
On Some Nonlinear Partial Differential and
Integro-Differential Diffusion Models

TEMUR JANGVELADZE
Ilia Vekua Institute of Applied Mathematics
Ivane Javakhishvili Tbilisi State University

2, University St., 0186, Tbilisi
Caucasus University

77, Kostava Ave., 0175, Tbilisi
GEORGIA

tjangv@yahoo.com

ZURAB KIGURADZE
Ilia Vekua Institute of Applied Mathematics
Ivane Javakhishvili Tbilisi State University

2, University St., 0186, Tbilisi
Caucasus University

77, Kostava Ave., 0175, Tbilisi
GEORGIA

zkigur@yahoo.com

Abstract: Existence, uniqueness, long-time behavior of solutions and algorithm of numerical resolution of initial-
boundary value problem for one integro-differential system are studied. Attention is paid to construction and
analysis of decomposition algorithms with respect to physical processes for one-dimensional nonlinear partial
differential model based on Maxwell’s system. Semi-discrete averaged models are constructed and investigated
for this system. Finite difference schemes are studied. Investigated systems arise in modeling of process of the
penetration of a magnetic field in a substance.
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1 Introduction
In mathematical modeling of many natural phenom-
ena and processes can be described by the initial-
boundary value problems posed for non-stationary
differential and integro-differential models (see, for
example, [5], [6], [12], [35], [36], [39], [40], [43],
[46], [48], [49] and references therein).

Investigation and numerical resolution of these
problems are the actual sphere of mathematical
physics and numerical analysis. One such model is
obtained at mathematical modeling of processes of
electro-magnetic field penetration in the substance. In
the quasi-stationary approximation, the corresponding
system of Maxwell’s equations has the form [36]:

∂H

∂t
= −rot(νmrotH), (1)

∂θ

∂t
= νm (rotH)2 , (2)

where H = (H1,H2,H3) is a vector of the magnetic
field, θ is temperature, νm characterizes the electro-
conductivity of the substance. Equations (1) describe
the process of diffusion of the magnetic field and
equation (2) - change of the temperature at the ex-
pense of Joule’s heating. If νm depends on temper-
ature θ, i.e., νm = νm(θ), then the system (1), (2) can

be rewritten in the following form [11]:

∂H

∂t
= −rot

a
 t∫

0

|rotH|2 dτ

 rotH
 , (3)

where function a = a(S) is defined for S ∈ [0,∞).
Note that integro-differential parabolic models of

(3) type are complex and still yields to the investiga-
tion only for special cases (see, for example, [3], [4],
[7] - [9], [11], [15] - [20], [22], [23], [27] - [30], [32],
[33], [37] - [39], [41] and references therein).

Study of the models of type (3) have begun in the
work [11]. In this work, in particular, are proved the
theorems of existence of solution of the first boundary
value problem for scalar and one-dimensional space
case while a(S) = 1 + S and uniqueness for more
general cases. One-dimensional scalar variant for the
case a(S) = (1+S)p, 0 < p ≤ 1 is studied in [9]. In-
vestigations for multidimensional space cases at first
are carried out in the works [7] and [8]. Multidimen-
sional space cases are also discussed in the following
works [4], [16], [37], [38].

Long-time behavior of solutions of initial-
boundary value problems for (3) type models are stud-
ied in the works [3], [15] - [20], [22], [23], [27] -
[30], [32], [33] and in a number of other works as
well. In these works main attentions, are paid to one-
dimensional analogs.
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One must note that for the cylindrical conductors
to the study of modeling of physical process of pen-
etrating of the electromagnetic field some amounts
of works were also devoted. In this case above-
mentioned type models, written in cylindrical coor-
dinates, are studied in [24]. To the investigation of pe-
riodic problem for one-dimensional (3) type model in
cylindrical coordinates the work [41] is also devoted.

Interest to above-mentioned differential and
integro-differential models is more and more arising
and initial-boundary value problems with different
kinds of boundary and initial conditions are consid-
ered.

Particular attention should be paid to construction
of numerical solutions and to their importance for dif-
ferential and integro-differential models. This issue
for integro-differential models see, for example, [5],
[14], [15], [19], [21], [25] - [28], [30] - [32], [34],
[41], [43], [44] and references therein.

Settling of semi-discrete and finite difference
schemes, finite element analogues and Galerkin
method algorithm for (3) type one-dimensional
integro-differential models are given in [14], [15],
[19], [21], [25] - [28], [30] - [32], [34], [41] and in
the other works as well.

Let us note that studying of even one-dimensional
systems with two-component vector of the magnetic
field have their essential complexities and its investi-
gation and numerical resolution are continuing very
intensively (see, for example, [3], [15], [17], [18],
[23], [26], [29] - [34]).

Taking into account thermal conductivity the
same process of penetration of magnetic field into a
substance is described by the following system:

∂H

∂t
= −rot (νmrotH),

∂θ

∂t
= νm(rotH)2 + div(κ grad θ),

(4)

where κ is coefficient of heat conductivity. As a rule
this coefficient is function of argument θ as well.

The literature on the questions of existence,
uniqueness, regularity of the solutions and numerical
resolution of the initial-boundary value problems to
the (4) type systems is very rich (see, for example,
[1], [2], [6], [46], [48], [49] and references therein).

Beside of essential nonlinearity, complexities of
the mentioned system (4) is caused by its multi-
dimensionality. This circumstance is complicating to
get numerical results for concrete real problems. Nat-
urally arises the possibility of reduction to suitable
one-dimensional models.

Beginning from the classical work [10] the ap-
propriate algorithms are constructed and studied for

many models (see, for example, [13], [42], [45] and
references therein).

Complex nonlinearity dictates also to split along
the physical process and investigate basic model by
them. In particular, it is logical to split system (4) into
following two models:

∂H̃

∂t
= −rot (νm(θ̃)rot H̃),

∂θ̃

∂t
= νm(θ̃)(rot H̃)2

(5)

and
∂
˜̃
θ

∂t
= div (κ(

˜̃
θ)grad

˜̃
θ). (6)

In (5) Joule’s rule, while in (6) process of thermal
conductivity are considered.

Investigation of splitting along the physical pro-
cesses in one-dimensional case is the natural begin-
ning of studding this issue. In this direction the first
step was made in the works [1], [2].

Purpose of the present work is to describe re-
sults received basically just for the one-dimensional
(3) system with two-component magnetic field vec-
tor. Investigation of initial-boundary value problem
as well as settle of algorithms of construction of ap-
proximation solutions are aim of this note too.

Our aim is also to construct and study addi-
tive analogues bases on models (5) and (6) for
one-dimensional analog of system (1) with one-
component magnetic field.

2 Existence, Uniqueness and Long-
time Behavior of the Solution for
the Integro-Differential Problem

Let us consider the cylinder (0, 1) × (0,∞). If the
magnetic field has the form H = (0, U, V ), U =
U(x, t), V = V (x, t), then from (3) we obtain the fol-
lowing system of nonlinear integro-differential equa-
tions:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
,

∂V

∂t
=

∂

∂x

[
a(S)

∂V

∂x

]
,

(7)

where

S(x, t) =

t∫
0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
dτ. (8)
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Let us consider the following boundary and initial
conditions:

U(0, t) = V (0, t) = 0,
∂U(x, t)

∂x

∣∣∣∣
x=1

=
∂V (x, t)

∂x

∣∣∣∣
x=1

= 0,
(9)

U(x, 0) = U0(x), V (x, 0) = V0(x), (10)

where U0, V0 are given functions.
We should note that boundary conditions (9) are

used here taking into account the physical problem
considered in [24].

The following statement of existence and unique-
ness of the solution takes place.

Theorem 1 If a(S) = (1 + S)p, −1/2 < p < 0
or 0 < p ≤ 1 and U0, V0 ∈ H2(0, 1), U0(0) =

V0(0) = dU0(x)
dx

∣∣∣
x=1

= dV0(x)
dx

∣∣∣
x=1

= 0, then where
exists unique solution (U, V ) of the problem (7) - (10)
such that: U, V ∈ L2

(
0,∞;H2(0, 1)

)
, Uxt, Vxt ∈

L2 (0,∞;L2(0, 1)).

We use usual L2(0, 1) and Sobolev spaces
Hk(0, 1). The symbols C in this section denote vari-
ous positive constants independent of t.

The existence part of the Theorem 1 is proved us-
ing Galerkin’s modified method and compactness ar-
guments as in [40], [47] for nonlinear parabolic equa-
tions.

To study long-time behavior of solution of the
problem (7) - (10) is also very important.

Theorem 2 If a(S) = (1 + S)p, −1/2 < p < 0 or
0 < p ≤ 1 and U0, V0 ∈ H3(0, 1), U0(0) = V0(0) =
dU0(x)
dx

∣∣∣
x=1

= dV0(x)
dx

∣∣∣
x=1

= 0 , then for the solution
of problem (7) - (10) the following estimates hold as
t→ ∞:∣∣∣∣∂U(x, t)

∂x

∣∣∣∣+ ∣∣∣∣∂V (x, t)

∂x

∣∣∣∣ ≤ C exp

(
− t

2

)
,

∣∣∣∣∂U(x, t)

∂t

∣∣∣∣+ ∣∣∣∣∂V (x, t)

∂t

∣∣∣∣ ≤ C exp

(
− t

2

)
,

uniformly in x on [0, 1].

Results of Theorem 2 show that asymptotic be-
havior of the solution has an exponential character.
Let us note that same results are true for problem with
first type homogeneous conditions on whole boundary
(see, for example, [15], [32] and references therein).

3 Finite Difference Scheme for
Integro-differential Model

Now, consider the problem (7) - (10) in the cylinder
[0, 1]× [0, T ], where T is given positive constant, for
the case p = 1.

On [0, 1] × [0, T ] let us introduce a grid with
mesh points denoted by (xi, tj) = (ih, jτ), where
i = 0, 1, ...,M ; j = 0, 1, ..., N , with h = 1/M, τ =
T/N . The initial line is denoted by j = 0. The dis-
crete approximation at (xi, tj) is designed by uji , v

j
i

and the exact solution to problems (7) - (10) by U ji ,
V j
i . We will use the following known notations:

rjt,i =
rj+1
i − rji
τ

, rjx,i =
rji+1 − rji

h
, rjx̄,i =

rji − rji−1

h
.

For problem (7) - (10) let us consider the finite
difference scheme:

ujt,i −


1 + τ

j+1∑
k=1

[
(ukx̄,i)

2 + (vkx̄,i)
2
]uj+1

x̄,i


x

= 0,

vjt,i −


1 + τ

j+1∑
k=1

[
(ukx̄,i)

2 + (vkx̄,i)
2
] vj+1

x̄,i


x

= 0,

i = 1, 2, ...,M − 1; j = 0, 1, ..., N − 1, (11)

uj0 = vj0 = 0, ujx̄,M = vjx̄,M = 0, j = 0, 1, ..., N,

u0i = U0,i, , v
0
i = V0,i, i = 0, 1, ...,M.

Theorem 3 If problem (7) - (10) has sufficiently
smooth solution U = U(x, t), V = V (x, t),
then the solution uj = (uj1, u

j
2, . . . , u

j
M ), vj =

(vj1, v
j
2, . . . , v

j
M ), j = 1, 2, . . . , N of the difference

scheme (11) tends to the solution of continuous prob-
lem U j = (U j1 , U

j
2 , . . . , U

j
M ), V j = (V j

1 , V
j
2 , . . . ,

V j
M ), j = 1, 2, . . . , N correspondingly as τ → 0,
h→ 0 and the following estimates are true:

∥uj −U j∥h ≤ C(τ +h), ∥vj −V j∥h ≤ C(τ +h).

Note that in Theorem 3 C is independent of h and
τ and ∥ · ∥h denotes discrete analog of the L2(0, 1)
space norm.

Note that for solving the difference schemes (11)
Newton’s iterative process is used.

4 Decomposition Algorithms with
Respect to Physical Processes for
the Differential Problem

In the domain Ω × (0, T ), where Ω = (0, 1) let us
consider the following problem:
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∂U

∂t
=

∂

∂x

(
V α∂U

∂x

)
,

∂V

∂t
= V α

(
∂U

∂x

)2

+
∂2V

∂x2
, (12)

U(x, t) =
∂V (x, t)

∂x
= 0, (x, t) ∈ ∂Ω× (0, T ),

U(x, 0) = U0(x), V (x, 0) = V0(x) ≥ v0 > 0,

where −1/2 ≤ α ≤ 1/2, α ̸= 0, U0 and V0 are known
functions defined on [0, 1] and v0 is constant.

If we denote V
1
2 = W , 2α = γ, then problem

(12) can be rewritten in the following equivalent form
[1]:

∂U

∂t
=

∂

∂x

(
W γ ∂U

∂x

)
, (13)

∂W

∂t
=

1

2
W γ−1

(
∂U

∂x

)2

+
∂2W

∂x2
+

1

W

(
∂W

∂x

)2

,

U(x, t) =
∂W (x, t)

∂x
= 0, (x, t) ∈ ∂Ω× (0, T ),

U(x, 0) = U0(x), W (x, 0) =W0(x) = V
1/2
0 (x).

Let us introduce the notations:

yt =
yj+1 − yj

τ
, y1t =

yj+1
1 − yj

τ
, y2t =

yj+1
2 − yj

τ
,

y = η1y1 + η2y2, η1 + η2 = 1, η1 > 0, η2 > 0.

Correspond to the problem (13) following addi-
tive averaged semi-discrete scheme:

u1t =
d

dx

(
wγ1

du1
dx

)
,

η1w1t =
1

2
wγ−1
1

(
du1
dx

)2

,

u2t =
d

dx

(
wγ2

du2
dx

)
,

η2w2t =
d2w2

dx2
+

1

w2

(
dw2

dx

)2

,

u01 = u02 = U0, w0
1 = w0

2 =W0,

(14)

with suitable boundary conditions.

Theorem 4 If problem (13) has a sufficiently smooth
solution and −1 ≤ γ ≤ 1, then the solution of the
scheme (14) convergence to the solution of problem
(13) as τ → 0, and the following estimate is true∥∥∥U(tj)− uj

∥∥∥+ ∥∥∥W (tj)− wj
∥∥∥ = O(τ

1
2 ).

Here ∥ · ∥ is an usual norm of the space L2(0, 1).
Let us also correspond to the system (13) the fol-

lowing semi-discrete additive model:

ut =
d

dx

[
(η1w

γ
1 + η2w

γ
2 )
du

dx

]
,

η1w1t =
1

2
wγ−1
1

(
du

dx

)2

,

η2w2t =
d2w2

dx2
+

1

w2

(
dw2

dx

)2

,

(15)

with suitable initial and boundary conditions as well.
Let us note that the analogous result as Theorem

4 is valid for scheme (15).
Note also that the above mention result and result

analogical to Theorem 4 with Dirichlet boundary con-
ditions for function W in problem (13) are obtained
in the works [1], [2].

At last we note that additive models analogical to
(5) and (6) for the system (4) may be also constructed.

The fully discrete averaged finite difference
schemes based on investigated (14) and (15) semi-
discrete schemes are also constructed. The fully dis-
crete finite difference schemes for the problems (12)
and (13) analogical to schemes stated in [1], [2], [46]
are also applied. Numerical experiments are done us-
ing all of these algorithms for problems (12) and (13).

5 Conclusion

Models of nonlinear differential and integro-
differential equations associated with the penetration
of a magnetic field in a substance are considered.
Existence, uniqueness and long-time behavior of
solution of initial-boundary value problem for
integro-differential case are studied. The finite
difference scheme are investigated for this model
as well. The semi-discrete and fully discrete finite
difference schemes for the one-dimensional differen-
tial problem are studied. Decomposition algorithms
with respect to physical processes are constructed
and investigated. Various numerical experiments for
the studied schemes are carried out. The results of
these numerical experiments agree with theoretical
researches.
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