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Abstract: - Spatial stability analysis of slightly curved shallow mixing layers is presented in the paper. Linear 

stability problem is solved by means of the collocation method based on Chebyshev polynomials. Since spatial 

stability problem is nonlinear, a computational scheme based on the combination of bisection method and the 

solution of linear generalized eigenvalue problem is used to calculate growth rates for the most unstable mode. 

Results of numerical calculations show that both bottom friction and curvature have a stabilizing influence on 

the flow.  
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1 Introduction 
Shallow mixing layers are widespread in nature and 

engineering. Examples include flows at river 

junctions and flows in compound and composite 

channels. Three basic methods are usually used in 

order to analyze the development of shallow mixing 

layers: numerical methods, experimental 

investigations and stability analyses [1]. 

Experiments reported in [2]-[4] show that (i) bed 

friction has a stabilizing influence on the flow; (ii) 

development of three-dimensional instabilities is 

prevented; (iii) growth of the mixing layer is 

affected by bottom friction.  

    Linear stability analysis is also often used to 

predict critical values of the parameters of the 

problem [5]-[9]. In some cases the results of linear 

stability can be used as a starting point for weakly 

nonlinear theories [10]-[13].  

    There are two basic approaches for the analysis of 

linear stability of a base flow in fluid mechanics: (a) 

temporal stability analysis and (b) spatial stability 

analysis [14]. In both cases the analysis is 

performed using the method of normal modes: 

perturbations are assumed to be proportional to 

)](exp[ txi   , where both parameters  and 

 may be complex: ir i  , ir i  . In 

case (a) the wave number r  is real while   is 

complex. For the case of spatial stability analysis 

r  is real and the wave number   is complex: 

ir i  . From a computational point of view 

temporal stability analysis is simpler since the 

corresponding eigenvalue problem is linear with 

respect to eigenvalue  . On the other hand, spatial 

eigenvalue problem is nonlinear in  . However, 

spatial growth rates are usually evaluated 

experimentally so that spatial stability 

characteristics should be calculated for a proper 

comparison with experimental data. 

    Gaster [15] suggested a transformation which can 

be used to approximate spatial growth rates if 

temporal growth rates are known. However, 

Gaster’s transformation can be used only in the 

vicinity of the marginal stability curve.  

   In the present paper we solve a spatial stability 

problem for the case of slightly curved shallow 

mixing layers. Spatial growth rates are calculated 

for different values of the parameters of the 

problem. The effect of curvature on the stability of 

the base flow is analyzed.  
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2 Formulation of the Problem 
The two-dimensional shallow water equations have 

the form 

,0









y

v

x

u
                                                        (1) 

,0
2

22 


















vuu

h

c

x

p

y

u
v

x

u
u

t

u f
     (2) 

,0
1

2

222 


















u

R
vuv

h

c

y

p

y

v
v

x

v
u

t

v f

 

                                                                          (3) 

where u and v are the depth-averaged velocity 

components in the x and y directions, respectively, 

p is the pressure, fc is the friction coefficient, h is 

water depth and R is the radius of curvature 

( ).1/1 R  

    Introducing the stream function by the relations  
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we rewrite (1)-(3) in the form 
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Consider a perturbed solution to (5) of the form 

 

...),,()(),,( 10  tyxytyx                 (6) 

 

where )(0 y is the base flow solution and 1 is a 

small unsteady perturbation. Substituting (6) into (5) 

and linearizing the resulting equation in the 

neighborhood of the base flow we obtain 

 

,011 L                                                             (7) 

 

where  
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Method of normal modes is used to solve (7), that is, 

the perturbation 1 is represented in the form 

 

)](exp[)(),,(1 txiytyx   ,                       (8) 

 

where )(y is the amplitude of the normal 

perturbation. Since spatial stability analysis is used 

in the present study, we assume that r  is the 

real frequency of the perturbation and 

ir i  is a complex number.  

    Substituting (8) into (7) we obtain the following 

differential equation 
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with the boundary conditions 

 

,0)(                                                     (10) 

 

where hbcS f /  is the bed-friction number and 

b is a characteristic length scale (in this case width 

of the mixing layer).  

 

Problem (9), (10) is an eigenvalue problem. Base 

flow )(0 yu is said to be linearly stable if all 

0i and unstable if at least one 0i .  

 

 

3 Numerical method 
Problem (9), (10) is solved numerically by means of 

collocation method based on Chebyshev 

polynomials [16]. Using the transformation 

yr arctan
2


 we transform the interval 

 y into the interval 11  r . The 

solution is sought in the form 
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where rjrT j arccoscos)(  is the Chebyshev 

polynomial of the first kind of degree j . The 

collocation points are 
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Substituting (11) into (9) and evaluating the 

function )(1 r and its derivatives at collocation 

points (12) we obtain a discretized eigenvalue 

problem. As it is mentioned above, the 

corresponding problem is linear with respect to 

 but nonlinear with respect to  . Hence, the 

following computational procedure is suggested for 

the solution of the problem. Assuming that both 

 and  are complex of the form ir i  , 

ir i  , for each fixed rS , and r we 

calculate i such that .0i This is achieved by 

solving linear generalized eigenvalue problem and 

selecting the new approximation to i using 

bisection method. Then we change r (for the fixed 

value of S ) and repeat the calculation. The region 

of spatial instability is described by the relation 

.0i  

 

 

 

4 Numerical Results 
The base flow is selected in the form 

 

 yyu tanh1
2

1
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The first set of calculations is performed for the case 

without bottom friction ( 0S ). The growth rates 

i versus r are shown in Fig.1.  

                       i  

        

                                                                                      r  

 

Fig.1. Growth rates i versus r for three 

values of R/1 =0, 0.025 and 0.05 (from top to 

bottom). 

 

It follows from Fig.1 that curvature has a stabilizing 

influence on the flow (the growth rates decrease as 

the curvature increases).  

    The growth rates i versus r are shown in 

Fig.2 for the case R/1 =0.025 and three values of 

S , namely, S =0,0.05 and 0.1 (from top to bottom).  

 
 

                     i    

   
                                                                   r  

                                                                         

 

Fig.2. Growth rates i versus r for three values 

of S =0,0.05 and 0.1 (from top to bottom). 

 

As can be seen from Fig.2, the increase of the values 

of S also leads to more stable flow – the growth 

rates decrease as the parameter S grows.  

 

 

 

5   Conclusion 
Spatial stability of slightly curved shallow mixing 

layers is analyzed in the present paper. Linear 

stability problem is solved by collocation method 

based on Chebyshev polynomials. Spatial growth 

rates are calculated for different values of the 

parameters of the problem. It is shown that both the 

bottom friction and flow curvature have a stabilizing 

influence on the flow.  
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