
Efficient Computation of the Kleene Star in Max-Plus Algebra using a

CUDA GPU

HIROYUKI GOTO and KAZUHIRO TOYODA

Department of Industrial and System Engineering

Hosei University

3-7-2 Kajino-cho, Koganei, Tokyo 184-8584 JAPAN

JAPAN

{goto-h@, 10x4058@stu.}hosei.ac.jp

Abstract: - This research aims to accelerate the computation of the Kleene star in max-plus algebra using CUDA

technology on graphics processing units (GPUs). The target module is the Kleene star of a weighted adjacency

matrix for directed acyclic graph (DAGs) which plays an essential role in calculating the earliest and/or latest

schedule for a class of discrete event systems. In recent NVIDIA GPU cards, an environment for high

performance computing is provided to general developers, for which we aim to exploit the benefit of using GPUs.

Using an NVIDIA Tesla C2075 for our experiments, we obtained approximately a 30-fold speedup compared

with an Intel Xeon E5645.

Key-Words: - Directed acyclic graph, adjacency matrix, Kleene star, max-plus algebra, GPU, CUDA

1 Introduction
The primary concern of this research is to accelerate

the computation of the Kleene star [1] of weighted

adjacency matrices in max-plus algebra [1], [2], using

computers equipped with high performance graphics

processing units (GPUs). We implement a program

using CUDA (compute unified device architecture)

technology [3], which is available on recent NVIDIA

GPUs.

The Kleene star plays an essential role in

max-plus algebra approaches to scheduling problems

for repetitive discrete event systems (DESs). To be

precise, the governing equation in max-plus algebra,

referred to as the state equation, includes the Kleene

star in the transition matrix [4].

Hereafter, we focus on DESs whose behavior can

be described by a directed acyclic graph (DAG). Let

the number of nodes and arcs in the system be n and

m , respectively. If we compute the Kleene star based

on the most efficient algorithm known thus far, the

time complexity is))((O mnn +⋅ [4], [5]. On the

other hand, the state equation includes other addition

and multiplication operations, the worst time

complexity of which is)(O 2n . Thus, the bottleneck

in computing the state equation lies in the Kleene star.

In the field of high performance computing, on

the other hand, much attention has been paid to the

concept of general-purpose computing on graphics

processing units (GPGPU). In particular, recent GPU

cards produced by NVIDIA Corporation provide

substantial benefits for parallel computation, and the

company itself supplies an easy-to-implement

environment for developers and researchers. Recently,

the effectiveness and advantages of using GPUs for

technical computations have been widely reported [6],

[7].

In view of this, we aim to accelerate the

computation of the Kleene star in max-plus algebra.

We implement a code for CUDA GPUs, and measure

the speedup effect.

2. Target Algorithm
We first introduce the specific notations and

operation rules in max-plus algebra. Denoting the real

field by R , we define a field }{max −∞∪= RR . Then,

for x , y maxR∈ , we define operators and unit

elements:),max(yxyx =⊕ , yxyx +=⊗ , ε

)(−∞= , and e)0(= . If nm ≤ ,

),,,max(1 nmmk
n

mk xxxx ⋯+= =⊕ .

For matrices X , Y nm×∈ maxR , and Z qn×∈ maxR ,

ijijij][][][YXYX ⊕=⊕ ,

ljil
n
lij][]([][1 ZXZX ⊗⊕=⊗ = .

For the unit matrices, ε is a matrix whose elements

are all ε , while e is a matrix with diagonal elements

set to e and off-diagonal elements to ε . Operator ⊗

has higher precedence than ⊕ .

Computational Methods in Science and Engineering

ISBN: 978-1-61804-174-6 45

Let X nn×∈ maxR be a DAG weighted adjacency

matrix. Our target algorithm is the computation of:

)1(1

0

* −⊗⊗−

=
⊕⊕⊕==⊕

rlr

l
XXeXX ⋯ ,

where

:{][ijij w=X if there is an arc ij→ , else ε },

and ijw is the weight of arc ij→ . If we denote the

number of nodes by n , there is an instance r that

satisfies εX ≠−⊗)1(r and εX =⊗r)1(nr ≤≤ . It is

known that ij][
*

X gives the maximum value of the

cumulative weights for paths from node j to node i .

Amongst the most efficient algorithms for

computing the Kleene star in terms of time

complexity, the method in [5] is attractive, since the

work matrix can be partitioned into arbitrary column

major blocks and each block can be processed

independently. The essential procedures and time

complexities are given below.

• Topological sort,)(O nm + : sort the nodes in

topological order based on a depth first search

(DFS) algorithm [8] by inspecting the elements of

X .

• Initialization,)(O 2n : prepare and initialize a work

matrix W nn×∈ maxR .

• Update,)(O nm ⋅ : update the work matrix

according to
:::][][][][
lliii WXWW ⊗⊕⇐ for all

succeeding nodes i of source node l , where l

represents the original node number of sequence l

in the topologically sorted graph. Then, repeat this

for all l)11(−≤≤ nl in ascending order.

On completion of these procedures, the values in the

resulting matrix are given by the elements in W . We

note here that the third process corresponds to an

elementary transformation in conventional algebra.

3. CUDA Architecture
The basic structure of a CUDA GPU is depicted in

Fig. 1. In CUDA terminology, the PC and GPU card

are called the host and device, respectively. On the

device side, there is either a single or multiple

processing units, referred to as the streaming

multiprocessor (SM). Each SM has 8, 32 or 48 CUDA

cores (Core in Fig. 1), a 16KB shared memory,

registers, and two types of caches. The 16KB shared

memory is shared between the cores and has small

latency. Computational programs for the CUDA

cores are referred to as kernels, with each SP in

charge of a task identified by a thread.

Memory

Shared memory (16KB)

Host (PC) Device (GPU card)

Texture memory

Global memory

Registers

Cache

Cache

Constant memory (64KB)

R1

…Core 1 Core 8

SM 1

Video unit

Processing

unit(s)

…

Fig. 1. CUDA hardware model.

In the video unit, depicted in the lower part of the

figure, there are three types of memories: global,

constant, and texture memories, which are shared

between all SMs. To communicate data between the

host and device, we must use the global memory, but

its latency is quite large. On the other hand, the

texture and constant memories are read-only for SMs

and accessed data are cached. Thus, the latency can

be significantly reduced by accessing the same or

adjacent data multiple times. Owing to there being

various types of memories in CUDA GPUs, we have

to consider well in advance which memories to use, in

order to exploit the benefits for computation speed.

4. Implementation
First, we improve the algorithm to reduce the required

memory. In existing methods, the update process is

performed using
li

][X in the original adjacency

matrix X . This implies allocating sufficient memory

to store two nn× matrices: X and W . On the other

hand, the number of non- ε (non-zero, in

conventional algebra) elements, denoted by m ,

follows 2/)1(−⋅≤ nnm because we are focusing on

DAGs. Thus, using a full matrix workspace is

redundant for large scale systems.

In view of this, we first convert X to a

compressed form and the remaining procedures are

performed using the compressed data. It should be

noted that the target algorithm occasionally needs the

Computational Methods in Science and Engineering

ISBN: 978-1-61804-174-6 46

list of succeeding nodes for a given source node. As a

format suited to this, we adopt the compressed

column storage (CCS) format [9]. Let the integer field

be denoted by Z , then the compression result yields

the following three arrays.

• Val (m
maxR∈): stores the values of non-ε elements

in X in column major order.

• Idx (m
maxZ∈): stores the corresponding row

numbers of the elements in array ‘Val’.

• Ptr (1
max
+∈ n

Z): stores the start positions of each

column in arrays ‘Val’ and ‘Idx’.

Once the memory space for these arrays has been

prepared, if the original matrix X is not needed after

the Kleene star computation, this space can be reused

for the work matrix W .

We now implement the code for CUDA. As

shown in the next section, the bottleneck in the

Kleene star computation lies in the update process.

Thus, we optimize this part extensively.

In preparation, floating point memory storage for

the work matrix W is prepared in global memory.

This matrix is initialized to e , where we use

(-FLT_MAX) to represent ε . Moreover, we prepare

two arrays for storing ‘Val’ and ‘Ptr’ in texture

memory. As pointed out in the previous section,

several alternative memories are available. In fact, we

experimented with code that used the shared and

constant memories, but the performance thereof was

not good. Thus, we opted to use texture memory.

Then, W is updated sequentially in topological

order from upstream source nodes to downstream

ones. Fig. 2 depicts the update process for source

node l . The list of succeeding nodes, in other words

destination nodes, is obtained from Idx(S), where

S =Ptr(l):(Ptr(l +1)-1). Let an element from S and

the number of elements of S be denoted as S∈ki

and s=|S| , respectively. First, the values of
lik

][X

and ki)1(sk ≤≤ , which are obtained from Val(S)

and Idx(S), respectively, are transferred from host

memory to texture memory. Next, the values of

jl
][W)1(nj ≤≤ are transferred to texture memory.

Then, we invoke a kernel to update jik
][W

)1,1(njsk ≤≤≤≤ .

On the kernel side, each invoked thread retrieves

the value of the target element jik
][W from the

global memory, and
lik

][X and
jl

][W from the

texture memory. Then, the thread compares jik
][W

with
jllik

][][WX ⊗ and updates the former if the

latter value is greater. Here it should be noted that the

comparison and update must not be executed if

ε=
jl

][W . As implied by the above, a huge number

of conditional branches occur in max-plus algebra

operations. Since there is no branch predictor in GPU

processors, this feature may be disadvantageous;

dissimilar to floating point computations in

conventional algebra.

The kernel is invoked for every source node with

one or more succeeding nodes. We illustrate the

allocation of blocks and threads in the kernel in Fig. 3.

The kernel includes bc× two-dimensional blocks,

with each block having BC × two-dimensional

threads, where Bnb /= and Csc /= . In current

NVIDIA GPUs, 512≤⋅CB must be followed, and

B should be a multiple of 16 for efficient access to

global memory, known as coalescing [3]. Thus, B

and C should be set with care. We should also note

here that the update location for W is continuous

with respect to row order but scattered with respect to

column order. After all updates for the source nodes

l)11(−≤≤ nl have been completed, the values of
*

X are stored in W , and the resulting array is

transferred from device to host.

Val(), Idx()

(3)

Update

Global

memory

Texture

memory

s s

lis
][X⊗

W

Device

Resulting matrix

X (CCS format)

Ptr(1:n+1))

Val(1:s), Idx(1:s)

lik
][X

(2) Transfer

1i

si

*
X

Host

(1) Transfer

(4) Transfer

l

li1
][X⊗

*
][
l

W

Fig. 2. Update process for source node l .

Blocks Threads

)1,1()1,2()1,(b

)2,1()2,2()2,(b

),1(c),2(c),(cb

…

…

……

)1,1()1,2()1,(B

),1(C),2(C),(CB

…

…

……

Fig. 3. Hierarchy structure of blocks and threads in a

kernel.

Computational Methods in Science and Engineering

ISBN: 978-1-61804-174-6 47

For simplicity, we assumed that only a single

GPU is available in the current explanation. If

multiple GPUs are available, the work matrix can be

partitioned column-wise into an arbitrary number of

different sized blocks, and the update process can be

executed independently in parallel.

5. Performance Evaluation
The performance of the proposed algorithm is

measured. We use a PC installed with an Intel®

Xeon® E5645 2.40GHz running Linux CentOS 6.3

for x86-64, equipped with an NVIDIA Tesla®

C2075. The specifications of Tesla C2075 are shown

in Table 1. The compilation and execution

environments are:

• CUDA driver: version 304.54,
• Software development kit: SDK version 5.0,

• Compiler for the CPU: gcc version 4.4.6 with

‘-march=native -O3‘options,

• Compiler for the GPU: nvcc version V0.2.1221

with ‘-O3’ option.

We prepare an adjacency matrix X and compute

the Kleene star *
X . For X , we first attach arcs

1+→ ii for all i)11(−≤≤ ni , and then append

arcs ij → 11(−≤≤ nj ,)1 nij ≤≤+ with 1/2

probability. The weights of these arcs obey a [0, 1]

normal distribution. Then, we sort the indices of the

nodes randomly, and swap the corresponding rows

and columns. Regarding the block sizes B and C in

Fig. 3 for updating W , B =64 and C =8 are adopted.

Each experiment is performed five times with the

same random seed, and the average of the medium

three computation times is adopted. First, we measure

the performance using only the Xeon CPU. Table 2

shows the computation times in milliseconds with a

varying number of nodes =n 500, 1000, 2000, and

4000. As the results clearly indicate, the procedure for

updating W is the bottleneck and this part requires

extensive tuning. Recalling that the time complexity

for the update is)(O nm ⋅ and noting 4/2nm ≅

holds in this experiment, the computation time would

increase eight fold if n were doubled. This

estimation actually holds true for larger n .

Table 3 shows the computation times using the

Tesla GPU card and the speedup effect compared

with the CPU. The speedup is defined as

(computation time using a CPU) / (computation time

using a GPU). Since the first three procedures do not

use a GPU, the corresponding computation times are

almost the same as the ones in Table 2. The last row

represents the speedup effects in the total

computation times. Though the speedup is evident as

n increases, the effect may level off if we compute

for larger number of nodes.

We note here that the results using the GPU

matched those using the CPU exactly, which

indicates that the computation precision of GPUs

conforms to standard single precision.

6. Conclusion
We have focused on accelerating the computation of

the Kleene star in max-plus algebra using a CUDA

GPU. The primary target was updating the work

matrix, the process of which is similar to elementary

transformations of a matrix in conventional algebra.

Since the CUDA cores do not have a branch

predictor, they are not naturally efficient for max

operations. Nevertheless, we accomplished a speedup

approximately 30-fold with a Tesla GPU, compared

with an Intel Xeon CPU.

Table 1. Specifications of Tesla C2075.

CUDA Capability version 2.0

Number of cores 448

Clock rate (MHz) 1,147

Memory size (MB) 512

- interface (bits) 384

- bandwidth (GB/s) 208

- clock (MHz) 1,566

Table 2. Computation times using only a CPU (ms).

Nodes =n 500 1,000 2,000 4,000

Arcs =m 62,578 249,816 998,860 3,998,935

Convert CCS 1.6 12.3 47.6 226.0

Topological

sort
0.3 1.2 4.3 17.2

Initialize W 0.1 0.4 2.1 8.9

Update W 142.0 1,067.8 8,338.1 66,997.8

Total 143.9 1,081.6 8,392.1 67,249.1

Table 3. Computation times (ms) and speedup effects using

a GPU.

Nodes =n 500 1,000 2,000 4,000

Arcs =m 62,578 249,816 998,860 3,998,935

Convert CCS 1.6 12.3 47.3 223.7

Topological

sort
0.3 1.2 4.3 17.1

Initialize W 0.1 0.4 2.2 9.0

Update W 20.0 64.4 311.8 2,040.9

Total 22.0 78.2 365.7 2,292.5

Computational Methods in Science and Engineering

ISBN: 978-1-61804-174-6 48

Effect 6.5 13.8 22.9 29.3

References:

[1] B. Heidergott, G. J. Olsder, and L. Woude, Max

Plus at Work: Modeling and Analysis of

Synchronized Systems, Princeton University Press,

2006.

[2] F. Baccelli, G. Cohen, G. J. Olsder, and J. P.

Quadrat, Synchronization and Linearity, John

Wiley & Sons, 1992. http://maxplus.org

[3] NVIDIA Corporation, CUDA programming guide

version 4.2, 2012. http://developer.nvidia.com

/cuda/

[4] H. Goto, Efficient calculation of the transition

matrix in a max-plus linear state-space

representation, IEICE Transactions on

Fundamentals, Vol.E91-A, No.5, 2008, 1278–

1282.

[5] H. Goto and H. Takahashi, Fast computation

methods for the Kleene star in max-plus linear

systems with a DAG structure, IEICE

Transactions on Fundamentals, Vol.E92-A,

No.11, 2009, pp.2794–2799.

[6] Y. Munekawa, F. Ino, and K. Hagiwara,

Accelerating Smith-Waterman algorithm for

biological database search on CUDA-compatible

GPUs, IEICE Transactions on Information

Systems, Vol.E93-D, No.6, 2010, pp.1479–1488.

[7] A. Buluç, J. R. Gilbert, and C. Budak, Solving

path problems on the GPU, Parallel Computing,

Vol.36, No.5–6, 2010, pp.241–253.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,

Introduction to Algorithms, MIT Press, 2009.

[9] Y. Saad, SPARSKIT: a basic tool kit for sparse

matrix computations, Technical Report 90-20,

Research Institute for Advanced Computer

Science, NASA Ames Research Center, CA, 1990.

Computational Methods in Science and Engineering

ISBN: 978-1-61804-174-6 49

