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Abstract: Since Gordon and Loeb (2002) considered the vulnerability of information to determine the optimal 
amount of security investment, many researchers has studied security investment decision-making. This article 
categorizes the types of damage derived from threats, and introduces a stochastic model to incorporate the 
properties of each type of damage. The results of the stochastic analysis can be used to determine the optimal 
investment portfolio. 
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1 Introduction 
Since Gordon and Loeb (2002) considered the 
vulnerability of information to determine the 
optimal amount of security investment, many 
researchers have studied on the security investment 
decision-making (e.g., Tatsumi and Goto (2009) and 
Huang and Goo (2009)). Threats to information 
assets incur various types of damages including data 
loss, hardware replacement and/or repair, and 
deterioration of system performance. In order to 
make reasonable decisions regarding information 
security investment, it is required to consider the 
economic impact of each type of damage to the 
information system management. 

We consider an information system with three 
types of threats. First, type-1 threats remove data 
that the system currently processes. This data 
become lost. Second, type-2 threats damage 
hardware and a portion of data stored in hardware. 
The system requires repairing or replacing the 
hardware and recovering the damaged data. Finally, 
type-3 threats deteriorate the system performance, 
that is, the service rate or the processing speed. The 
system needs to manage the system performance in 
order to provide quality service to customers. We 
first present the stochastic models that describe the 
above system. Second, we present a financial 

analysis, which results in the Net Present Value 
(NPV), presenting the costs and benefits of the 
system. First, we use the notion of negative 
customer to describe type-1 threat. Negative 
customers remove works in the system, which 
matches the type-1 threat. Queues with negative 
customers have been studied extensively (See Park 
et al. (2010) and references therein to review 
negative customers.) Next, we apply the research of 
system deterioration to model type-3 threat. We use 
the model in Yang et al. (2009) and describe the 
system deterioration by threats and preventive 
maintenance. The system is monitored continuously 
and repaired whenever its performance is lower than 
a predetermined level. Finally, we model type-2 
threat using stochastic process.  

The system has the following financial structure. 
The system earns revenue by processing data. The 
costs consist of the loss cost for the removed data 
currently being processed, the repair cost for 
damaged hardware, the recovery cost of the 
damaged data in hardware, the repair cost for the 
system maintenance, the holding cost of the system 
operation, and the security investment. 

The rest of this article is structured as follows. In 
Section 2, we describe the model with some 
notations. Stochastic analysis on the model is 
presented in Section 3. The Net Present Value 
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(NPV) that considers the revenue of the information 
system, various costs derived from threats, and 
security investment in order to prevent damage from 
threats is also presented in Section 3. 
 
 
2 Model Description  
There are M  security portfolios. Let mPF  denote 
the m th portfolio. 0PF  represents the current 
security level. The security level becomes higher as 
m  increases. 

The data that an information system handles, for 
example, banking and shopping, arrive according to 
a Poisson process with rate λ . The server has finite 
states β,,1,0  , which represent the processing 
conditions of the system. The processing times are 
independent exponential random variables with rate 

kµ , where k  represents the system state. The states 
are ordered according to the relative degree of 
deterioration of the system. That is, ji µµ <  for 

ji > . The system processes the data and stores 
them in hardware. It is assumed that there is no data 
at the initiation of the system operation. 

Threats are classified into three types according 
to the damage: First, data that the system processes, 
including waiting data, are lost by type-1 threats. 
Let kd  denote the loss probability of the number of 
data that are lost. It is assumed that the loss 
probability follows a geometric distribution, such as 

1)1( −−= k
k ddd , ,2,1=k . Second, type-2 

threats break down hardware and damage the data 
that are stored in hardware. The ratio of damaged 
data is f  among the total data. It is assumed that 
hardware is repaired and data are recovered 
instantaneously. Third, type-3 threats deteriorate the 
system, that is, increases the system state by k  with 
probability kg . Type- i  threats occur according to a 

Poisson process with rate i
mω  in mPF . Note that 

i
l

i
k ωω <  for lk > .  
We consider a preventive maintenance policy in 

order to operate the system stable. The system is 
repaired at or above state α , which we call 
maintenance level. The repair time is exponentially 
distributed with rate δ1 . It is assumed that threats 
do not occur in the system during a repair. 

The system earns revenue p  per data. The 
system costs consist of as follows: The loss cost Lc  
per data, the repair cost of damaged hardware Wc  

per repair, the recovery cost of damaged data Dc  
per data, and the holding cost Hc  per unit time and 
data. The system repair cost is α

Rc  per repair with a 
maintenance level of α . The more the system 
deteriorates, the more resources are needed for 
repair. Therefore, it is assumed that j

R
i
R cc ≥  for the 

maintenance level ji > . The security investment 
cost is m

Pc  in mPF . It is assumed that j
P

i
P cc >  for 

the portfolio ji > . The investment occurs at time 0. 
Finally, we denote the unit fiscal period and the 
interest rate as τ  and θ , respectively. 
 
 
3 Stochastic and Financial Analysis  
First, we analyze the number of data that the system 
processes by using the Markov Chain. Let ),( ji  
denote the state of a Markov chain. The notation i  
represents the number of data in the system and j  
stands for the system state, for ,1,0=i  and 

β,,1,0 =j . Arranging the states in a 
lexicographic order gives the following matrix 
structure:. 
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The matrices kA  and kB  in (1) are the square 
matrices of the size )1( +β . The elements of the 
matrices are shown in Appendix. 

Let ijx  be the steady-state probability that the 

Markov chain is in state ),( ji . Let jπ  be the 
steady-state probability that the system is in state j . 
Let us define 
 

),,( 0 βππ =π , ),,( 0 βiii xx =x , ,1,0=i , 

),,( 0 βµµ =μ . 
 
Applying the matrix geometric method (Neuts, 
1981) to (1) results in  
 

k
k RRI )( −= πx , ,2,1=k .      (2) 
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where π  is the steady-state probability of the 
Markov chain with the transition rate matrix A .  
Let mN  denote the average number of data that the 
system processes in mPF . Using (2) gives 
 

eπex 1

1
)( −

∞

=

−==∑ RIRkN
k

km .   (3) 

 
Let us define the throughput and the loss rate as the 
number of data processed successfully and lost by 
the type-1 threat, respectively, per unit time. Let 

mΨ  and mΩ  denote the throughput and the loss 
rate in mPF . Then, we have  
 

∑
=

==Ψ
β

µπ
0j

jjm πμ ,    (4) 
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Suppose that the system does not transit to 

different states when the system is at, or above, state 
α . In this case, the system behaves stochastically 
governed by the absorbing Markov chain with the 
following transition rate matrix A~ .  
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The elements of G  is given by  
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Let 1

mΓ  be the time interval from the point when 
the system state is 0  to the point when the system 
repair begins in mPF . Let 2

mΓ  be the time interval 
form the initiation to the end of the system repair. 
Let 21

mmm Γ+Γ=Γ . 1
mΓ  is equivalent to the 

absorption time of the Markov chain with the 
transition rate matrix of (6). Then, we have 

eq 1
0

1 ][ −−=Γ GE m . The average repair time is 

δ1][ 2 =ΓmE . This gives 
 

δ1][ 1
0 +−=Γ − eq GE m .    (7) 

 
where 0q  is the column vector of size α  and 

)0,,0,1(0 =q . 
Let )(tΛ  denote the average number of data that 

have been stored in hardware by time t . The data is 
stored at the rate of mΨ  in (4). Then, the average 
number of data in hardware by the j th fiscal period 
is  
 

ττ )1())1(( −Ψ=−Λ jj m .    (8) 
 
Let kZ  be the point that the k th type-2 threat 
occurs during ),0( τ . Let kY  be the interval from 
the )1( −k th to the k th occurrence point of the 
type-2 threat. Note that kk YYZ ++= 1  and 

21][ mkYE ω= . Then, the average number of data 
stored by kZ  is given by 
 

kYYEZ
m

m
kmk 21 )()(

ω
Ψ

=++Ψ=Λ  .    (9) 

 
Let )( j

kH  be the average number of data that are 
damaged by the k th type-2 threat and also 
recovered during the j th fiscal period 

],)1[( ττ jj − . The portion of f  is damaged among 
the data in hardware. Then, we have 
 









+−Ψ= 2
)( )1(

m
m

j
k

kjfH
ω

τ .               (10) 

 
Let ka  be the probability that k  type-2 threats 
occur during ],)1[( ττ jj − . Type-2 threats occur 
according to a Poisson process. Thus, we have 
 

!
)( 22

k
e

a
k

m
k

m τωτω−

= . 

 
Let j

mF  be the average number of data recovered 

during ],)1[( ττ jj −  in mPF . Using (10) gives 
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where τω 2

0
mea −= .  

Let ),,( ymP α  be the NPV at the end of the 
fiscal period y  with a maintenance level α  in 

mPF . Considering the revenue and cost structure 
gives the following NPV: 
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4 Conclusion 
We evaluate information security portfolios 
considering types of damages: threats which remove 
data; threats which damage hardware and a portion 
of data in hardware; and threats which deteriorate 
systems performance. From the limited availability 
of data in this paper, empirical or numerical 
verification has not performed. Only if we obtain 
data, we can estimate all the parameters (and 
distributions of parameters) to evaluate information 
security investment portfolios in order to protect 
information systems from possible security threats. 
The model presented in this article can be widely 
used for evaluating information security investment 
decisions not only for e-government services but 
also for private organizations. 
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Appendix : the matrices kA  and kB  
For mPF  and ,1,0=k , we have 
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where I  is the identity matrix of size )1( +β . U  
and V  are the square matrices of size )1( +β  and 
their elements are given by 
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The matrix 1A  is given by 
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where ∑∞

=
=

jl lj gg . For ,2,1=k , let us define 

kd  as follows: 1)1( −
∞

=

−==∑ k

kj
jk ddd . Then the 

matrices kB , for ,2,1=k , are as follows: 
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