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Abstract: - One of the most important problems in satellite design is of vibration control. High pointing 

accuracy is an important part of the overall design problem for satellite control system. However, the orbiting 

attitude slewing or manoeuvring operation will introduce certain levels of vibration to flexible appendages, 

which will deteriorate its pointing performance. This paper is concerned with the active vibration control of a 

satellite structure with flexible appendages representing a solar panel equipped with piezoelectric actuators and 

sensors. A classical control law, constant-gain negative velocity feedback, and optimal control law based on 

LQG theory are presented for actively damping the elastic oscillations using piezoelectric materials as 

actuators/sensors bonded on the surface of the flexible appendages. Numerical simulations are performed. The 

results show that both control strategies significantly reduce the vibration response of the satellite panels. The 

LQG optimal control is more effective than the velocity feedback due to the fact that the former changes both 

damping and natural frequencies of the system while the later changes only the system damping. 
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1 Introduction 

Spacecrafts with flexible appendages, in orbiting, 

are important for the purpose of communication, 

remote sensing and variety of space-related research 

activities. Such spacecrafts have a central rigid body 

with attached appendages such as antennas and solar 

panels. Rapid rotational manoeuvres of spacecraft 

are essential to meet mission requirements. In 

rotational manoeuvres of such spacecrafts, elastic 

deformations in the flexible appendages are often 

presented. Therefore, designing a control system to 

provide fine pointing accuracy, while effectively 

suppressing the induced vibration, creates a 

challenging problem for spacecraft designers. In 

addition, micro-satellites with flexible appendages 

like deployable solar panels are very prone to 

vibration when excited by the reaction wheels or 

momentum wheels.  Any infinitesimal amount of 

unbalance in the reaction wheels' rotors will impose 

a harmonic excitation which may interact with the 

solar panels structure. Therefore, minimizing the 

solar panels structural vibration interaction can 

control the jitter.  

      In order to meet the high precision requirement 

of flexible space structures, the application of active 

control for vibration suppression has attracted 

significant attentions and many achievements have 

been accomplished in the past two decades. Many 

control algorithms have been used to suppress the 

vibration, such as direct velocity feedback (DVFB) 

control [1], acceleration feedback control [2], and 

positive position feedback (PPF) control [3]. A 

range of controllers including linear quadratic 

Gaussian (LQG) and loop transfer recovery, and H∞ 

based design methods have been designed and 

tested by researchers [4-9], requiring approximating 

the dynamics by a finite dimensional state space 

model.  

     Piezoelectric materials, such as lead zirconate 

titanate (PZT), have coupled mechanical and 

electrical properties, and exhibit mechanical 

deformation when subjected to an applied electric 

field, which is called the converse piezoelectric 

effect. They also generate a voltage or charge when 

subjected to a force or deformation, which is termed 

as the direct piezoelectric effect. The use of PZT as 

actuators/sensors is considered as one promising 

method for actively suppressing the residual micro-

vibrations. Therefore, piezoelectric transducers have 

been used extensively as distributed sensors and 

actuators for vibration control of flexible structures 

[10]. The modeling technique applicable to the 

beam structure bonded with piezoceramic (PZT) 

sensors and actuators have been discussed by Fuller 
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et al. [11]. Clark et al. [12] developed a dynamics 

model for the vibration response of a simply 

supported elastic rectangular plate using a 

piezoelectric patch of variable rectangular geometry. 

Chen and Shen [13] adopted independent modal 

space control (IMSC) for vibration control of 

piezoelectric active structures.  

     The design of an acceleration sensor based active 

vibration control for a cantilever beam with bonded 

piezoelectric patches was studied in [2]. The 

system’s dynamic model considering the non-

collocated placement of the acceleration sensor and 

the piezoelectric patch actuator was derived. An 

acceleration sensor based proportional feedback 

control algorithm and a sliding mode variable 

structure control algorithm with phase shifting 

technology were proposed, for suppressing the first 

two bending modes vibration of the beam. Active 

vibration control of a low frequency space frame 

platform was studied by incorporating piezoelectric 

actuators and sensors in the dynamic model, [14]. It 

was shown using simulation that a control strategy 

using optimal control was effective for vibration 

suppression under a wide variety of loading 

conditions. 

     This research work is concerned with the active 

vibration control of a satellite structure with flexible 

appendages representing a solar panel equipped with 

piezoelectric actuators and sensors. A classical 

control law, constant-gain negative velocity 

feedback, and optimal control law based on LQG 

theory are presented for actively damping the elastic 

oscillations using piezoelectric materials as 

actuators/sensors bonded on the surface of the 

flexible appendages. 

 

 

2 Problem Formulation 
Figure 1 shows the model of a flexible satellite. The 

model consists of a central point mass, which 

represents the satellite body, and two flexible 

appendages. The physical model used in the analysis 

 is a free-free beam of finite length L with 

concentrated mass in the middle (x=L/2), together 

with a set of  piezoelectric actuators bonded on the 

top face and sensors bonded on the bottom, as 

shown in Fig. 1. 21 , ii xx  are the locations of edges 

of the ith actuator/sensor; each actuator/sensor has 

thickness ha and length la. The input to the system is 

the voltage applied to the actuators and the output is 

the strain-induced voltage generated by the sensors.  

     The main assumptions used in the analysis are: 

(i) The actuators are perfectly bonded to the beam; 

(ii) The stiffness of the bonding material and the 

PZT patches are neglected; (iii) The voltage is 

uniformly distributed along the piezoelectric 

actuators; and (iv) The poling direction of the 

piezoelectric material is in the direction of the 

transverse direction of the beam. As voltage is 

applied to the actuator, pure longitudinal strains are 

induced, resulting in pure moments at the two edges 

of the actuator. 

 

Fig. 1.   A schematic diagram of a harmonically 

excited panel with piezoelectric patches. 

     The governing equation for a panel with bonded 

m piezoelectric patches has been obtained in [15] 

and is given below; 
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where ρb is the mass per unit volume of beam 

material, Ab is the cross-sectional area, Ib is area 

moment of inertia of cross-section and w(x, t)  is the 

transverse deflection  at spatial point x  along the 

beam at time t.  δ (.) is the Dirac delta  singularity 

function, Ms represents the mass of the satellite 

body.  
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where ha, and hb are the actuator and beam 

thicknesses, respectively; d31a and Ea are the 

piezoelectric strain constant and Young’s modulus 

of the actuator; Vi
a
 is the voltage applied to actuator 

i. The evolution of the integral (2) results the 

following expression 

,31

a

iaaa

a

i VrEbdM =  (3) 

where ra denotes the distance measured from the 

neutral surface of the beam to the mid-plane of the 

actuator. The voltage distribution of actuator i can 
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be expressed as Vi
a
 (x,t)= Vi

a
(t)[Ha(x-xi1) – Ha(x-

xi2)], where Ha is the Heaviside functions for 

generalized location and xi1 and xi2 are the end 

coordinates of the actuator i.  

     Assuming a uniform voltage on the electrode 

surface of actuator k, the moment can be expressed 

as 

,)(tVKM a

i

a

i
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i =  (4) 

where .31 aaa

a

i rEbdK =  

     The sensors are considered with the same length 

and axial position as the actuators, but vertically 

opposite, Fig. 1. On a sensor i, the open circuit 

voltage Vi
s
(t) due to the bending effect can be 

estimated by the normal strains in the axial direction 

εx of the beam. For each sensor, for a specific 

vibration mode, it is given by 
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 (5) 

where hs is the sensor thickness, and h31s is the 

piezoelectric constant, 
s

iK =[hs/(xi2 –xi1)]g31sEsrs; Es 

is the Young’s modulus of the sensor, rs is the 

distance measured from the neutral axis of the beam 

to the midplane of the sensor layer, and g31s is the 

piezoelectric stress constant. 

     The method of separation variables is applied to 

discretize the partial differential equation (1) into a 

set of ordinary differential equations for the 

numerical simulation. Then, w(x,t) is assumed to be 

expressed with eigenfunctions of a uniform free-free 

beam such that 
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Where the space-dependent functions )(xjφ  

(j=1,2,..,n) are the assumed mode shapes or 

admissible functions which must satisfy the 

geometric boundary conditions of the problem, and 

the time-dependent functions  )(tq j  (j=1,2,…,n) are 

a set of generalized coordinates.  

     The mode shapes of a free-free beam are used in 

the analysis, and they are given by 
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While the sensors voltage equation is given by 
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3 Controller Design 
In order to design a controller to suppress the 

vibration of the satellite, the dynamic model of the 

satellite is expressed in state space form as 

DfBvAxx a ++=ɺ  (10a) 
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Cxy =  (10b) 

Where x is the state space variable, A is the system 

matrix, B is the control matrix, D is the disturbance 

matrix, y is the output vector, and C is the sensors 

distribution matrix. These matrices are given by 
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     Classical and optimal control laws are used in the 

analysis. The classical control law considered is 

constant-gain negative velocity feedback. The 

optimal control law considered is LQR/LTR 

scheme. In the classical control law, the gains are 

arbitrarily chosen, whereas in the optimal control 

law, an optimal control gain is obtained, which 

minimizes a performance index. 

 

 

3.1 Constant-Gain Negative Velocity 

Feedback Control 
In this method of control, the sensor voltage is 

differentiated so that strain rate (related to the 

velocity) information is obtained and the control 

voltage is given by 

,qGBVGV s

sa
ɺɺ −=−=  (11) 

where G is an (m×m) feedback gain matrix. The 

resulting S/As control law for the system equation is 

expressed as 

fBKqqGBBqM fsa =++ ɺɺɺ  (12) 

     Using the sensor equations and the proposed 

control, Equation (6.10a) can be expressed in the 

corresponding closed-loop state space form as 

,DfxAx c +=ɺ  (13) 
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−−
=

−−
sa

nxnnxn

c
GBBMKM

I
A

11

0
 

     The velocity feedback can enhance the system 

damping and therefore effectively control the 

oscillation amplitude. 

 

 

3.2 Linear Quadratic Gaussian Optimal 

Control 
In modern control theory, gains system controller is 

selected depending upon the requirements of control 

system designer represented by controller cost and 

speed dynamic response.  

      Considering the process and measurement noise 

ɛ1(t) and ɛ2(t), the state space equation of the 

system can be written as 

1ε++= aBvAxxɺ  (14a) 

2ε+=Cxy  (14b) 

where ɛ1 and ɛ2 are zero-mean Gaussian white 

noise, they can be expressed as: 

0)]([,0)]([ 21 == tEtE εε  (15a) 

)()]()([ 11 τδτεε −= tQtE e

T
 (15b) 

)()]()([ 22 τδτεε −= tRtE e

T
 (15c) 

     A spatial LQG controller attempts to minimize 

the vibration of the flexible satellite by minimizing a 

performance index (cost function) that relates to the 

spatial behavior of the composite system. The LQG 

controller consists of a state feedback control law 

designed by solving a linear quadratic regulator 

problem plus a Kalman filter (an estimator). 

     The control v
a
 is given by 

,x̂Gv c

a −=  (16) 

where x̂  is an estimated state which is introduced to 

estimate the full state vector x from the sensor 

output y and Gc is the control gain. 

     The optimal control gain Gc is determined by the 

minimization of the quadratic performance index 

given below 
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where R is a positive definite matrix and Q is a 

positive semidefinite matrix. In this case, larger 

(relatively) elements in Q mean that more vibration 

suppression ability is demanded from the controller. 

The purpose of the second term in Eqn (11) is to 

account for the effort being expended by the control 

system, so that small reductions in the output 

response are not obtained at the expense of 

physically unreasonable actuator input levels. 

     With an appropriate selection of the weighting 

matrices, the optimal control gain is given by 

,1 PBRG T

c

−−=  (18) 

where P is the symmetric positive definite solution 

of the Riccati equation 

01 =+−+ − QPBPBRPAPA TT
 (19) 

     A state estimator (an observer) for equation (10) 

is assumed to have the form 

),ˆ(ˆˆˆ xCyGBvxAx a −++=ɺ  (20) 

where Ĝ  is the Kalman filter gain matrix and can 

be determined by minimizing the expected value, 

)]ˆ()ˆ[( xxxxE T −− . For steady state case, the 

optimal observer gain matrix is given by 

,ˆ 1−= e

T RSCG  (21) 

where the matrix S satisfying the Riccati equation 

01 =+−+ −
ee

TT QCSRSCSAAS  (22) 

 

 

4 Simulation Results   
In the simulation, the first five vibration modes are 

considered to describe the satellite dynamics, and 

the system has the following properties. 

Beam properties 

L= 2 m, Eb =71 GPa, hb = 0.01 m, b= 0.2 m, 
3/2770 mkgb =ρ  

Piezoelectric actuator properties 

Ep= 63 GPa, ha = 0.001 m, la= 0.16 m,  

d31a = -1.66x10
-10

 m/V 

Piezoelectric sensor properties 

Es= 63 GPa, hs= 0.001 m, ls= 0.16 m, g31s= 0.01 

Vm/N 

Two actuator/sensor pairs are set up at x11=0.4 m 

and x21=1.4 m. 

     An applied sinusoidal force, fo, of 5 N acting on 

the satellite mass at a frequency of 290.5 rad/s, 

which is near the third resonance frequency of the 

system, is assumed. The state weighting matrix Q 

and the control weighting matrix R were selected as 

Q=QaI, R=RaI, where I is the unit matrix and the 

values of Qa and Ra were determined by trial-and-

error method to most effectively control the flexible 

appendages. In the case considered, Qa/Ra= 10
8
. The 

intensities of the assumed white noise Qe and Re are 

selected to be 

22

710,
0
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     In the present work, MATLAB software has 

been used for solving the associated Riccati 

equations and obtaining the control gains in LQG 

control method.
 

     Fig. 2 shows the response of the satellite 

structure for both controlled and uncontrolled 

systems. The vertical axis represents the normalized 

deflection w/wo where wo= fo L
3
/EbIb. The 

effectiveness of the active control strategy, based on 

LQG control method, in controlling the response of 

the flexible appendages subjected to harmonic load 

is demonstrated in Fig.2, which shows a significant 

reduction in the amplitude response.  

     The control performances with constant-gain 

negative velocity feedback with gain G = 2 together 

with LQG are shown in Fig. 3. It can be seen from 

the figure that the velocity feedback can enhance the 

system damping and therefore effectively control 

the amplitude response. It can be noted that LQG 

optimal control offers more effective control 

response compared with constant-gain velocity 

feedback. 

 

 

5 Summary and Conclusions 
In this work, the active vibration control of a 

satellite with flexible appendages, modelled as a 

free-free beam, and two sets of piezoelectric 
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actuator and sensor layers bonded to the top and 

bottom faces of the beam has been studied.  The 

active vibration control performance has been 

studied using a classical control law, constant-gain 

negative velocity feedback, and optimal control law 

based on LQG theory. 

 

Fig. 2 Steady state displacement response for 

controlled (------- ) and uncontrolled (
_______

) beam 

 

Fig. 3 Steady state displacement response for 

controlled beam using LQG (--------) and constant-

gain negative velocity feedback (
_______

) 

 

     From the results it can be noted that both control 

strategies significantly reduce the vibration response 

of the beam. The LQG optimal control is more 

effective than the velocity feedback due to the fact 

that the former changes both damping and natural 

frequencies of the system while the later changes 

only the system damping. 
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