case, the bandwidth is
limited to 1 Mbps in one direction (full duplex).
Bitrate of all flows is analyzed at the receiving side
as well as delay, jitter and packet loss of the UDP

flow and download time of all individualHTTP
downloads.

Network topology (see Fig. 7) consists of tested
and management network. PCs are running Fedora
16 64bit, servers CentOS 6.2 64bit operating
systems. Both of theL3 switchesare Cisco Catalyst
3750 (WS-C3750-24P) with IOS version
12.2(44)SE5, IP Services and 131072 KB RAM.
The link between interfaces Fa1/0/1 is intentionally
policed to 1 Mbps in both directions. IP addresses
are configured in a static fashion.The NTG is used
for traffic generation as well as for data collection,
the analysis is processed using Wireshark [26].

One test takes 100 seconds. The test starts at time
0. Inthe 1st second PC1 initiates a request to
download 10MB file in order to the WWW server.
In the 3th secondthe PC2 starts receiving RTP
traffic (voice) from RTP server. RTP traffic is
represented bya 55 seconds long voice record with
CBR 320 kbps. In the 6th second PC1 starts
downloading 0.5MB file from the WWW server.
This is repeated five times with wait (“think”) time
of 3 seconds between the requests.

NTG's components are arranged as depicted on
Fig. 7. The Cs are located on each active host, while
the S componentsare present only on the RTP server
(sends RTP packets) and on PC2 (initiates file
downloads from the WWW server). The M and ST
are located in the management network. The C and
S components communicate with the M and ST
through the management network, thus no measured
parameter can be affected by thecontrol
communication in the tested network.

Fig. 7: Experiment topology diagram.

In case of unlimited bandwidth, bitrate of all traffic
traverses the inter-switch link in theright-to-left
direction. Fig. 8shows traffic with symmetrical
peaks of each downloaded file. No RTP packetwas

Recent Advances in Circuits, Systems, Telecommunications and Control

ISBN: 978-960-474-341-4 249

dropped, as summarized in Table 3. In case of BW
limitation, the received bitrate, as depicted on Fig. 9,
is noticeably limited by the available bandwidth of 1
Mbps. The RTP flow was significantly disturbed by
the present TCP flows (Fig. 11), which results in
several packet drops (Table 3). Download of
particular files from the HTTP server took
significantly longer time (Table 2).

Fig. 8: Bitrate of all traffic traversing the inter-
switch link in the right-to-left direction (without
BW limitation).

Fig. 9: Bitrate of all traffic traversing the inter-
switch link in the right-to-left direction (with BW
limitation).

The impact of limited bandwidth on RTP flow is
evidenton Fig. 10 and Fig. 11. In case of unlimited
bandwidth, the RTP flow is constant, while the
bitrate irregularity is obvious in case of bandwidth
limitation.

Fig. 10: Received bitrate of RTP flow on PC2
(without BW limitation).

Fig. 11: Received bitrate of RTP flow on PC2 (with
BW limitation).

The transmission quality decreased distinctly due to
the limited bandwidth consumption. The traffic
exceeding permitted limit is dropped, regardless of
packet type (TCP, UDP). Consequently, the quality
of voice transmission is decreased by higher packet
loss and the download of individual files from the
WWW server takes longer because of packet
retransmission. The download time is summarized
in Table 2, packet loss ofthe RTP flow is shown in
Table 3. Mean delay and jitter of the RTP flow is
minimal (6.02 ms, resp. 0.58 ms) in both of the tests
because of queuing absence (exceeded traffic is
dropped).

Table 2: Download time of individual files.
 Without BW

limit [s]
With BW
limit [s]

10MB file 0.43 87.01
500kB file 1 0.46 12.39
500kB file 2 0.47 9.38
500kB file 3 0.46 12.18
500kB file 4 0.46 26.07
500kB file 5 0.45 11.98
Mean value (1–5) 0.46 14.40
Std. dev. (1–5) 0.01 6.64

Table 3: Packet loss of RTP flow.

 Delivered
packets

Packet Loss
Count %

Without limit 2036 0 0.0
With limit 2000 36 1.8

4 Conclusion
This contribution discusses the issue of tools for
network traffic generation. Design of a new
software network traffic generator was proposed, at
the same time features of current solutions were
considered to create complement of existing tools.
In the end, an illustrative network experiment with
the NTG was described that shows basic usability of
this tool.

Recent Advances in Circuits, Systems, Telecommunications and Control

ISBN: 978-960-474-341-4 250

The NTG assists researchers in experiments
across the networking research field. Benefits of
NTG deployment in academic as well as in
commercial area are obvious. Quality of Service
assurance or security risk mitigation has positive
economic consequences in the end.

Our future work focuseson completion of
remaining parts followed by performance and
accuracy testing. Above that, in todays wireless and
cellular phone networks expansion NTG should be
able to cooperate with smart phones as well.

Acknowledgments:
This work has been supported by the research
project IGA 3/2013.

References:
[1] Botta, A., Dainotti, A., Pescape, A., Do you

trust your software-based traffic generator?,
Communications Magazine, IEEE , Vol.48,
No.9, 2010, pp.158-165. ISSN 0163-6804.

[2] Pokorný, M., Zach, P., Design, implementation
and security of a typical educational laboratory
computer network. Acta Universitatis
Agriculturae et Silviculturae Mendelianae
Brunensis. Vol. 51, No. 4, 2013, pp. 1077-
1087. ISSN 1211-8516.

[3] Bradner, S., McQuaid, J., RFC 2544:
Benchmarking Methodology for Network
Interconnect Devices, IETF, 1999.

[4] Hickman, B., Newman, D., Tadjudin, S.,
Martin, T., RFC 3511: Benchmarking
methodology for firewall performance, IETF,
2003.

[5] Anitha, P., Chandrasekar, C., A Framework for
Configuration and Management Of Quality-Of-
Service (Qos) in Wireless Zigbee Networks,
WSEAS Transactions on Communications, Vol.
11, No. 4, 2012, pp. 147-157.

[6] Liang, Ch., Pan, S., Wu, J., A Sustained QoS
Solution by Contention Adaptation in IEEE
802.11e Wireless LANs, WSEAS Transactions
on Communications,Vol. 10, No. 10, 2011, pp.
287-296.

[7] Gomathi, N., Seethalakshmi, P., Govardhan,
A., An Integrated Cross Layer Approach for
Multimedia Streaming using Multipath and
Multiple Description Coding in Mobile Ad-
Hoc Networks, WSEAS Transactions on
Communications,Vol. 11, No. 2, 2012, pp. 57-
69.

[8] Weigle, M., et al., Tmix: a tool for generating
realistic TCP application workloads in ns- 2,

ACM SIGCOMM Computer Communication
Review, Vol. 36, No. 3, 2006, pp. 67–76.

[9] Barford, P., Crovella, M., Generating
representative Web workloads for network and
server performance evaluation, SIGMETRICS –
Performance Evaluation, Vol. 26, No. 1998,
pp. 151–160.

[10] Hashemian, R., Krishnamurthy, D., Arlitt, M.,
Web workload generation challenges – an
empirical investigation, Software: Practice and
Experience, Vol. 42, No. 5, 2011, pp. 629-647.

[11] Kolesnikov, A., et al., Web workload
generation according to the UniLoG approach,
OASICS, Vol. 17, No. 1, 2011, pp. 49-60.

[12] Choi, Y., Silvester, J., Kim, H., Analyzing and
modeling workload characteristics in a
multiservice IP network, IEEE Internet
Computing, Vol. 15, No. 2, 2010, pp. 35–42.

[13] Abhari, A., Soraya, M., Workload generation
for YouTube, Multimedia Tools Applications
Journal, Vol. 46, No. 1, 2010, pp. 91–118.

[14] Veloso, E., et al., A hierarchical
characterization of a live streaming media
workload, IEEE/ACM Transactions on
Networking, Vol. 14, No. 1, 2006, pp. 133–146.

[15] Vishwanath, K., Realistic and responsive
network traffic generation. ACM SIGCOMM
2006, Vol. 36, No. 4, 2006, pp. 111–122.

[16] Botta, A., Dainotti, A., Pescape, A., A tool for
the generation of realistic network workload for
emerging networking scenarios, Computer
Networks, Vol. 56, No. 15, 2012, pp. 3531-
3547.

[17] Schroeder, B., Wierman, A., Harchol-Balter,
M., Open versus closed: A cautionary tale.
Networked Systems Design & Implementation,
Vol. 3, No. 1, 2006, pp. 239-252.

[18] Traffic Generators for Internet Traffic,
http://www.icir.org/models/trafficgenerators.ht
ml

[19] Bit-Twist. Libpcap-based Ethernet packet
generator, http://bittwist.sourceforge.net/

[20] TCPDUMP/LIBPCAP public repository,
http://www.tcpdump.org/

[21] DIT-G, Distributed Internet Traffic Generator,
http://traffic.comics.unina.it/software/ITG/docu
mentation.php

[22] Scapy, http://www.secdev.org/projects/scapy/
[23] Karat Packet Builder, https://sites.google.com/

site/catkaratpacketbuilder/
[24] Ostinato, https://code.google.com/p/ostinato/
[25] Evans, J., Filsfils, C., Deploying IP and MPLS

QoS for Multiservice Networks: Theory &
Practice, Elsevier, 2007.

[26] Wireshark, http://www.wireshark.org/

Recent Advances in Circuits, Systems, Telecommunications and Control

ISBN: 978-960-474-341-4 251

