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Abstract: - This research aims to accelerate the computation of the Kleene star in max-plus algebra using CUDA 

technology on graphics processing units (GPUs). The target module is the Kleene star of a weighted adjacency 

matrix for directed acyclic graph (DAGs) which plays an essential role in calculating the earliest and/or latest 

schedule for a class of discrete event systems. In recent NVIDIA GPU cards, an environment for high 

performance computing is provided to general developers, for which we aim to exploit the benefit of using GPUs. 

Using an NVIDIA Tesla C2075 for our experiments, we obtained approximately a 30-fold speedup compared 

with an Intel Xeon E5645. 
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1  Introduction 
The primary concern of this research is to accelerate 

the computation of the Kleene star [1] of weighted 

adjacency matrices in max-plus algebra [1], [2], using 

computers equipped with high performance graphics 

processing units (GPUs). We implement a program 

using CUDA (compute unified device architecture) 

technology [3], which is available on recent NVIDIA 

GPUs. 

The Kleene star plays an essential role in 

max-plus algebra approaches to scheduling problems 

for repetitive discrete event systems (DESs). To be 

precise, the governing equation in max-plus algebra, 

referred to as the state equation, includes the Kleene 

star in the transition matrix [4]. 

Hereafter, we focus on DESs whose behavior can 

be described by a directed acyclic graph (DAG). Let 

the number of nodes and arcs in the system be n  and 

m , respectively. If we compute the Kleene star based 

on the most efficient algorithm known thus far, the 

time complexity is ))((O mnn +⋅  [4], [5]. On the 

other hand, the state equation includes other addition 

and multiplication operations, the worst time 

complexity of which is )(O 2n . Thus, the bottleneck 

in computing the state equation lies in the Kleene star. 

In the field of high performance computing, on 

the other hand, much attention has been paid to the 

concept of general-purpose computing on graphics 

processing units (GPGPU). In particular, recent GPU 

cards produced by NVIDIA Corporation provide 

substantial benefits for parallel computation, and the 

company itself supplies an easy-to-implement 

environment for developers and researchers. Recently, 

the effectiveness and advantages of using GPUs for 

technical computations have been widely reported [6], 

[7]. 

In view of this, we aim to accelerate the 

computation of the Kleene star in max-plus algebra. 

We implement a code for CUDA GPUs, and measure 

the speedup effect. 

 

 

2.  Target Algorithm 
We first introduce the specific notations and 

operation rules in max-plus algebra. Denoting the real 

field by R , we define a field }{max −∞∪= RR . Then, 

for x , y  maxR∈ , we define operators and unit 

elements: ),max( yxyx =⊕ , yxyx +=⊗ , ε  

)( −∞= , and e  )0(= . If nm ≤ , 

),,,max( 1 nmmk
n

mk xxxx ⋯+= =⊕ .  

For matrices X , Y nm×∈ maxR , and Z  qn×∈ maxR , 

ijijij ][][][ YXYX ⊕=⊕ ,  

ljil
n
lij ][]([][ 1 ZXZX ⊗⊕=⊗ = .  

For the unit matrices, ε  is a matrix whose elements 

are all ε , while e  is a matrix with diagonal elements 

set to e  and off-diagonal elements to ε . Operator ⊗  

has higher precedence than ⊕ . 
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Let X nn×∈ maxR  be a DAG weighted adjacency 

matrix. Our target algorithm is the computation of: 

)1(1

0

* −⊗⊗−

=
⊕⊕⊕==⊕

rlr

l
XXeXX ⋯ ,  

where 

:{][ ijij w=X if there is an arc ij→ , else ε },  

and ijw  is the weight of arc ij→ . If we denote the 

number of nodes by n , there is an instance r  that 

satisfies εX ≠−⊗ )1(r  and εX =⊗r  )1( nr ≤≤ . It is 

known that ij][
*

X  gives the maximum value of the 

cumulative weights for paths from node j  to node i . 

Amongst the most efficient algorithms for 

computing the Kleene star in terms of time 

complexity, the method in [5] is attractive, since the 

work matrix can be partitioned into arbitrary column 

major blocks and each block can be processed 

independently. The essential procedures and time 

complexities are given below. 

• Topological sort, )(O nm + : sort the nodes in 

topological order based on a depth first search 

(DFS) algorithm [8] by inspecting the elements of 

X . 

• Initialization, )(O 2n : prepare and initialize a work 

matrix W nn×∈ maxR . 

• Update, )(O nm ⋅ : update the work matrix 

according to 
::: ][][][][
lliii WXWW ⊗⊕⇐  for all 

succeeding nodes i  of source node l , where l  

represents the original node number of sequence l  

in the topologically sorted graph. Then, repeat this 

for all l  )11( −≤≤ nl  in ascending order. 

On completion of these procedures, the values in the 

resulting matrix are given by the elements in W . We 

note here that the third process corresponds to an 

elementary transformation in conventional algebra. 

 

 

3.  CUDA Architecture 
The basic structure of a CUDA GPU is depicted in 

Fig. 1. In CUDA terminology, the PC and GPU card 

are called the host and device, respectively. On the 

device side, there is either a single or multiple 

processing units, referred to as the streaming 

multiprocessor (SM). Each SM has 8, 32 or 48 CUDA 

cores (Core in Fig. 1), a 16KB shared memory, 

registers, and two types of caches. The 16KB shared 

memory is shared between the cores and has small 

latency. Computational programs for the CUDA 

cores are referred to as kernels, with each SP in 

charge of a task identified by a thread. 

Memory 

Shared memory (16KB)  

Host  (PC) Device (GPU card) 

Texture memory 

Global memory 

Registers 

Cache 

Cache 

Constant memory (64KB)  

R1

…Core 1 Core 8 

SM 1

Video unit 

Processing 

unit(s) 

…

 
Fig. 1. CUDA hardware model. 

 

In the video unit, depicted in the lower part of the 

figure, there are three types of memories: global, 

constant, and texture memories, which are shared 

between all SMs. To communicate data between the 

host and device, we must use the global memory, but 

its latency is quite large. On the other hand, the 

texture and constant memories are read-only for SMs 

and accessed data are cached. Thus, the latency can 

be significantly reduced by accessing the same or 

adjacent data multiple times. Owing to there being 

various types of memories in CUDA GPUs, we have 

to consider well in advance which memories to use, in 

order to exploit the benefits for computation speed. 

 

 

4.  Implementation 
First, we improve the algorithm to reduce the required 

memory. In existing methods, the update process is 

performed using 
li

][X  in the original adjacency 

matrix X . This implies allocating sufficient memory 

to store two nn×  matrices: X  and W . On the other 

hand, the number of non- ε  (non-zero, in 

conventional algebra) elements, denoted by m , 

follows 2/)1( −⋅≤ nnm  because we are focusing on 

DAGs. Thus, using a full matrix workspace is 

redundant for large scale systems. 

In view of this, we first convert X  to a 

compressed form and the remaining procedures are 

performed using the compressed data. It should be 

noted that the target algorithm occasionally needs the 
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list of succeeding nodes for a given source node. As a 

format suited to this, we adopt the compressed 

column storage (CCS) format [9]. Let the integer field 

be denoted by Z , then the compression result yields 

the following three arrays. 

• Val ( m
maxR∈ ): stores the values of non-ε  elements 

in X  in column major order. 

• Idx ( m
maxZ∈ ): stores the corresponding row 

numbers of the elements in array ‘Val’. 

• Ptr ( 1
max
+∈ n

Z ): stores the start positions of each 

column in arrays ‘Val’ and ‘Idx’. 

Once the memory space for these arrays has been 

prepared, if the original matrix X  is not needed after 

the Kleene star computation, this space can be reused 

for the work matrix W . 

We now implement the code for CUDA. As 

shown in the next section, the bottleneck in the 

Kleene star computation lies in the update process. 

Thus, we optimize this part extensively. 

In preparation, floating point memory storage for 

the work matrix W  is prepared in global memory. 

This matrix is initialized to e , where we use 

(-FLT_MAX) to represent ε . Moreover, we prepare 

two arrays for storing ‘Val’ and ‘Ptr’ in texture 

memory. As pointed out in the previous section, 

several alternative memories are available. In fact, we 

experimented with code that used the shared and 

constant memories, but the performance thereof was 

not good. Thus, we opted to use texture memory. 

Then, W  is updated sequentially in topological 

order from upstream source nodes to downstream 

ones. Fig. 2 depicts the update process for source 

node l . The list of succeeding nodes, in other words 

destination nodes, is obtained from Idx(S ), where 

S =Ptr( l ):(Ptr( l +1)-1). Let an element from S  and 

the number of elements of S  be denoted as S∈ki  

and s=|S| , respectively. First, the values of 
lik

][X  

and ki )1( sk ≤≤ , which are obtained from Val(S ) 

and Idx(S ), respectively, are transferred from host 

memory to texture memory. Next, the values of 

jl
][W  )1( nj ≤≤  are transferred to texture memory. 

Then, we invoke a kernel to update jik
][W  

)1,1( njsk ≤≤≤≤ . 

On the kernel side, each invoked thread retrieves 

the value of the target element jik
][W  from the 

global memory, and 
lik

][X  and 
jl

][W  from the 

texture memory. Then, the thread compares jik
][W  

with 
jllik

][][ WX ⊗  and updates the former if the 

latter value is greater. Here it should be noted that the 

comparison and update must not be executed if 

ε=
jl

][W . As implied by the above, a huge number 

of conditional branches occur in max-plus algebra 

operations. Since there is no branch predictor in GPU 

processors, this feature may be disadvantageous; 

dissimilar to floating point computations in 

conventional algebra. 

The kernel is invoked for every source node with 

one or more succeeding nodes. We illustrate the 

allocation of blocks and threads in the kernel in Fig. 3. 

The kernel includes bc×  two-dimensional blocks, 

with each block having BC ×  two-dimensional 

threads, where  Bnb /=  and  Csc /= . In current 

NVIDIA GPUs, 512≤⋅CB  must be followed, and 

B  should be a multiple of 16 for efficient access to 

global memory, known as coalescing [3]. Thus, B  

and C  should be set with care. We should also note 

here that the update location for W  is continuous 

with respect to row order but scattered with respect to 

column order. After all updates for the source nodes 

l  )11( −≤≤ nl  have been completed, the values of 
*

X  are stored in W , and the resulting array is 

transferred from device to host. 
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Fig. 2. Update process for source node l . 
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Fig. 3. Hierarchy structure of blocks and threads in a 

kernel. 
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For simplicity, we assumed that only a single 

GPU is available in the current explanation. If 

multiple GPUs are available, the work matrix can be 

partitioned column-wise into an arbitrary number of 

different sized blocks, and the update process can be 

executed independently in parallel. 

 

 

5.  Performance Evaluation 
The performance of the proposed algorithm is 

measured. We use a PC installed with an Intel® 

Xeon® E5645 2.40GHz running Linux CentOS 6.3 

for x86-64, equipped with an NVIDIA Tesla® 

C2075. The specifications of Tesla C2075 are shown 

in Table 1. The compilation and execution 

environments are: 

• CUDA driver: version 304.54, 
• Software development kit: SDK version 5.0, 

• Compiler for the CPU: gcc version 4.4.6 with 

‘-march=native -O3‘options, 

• Compiler for the GPU: nvcc version V0.2.1221 

with ‘-O3’ option. 

We prepare an adjacency matrix X  and compute 

the Kleene star *
X . For X , we first attach arcs 

1+→ ii  for all i  )11( −≤≤ ni , and then append 

arcs ij →  11( −≤≤ nj , )1 nij ≤≤+  with 1/2 

probability. The weights of these arcs obey a [0, 1] 

normal distribution. Then, we sort the indices of the 

nodes randomly, and swap the corresponding rows 

and columns. Regarding the block sizes B  and C  in 

Fig. 3 for updating W , B =64 and C =8 are adopted. 

Each experiment is performed five times with the 

same random seed, and the average of the medium 

three computation times is adopted. First, we measure 

the performance using only the Xeon CPU. Table 2 

shows the computation times in milliseconds with a 

varying number of nodes =n 500, 1000, 2000, and 

4000. As the results clearly indicate, the procedure for 

updating W  is the bottleneck and this part requires 

extensive tuning. Recalling that the time complexity 

for the update is )(O nm ⋅  and noting 4/2nm ≅  

holds in this experiment, the computation time would 

increase eight fold if n  were doubled. This 

estimation actually holds true for larger n . 

Table 3 shows the computation times using the 

Tesla GPU card and the speedup effect compared 

with the CPU. The speedup is defined as 

(computation time using a CPU) / (computation time 

using a GPU). Since the first three procedures do not 

use a GPU, the corresponding computation times are 

almost the same as the ones in Table 2. The last row 

represents the speedup effects in the total 

computation times. Though the speedup is evident as 

n  increases, the effect may level off if we compute 

for larger number of nodes. 

We note here that the results using the GPU 

matched those using the CPU exactly, which 

indicates that the computation precision of GPUs 

conforms to standard single precision. 

 

 

6.  Conclusion 
We have focused on accelerating the computation of 

the Kleene star in max-plus algebra using a CUDA 

GPU. The primary target was updating the work 

matrix, the process of which is similar to elementary 

transformations of a matrix in conventional algebra. 

Since the CUDA cores do not have a branch 

predictor, they are not naturally efficient for max 

operations. Nevertheless, we accomplished a speedup 

approximately 30-fold with a Tesla GPU, compared 

with an Intel Xeon CPU. 

 

 

Table 1. Specifications of Tesla C2075. 

CUDA Capability version 2.0 

Number of cores 448 

Clock rate (MHz) 1,147 

Memory size (MB) 512 

- interface (bits) 384 

- bandwidth (GB/s) 208 

- clock (MHz) 1,566 

Table 2. Computation times using only a CPU (ms). 

Nodes =n  500 1,000 2,000 4,000 

Arcs =m  62,578 249,816 998,860 3,998,935 

Convert CCS 1.6  12.3  47.6  226.0  

Topological 

sort 
0.3  1.2  4.3  17.2  

Initialize W  0.1  0.4  2.1  8.9  

Update W  142.0  1,067.8  8,338.1  66,997.8  

Total 143.9  1,081.6  8,392.1  67,249.1  

Table 3. Computation times (ms) and speedup effects using 

a GPU. 

Nodes =n  500 1,000 2,000 4,000 

Arcs =m  62,578 249,816 998,860 3,998,935 

Convert CCS 1.6  12.3  47.3  223.7  

Topological 

sort 
0.3  1.2  4.3  17.1  

Initialize W  0.1  0.4  2.2  9.0  

Update W  20.0  64.4  311.8  2,040.9  

Total 22.0  78.2  365.7  2,292.5  
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Effect 6.5  13.8  22.9  29.3  
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