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Abstract: - Semi-analytical solution of an eddy current testing problem is obtained in the present paper for the 
case of a cylindrical flaw in a conducting half-space. The axis of the flaw coincides with the axis of an 
excitation coil. It is assumed that the vector potential is zero at a sufficiently large distance from the axis of the 
coil. Method of truncated eigenfunction expansions is used in the paper in order to construct the solution of the 
Maxwell’s equations. The change in impedance of the coil is calculated for different frequencies of the 
excitation current. The model described in the paper can be used in practice for quality testing of spot welds by 
eddy current method.  
 
 
Key-Words: - Eddy current testing, truncated eigenfuction expansions, change in impedance 
 
1 Introduction 
Mathematical models of eddy current testing 
problems developed in the literature [1]-[3] are 
often based on the assumption that a conducting 
medium is infinite in one or two spatial dimensions. 
The method of integral transforms (such as Fourier 
or Hankel integral transforms) can be used in such 
cases in order to construct closed-form solutions of 
the corresponding equations for the vector potential.  

Recently a quasi-analytical approach for the 
solution of eddy current testing problems is 
suggested in [3]. The authors use the abbreviation 
TREE (TRuncated Eigenfuction Expansion) 
method. The main idea of the TREE method is that 
the vector potential is assumed to be zero at a 
sufficiently large radial distance br = from an eddy 
current coil (provided that there are no other sources 
of alternating current). Note that for the case of an 
unbounded medium the vector potential approaches 
zero at infinity. From a physical point of view the 
assumption of the TREE method (the vector 
potential is equal to zero at a large distance from the 
coil) is quite reasonable. Recommendations on the 

selection of the value of b are given in [3].  
Thus, a solution of an eddy current problem with 

the TREE method is expressed in terms of a series 
(rather than integrals). This is the reason the term 
“TRuncated Eigenfuction Expansion” is used in 
order to describe the method. The main advantage 
of the TREE method in comparison with other 
analytical methods used for infinite domains is that 
with the TREE method one can also construct quasi-
analytical solutions for the cases where a conducting 
medium has a finite size. Such models are quite 
important for applications since one can also model 
the presence of inhomogeneities (flaws) of finite 
size in a conducting medium. 

In this paper we consider a model which can be 
used to test the quality of spot welding [4]-[6] by 
eddy current methods. In this case a cast core is 
formed as a result of the welding process. The 
properties of the core are close to the properties of 
the surrounding medium. From a mathematical 
point of view we consider a symmetric problem 
where a coil with alternating current is located 
above a conducting half-space with a flaw in the 
form of a circular cylinder whose axis coincides 
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with the axis of the coil. Semi-analytical solution of 
the problem is found by the TREE method. Results 
of numerical calculations of the change in 
impedance are discussed.  
 
 
2 Solution of the Problem 
Consider a coil of radius 0r located at a distance h  
above a conducting half-space carrying an 
alternating current with frequency fπω 2= (see 
Fig.1).  
 

 
 
Fig.1. A single-turn coil of radius 0r above a 
conducting half-space. 
 
The half-space has a flaw in the form of a circular 
cylinder with height 2d and radius c . The distance 
of the flaw from the surface is 1d . We use the 
TREE method to solve the problem. The basic 
assumption of the method is that the vector potential 
is equal to zero at br = . Recommendations on the 
choice of b are given in [3]. The system of 
equations for the components of the vector potential 
in regions 3,2,1,0, =iRi has the form 
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where iA is the solution in region 3,2,1,0, =iRi  

(note that 21 σσσ −=  and 1σσ = in region  

2R where cr ≤≤0  and brc ≤≤ , respectively).  
The boundary conditions are 
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Here we used the abbreviations “cc” and “con” in 
region 2R with the reference to conducting cylinder 
(cast core) and homogeneous conducting region, 
respectively. 
    Solution to (1) is obtained by the method of 
separation of variables in regions 

}0{00 hzR <<= and }{01 hzR >= and is given 
by (12) and (13), respectively: 
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where iλ are the roots of the equation 
.0)(1 =bJ iλ                                                                        

The general solution to (2) can be written in the 
form 
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where .01
2 µωσλ jp ii +=  

General solution to (3) is 
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where 01

2
1 µωσjqp ii += and .02

2
2 µωσjqp ii +=  

General solution to (4) which is bounded as 
−∞→z is written as follows  
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     Using (16) and the last boundary condition in (5) 
we obtain the following two equations 
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Using continuity of the functions ccA2 and conA2 at 
cr = (the first condition in (11)) we  

get 
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The following two relationships are obtained from 
(19): 
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Combining equations (18) and (20) we obtain 
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It follows from (18) and (21) that 
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Solutions (15) and (16) can be written in the form 
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Differentiating (24) with respect to r and evaluating 
the derivatives at cr = we obtain 
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It follows from (27) and (28) and the second 
boundary condition in (11) that  
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Equation (29) is used to determine the eigenvalues 

ip2 and the related values iq . 

    Thus, the solution in regions 210 ,, RRR and 3R is 
given by (12)-(17). The six sets of constants in these 
formulas, namely, ,,, 542 iii DDD ii DD 86

ˆ,ˆ  and iD12 can 
be obtained from the boundary conditions (6) – 
 (10).  
    Using (6) we obtain 
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where .01

2 µωσλ jp jj +=  

Using the first conditions in (6) and (7) we obtain 
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In order to determine the coefficients iD6

ˆ and iD8
ˆ the 

following procedure is used. First, equations (32) 
and (33) are combined into one equation where the 
right-hand side of the resulting equation is given by 
different expressions on the intervals cr ≤≤0 and 

brc ≤≤ . These expressions are defined by the right-
hand sides of (32) and (33), respectively. Second, 
the obtained equation is multiplied by )(1 rrJ jλ and 
the resulting equation is integrated with respect to 
r from 0 to b . Third, we use the orthogonality  
condition  
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and formulas 
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Formulas (35) and (36) can be found in [7]. The 
result is 
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where  

.~~)(~)( 211 ijiijiij acpJacqTa +=                          (38) 
 

   Using the same procedure and applying the 
second condition in (7) and in (8) we obtain 
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Two additional equations are obtained if the 
same procedure is applied to (24), (25) and (17) 
using boundary conditions (9) and (10). The 
result is shown below 
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where 213 ddd += . 
Multiplying (37) by jp  and adding with (39) we 
obtain 
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Multiplying (37) by ( )jp−  and adding with (39) we 
obtain 
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Using (31), (40)-(43) we obtain the system of 
equations for the unknowns ii DD 86

ˆ,ˆ . Solving the 
system we then calculate jjj DDD 254 ,, from (42), (43) 
and (30). The vector potential in each of the regions 

3,2,1,0, =iRi  is then given by (12)-(17).   
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3 The Change in Impedance and 
Numerical Results 
The induced change in impedance of the coil is 
given by the formula 
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We consider a numerical example. The following 
parameters of the problem are selected: 

5.181 =σ Ms/m, 32 =σ Ms/m, 2.2=c mm, 
5.40 =r mm, 4.1=h mm, 7.01 =d mm, 
3.02 =d mm, 55=b mm.  

The change in impedance is computed by means of 
(44) for the following seven frequencies: 

7,...,3,2,1=f kHz. The results of calculations can 
be seen in Fig.2. 
 

 
Fig.2. The change in impedance of the coil for seven 
frequencies ( 7,..,3,2,1=f kHz, from top to 
bottom).  
 
    The upper limit of the summation index in (44) is 
fixed at 62=N . Comparison of the computational 
results obtained for other values of N showed that 
the chosen value of 62 is quite satisfactory in terms 
of calculation accuracy.  
    Several computational steps are necessary in 
order to calculate the induced change in impedance. 
First, the set of eigenvalues iλ has to be calculated. 
This can easily be done in Mathematica using a 
built-in routine BesselZeros. Second, a set of 
complex roots of (29) should be computed. 
Calculations are based on the method described in 
[8]-[10]. Third, several systems of linear equations 
have to be solved in order to determine expansion 

coefficients. Finally, the change in impedance is 
computed using (44) and (45).  
 
 
 
4 Conclusion 
The change in impedance of a single-turn coil 
located above a conducting half-space with a flaw in 
the form of a conducting cylinder whose axis 
coincides with the axis of the coil is calculated in 
the present paper. The method of truncated 
eigenfunction expansions is used to construct a 
semi-analytical solution of the problem.  
    Several generalizations of the method presented 
in the paper are possible. Using superposition 
principle one can also construct a solution for the 
case where a coil with finite dimensions is located 
above a conducting half-space with a flaw. In 
addition, other important eddy current testing 
problems with cylindrical symmetry can be solved 
by the method described in the paper. Examples 
include surface defects of a cylindrical shape in 
plates in order to estimate the effect of corrosion 
and internal flaws for quality testing of electrically 
conducting materials.  
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