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Abstract: This paper presents a novel framework for Vision-Based Simultaneous Localization and Mapping
which focuses on the class of indoor mobile robots using only a monocular camera to achieve a two-level
topological map. Local and global features are combined in the same topological framework. The Scale
Invariant Feature Transform is used to extract and build up a global map which provide rough estimation
of the robot position. The map is then decomposed into a sub-maps, in which the horizontal, vertical and
diagonal details of the wavelet coefficients are used to provide finer estimation of the robot position and
pose. The output topological map is validated with the ground truth of the environment. The results
show high localization accuracy and low rate of matching time.
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1 Introduction
Simultaneous localization and mapping (SLAM)
or Concurrent Mapping and Localization (CML)
as referred in [1] is one of the most extensively
researched field of robotics. To build a truly
autonomous robots, it must have the ability to
autonomously construct maps. SLAM is the
problem of building a map while at the same
time localizing the robot within the map. Un-
doubtedly SLAM is much more complicated than
Localization or mapping processes, as, mapping
addresses the problem of generating a map using
the acquired information by robot’s sensors and
the given robot’s poses. On the other hand,
localization addresses the problem of determining
the robot’s locations within a given map [1].

Sensory input is one of the main issues that
must be addressed when working with SLAM.
The most common sensors researchers used to ex-
ploit are laser & sonar. Nevertheless, recently vi-
sion sensors gained more attention for performing
SLAM [2]. Imaging sensors offer a variety of de-
sirable properties. Cameras are low cost, provide
a huge amount of information, available and pas-
sive. Vision also allows the development of a wide
set of essential functionalities in robotics such as,
obstacle detection, people tracking, visual servo-
ing, and others.

Localization systems based on landmarks rely on
either artificial or natural landmarks to represent
the environment in the form of points and lines,
or more complex patterns and try to determine
correspondences between the observed landmarks
and a pre-loaded map and to estimate the location
of the robot from this correspondence [3]. Dis-
criminative classification is proposed in [4] using
a SVM and histogram-based features with the ker-
nel averaging method. The output of the classifier
for each frame is a label and its associated mar-
gin, which it took as a measure of the confidence
of the decision. A multi-level machine learning
proposed in [5] is made of a first "weak" classifiers
level based on visual features and of a second level
performing fusion of first level outputs. The au-
thors in [6] used global visual features for image
similarity and a geometric verification step using
vanishing points.

Mapping addresses the problem of projecting
the information gathered by the sensors into a
consistent model of the environment. Different
methods used for representing the map of the en-
vironment such as, metric, feature-based map or
as topological graph [7]. The most popular met-
ric representation is grid-based maps. They rep-
resent the environment being mapped in form of
cells. Each cell is marked either as free or oc-
cupied. It gives detailed and precise model of
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the environment. However, it is not to scale
well with the actual environment dimension [8].
The idea of feature-based maps is to extract fea-
tures from the environment. Detected features
are then registered in the map. They scale well
with the environment’s dimension [9]. Topologi-
cal maps represent environments as a list of signif-
icant places (nodes) that are connected via arcs.
Thus they are mainly graphs and are especially
useful for path planning. They scale well to large
environments, since the amount of information
that is stored is limited to the description of the
places. The problem is, a same place may be rep-
resented more than once. To overcome such prob-
lem, many authors proposed to use the topologi-
cal map in a combination with metric or feature-
based maps [10][8].

Topological V-SLAM is a SLAM process
which is based on vision for environment sensing
and used topological map for representing the
environment. In this paper a V-SLAM algorithm
is proposed with the use of a single freely moving
camera as the only data source. Several research
challenges have been considered: (1) How to
reduce the number of images needed to describe
the environment without losing important details
of the test environment? (2) How to reduce
number of features and how to track them
through images? (3) How to calculate in an
efficient manner the similarity of the input image
against all the reference images in the map? (4)
How to represent the environment by two-level
topological map?

The paper is organized as follows: The tools
used for feature extraction are introduced in sec-
tion 2. The architecture of the proposed system
is given in section 3. Section 4 describes the data
set used and the experimental results followed by
the conclusion in section 5.

2 Feature Extraction and Clas-
sification

Features extraction is the process of finding some
sort of description that can be used later to iden-
tify the region or the object of interest and to dif-
fer this object from other examples. It is agreed
that local features are more robust to scene dy-
namics and illumination adjustments than global
features. This ability makes local features more
applicable for wide-range characterization of the
environment. To illustrate, it can better recognize
a room from one another than to recognize a dif-

ferent location in the same room. By contrast,
global features usually have weak resistance to
illumination and dynamic changes, which makes
the global features suitable for narrow-range char-
acterization of the environment. For example, im-
ages captured at adjacent locations own similar
signatures even if there are illumination or dy-
namic changes [11].

2.1 Scale Invariant Feature Transform
Among the available techniques for feature detec-
tion and extraction, SIFT has proven to have the
ability to find and match features with higher
degree of uniqueness and robustness. It has
been successfully applied to robot localization and
robot SLAM [10][12][13]. SIFT was developed
and published by David Lowe in 1999-2004. It
aims at representing an image by a set of local in-
terest points which are invariant to image trans-
formation and partially invariant to illumination
changes. SIFT algorithm consists of two main
stages which are (1) detection of key points and
(2) description of the detected key points. The
first step is to construct the known difference-of-
Gaussian (DOG) images. The second step is to
localize the key points by comparing each sam-
ple point in DOG images to its neighbours in the
current image and in the scales above and below.
Key points are described by the orientation his-
togram for each subregion around the key points.

2.2 The Discrete Wavelet Transform
Wavelet transform has been successfully used
for vision based robot localization, vision-based
SLAM and image retrieval algorithms [11] for
their capability in representing images in a com-
pact way without losing information about loca-
tion of the image discontinuity, shapes and tex-
tures. Mallat [14] has proposed an iterative algo-
rithm to compute the discrete wavelet transform.
It is based on the multiresolution analysis. The
algorithm is based on computing iteratively an
approximation at a lower resolution level j of the
original signal f(t). For this an orthogonal set
of basis functions φk,j(t), k, j ∈ Z is used, called
the scaling functions. The differences of the in-
formation between two approximations at succes-
sive resolution levels (the details) are extracted
by the orthogonal set of the wavelet functions
ψk,j(t), k, j ∈ Z. The Haar wavelet ψhaar, is the
basis of the simplest wavelet transform. It is or-
thogonal and have finite vanishing moments, i.e.
compact support [15], which ensures local anal-
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Figure 1: System Architecture

ysis. The scale function φhaar, is a simple aver-
age function. The 2D wavelet transform is widely
used for analysis and processing of images and
videos. The results of the analysis at each decom-
position level are a low-pass image or a coarser
approximation A and three detail images, hori-
zontal details H, vertical details V , and diagonal
details D, which contain the details lost while go-
ing from the original image to its approximation
A. The approximation A represents the image
at a coarser resolution. Horizontal edges tend to
show up in H and vertical edges in V , while D
contains all other details [16].

3 The Proposed System
This paper proposes a novel system for V-SLAM.
The input to the system is a sequence of key
frames, and the output is an evolved two-level
topological map and relationship between nodes
in the map, as well as two-levels topological local-
ization for the robot’s current position in the en-
vironment. An illustration of the system is shown
in Figure 1.

3.1 Sensing
When vision-based SLAM uses only a single cam-
era, it is called Monocular SLAM, Mono-SLAM
or bearing-only SLAM. One of the main advan-
tages of the single camera setup is its low cost.
On the other hand, single cameras don’t provide
any information about the feature depth. The im-
age sequences of the dataset used in this research
were acquired using the MobileRobots PowerBot
robot platform equipped with a stereo camera sys-
tem consisting of two Prosilica GC1380C cameras
[17]. However, a monocular vision system is used
in this paper.

3.2 Preprocessing
The experiments show that the preprocessing af-
fects strongly the performance and accuracy of
the system. Therefore we have used different steps
of preprocessing. The captured image is con-
verted to grey scale, and then the "Next Increase"
[18] procedure is applied to decide whether the
captured image is a key frame or not.

3.3 Feature Extraction
Features can be classified as global or local fea-
tures. Examples of global features are the mean
color of the object, image histogram, or the
wavelet signature. Strong edges and corners are
common examples of local features [19]. We think
that local features provide rough level of estima-
tion for the robot’s location, while global features
provide detailed estimation for the robot’s posi-
tion such as its pose.

In this paper, two-level map is produced and
the robot is two-levels topologically localized for
example (a) in which room the robot is, (b) in
which corner the robot is. Global image signa-
tures and local features are combined in the same
framework as shown in Figure 1. SIFT local fea-
tures are used for the high level estimation of the
robot position and map building. Whereas, for
the low level estimation of the robot position and
map building discrete wavelet signature of images
grabbed are chosen due to its simplicity, robust-
ness, scalability and small memory requirements.

3.4 Feature Tracking
First, for implementing the global level: The main
idea is to merge all extracted SIFT interest points
from multiple frames that belong to the same lo-
cation in a buffer, so that each reference location
is described by a group of SIFT interest points.

When SIFT features from the first frame ar-
rive, a new map node is created. For each ex-
tracted SIFT interest point pi, the features saved
are: The 2D position relative to the initial coordi-
nates frame, the scale and orientation of the land-
mark, the set of descriptors (n x 128), and a count
C to indicate how many consecutive frames this
landmark has been missed. Initially this count is
set to 0.

Over subsequent frames, new entries are
added to each node, features are tracked and en-
tries are removed from nodes when appropriate
so that a minimum number of features robustly
describe each reference location. There are the
following types of features to consider: (1) New
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features arrive from a key frame for a previously
visited location, so they are added to the node
and the missed count for each feature is initial-
ized to 0. (2) This feature was matched before in
a previously visited location, so, the missed count
remains 0, and it is said to be an active feature.
(3) If the missed count C of any feature in the
map reaches a predefined limit N (7 was used in
experiments), this feature tracking is terminated,
it’s said to be a passive feature and is removed
from the map.

Likewise, for implementing the local level: if
a key frame is accepted in the global node, then,
the 4th level of the 2D Haar discrete wavelet trans-
form is calculated, and a signature consists of the
horizontal, vertical and diagonal details is saved
in this node.

3.5 Topological Mapping
A topological representation of the environment
is used in our algorithm. Each node in the
global topological map is a rich node that
contains information about a reference loca-
tion and the number of SIFT interest points.
Similarly, each node in the local topological
map contains information about the view and
the wavelet signatures of the matched key frames.

The complete process for two-level topologi-
cal mapping can be summarized in the following
steps: First, SIFT points are extracted from the
captured key frame as explained before. Second,
similarity is computed between the current key
frame and all nodes of the global map by means
of the number of matched SIFT points. For in-
stance, a captured key frame can represent a wide
scene that was captured over multiple sequence of
images, accordingly SIFT features extracted from
one key frame can match SIFT features from mul-
tiple key frames representing same scene, as show
in Figure 2. Finally, a ranking with the best n
similarity values and its associated locations is ob-
tained. If the similarity value of the highest rank-
ing global node exceeded a predefined threshold
(25 SIFT points) then, the test frame is assigned
to this global node, otherwise a new node is added
to the global map, and a connection between the
new node and the last visited node is created.

Likewise, for the local map, the wavelet signa-
ture of the test frame is computed, and compared
to all wavelet signatures of the matched global
node. A ranking with the best n similarity values
and its associated views is obtained. If the simi-
larity value of the nearest local node exceeded a

Figure 2: Sample example of matching a key
frame with node consisting of SIFT features ex-
tracted from set of key frames representing same
scene.

predefined threshold (96%), then, the test frame
is allocated at this view; else, a new node is added
to the sub-map of the global node and an edge be-
tween the new node and the last visited node is
generated.

3.6 Topological Localization
The key element of our two-level topological lo-
calization method is the place recognition mod-
ule. Usually place recognition modules need to
determine the reference image that is most simi-
lar in appearance to the current input image, by
comparing it with images of an entire database
which can exceed thousands of images. Our pro-
posed module, treats the previously learned set of
images for the same reference location as group of
features, assuming that this group of features is
representative for each reference location, owing
to this, the current input image is compared to
features of each reference location which results
in a fast matching process.

4 Experimental Results
The system is tested in the indoor office environ-
ment of The Computer Vision and Active Per-
ception Laboratory (CVAP) at The Royal Insti-
tute of Technology (KTH) in Stockholm, Sweden.
The robot was manually driven through the envi-
ronment while continuously acquiring images at a
rate of 5 fps.
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Figure 3: The decomposition of the global node 3
into nodes for different views.

4.1 Dataset Description
The dataset COLD-stochkolm [17] is used which
is consisted of 9,564 images, each image in the
training sequence is labeled and assigned to an
ID and a semantic category of the area (usually
a room) in which it was acquired. The environ-
ment consists of eight main rooms or areas, Cor-
ridor, Kitchen, LargeOffice, MeetingRoom, Print-
erArea, RecycleArea, SmallOffice & Toilet. In
this paper the right images (4,782 images) are
used to simulate the realistic settings.

4.2 Results
Figure 4 shows the output of the experiment, in
which the high level topological map is estimated.
Figure 4(a) represents the ground truth of the
environment and Figure 4(b) shows the output
topological map. Figure 4(c) compares the esti-
mated topological map by the robot to the ground
truth of the environment which validates that the
topological nodes have been correctly recognized
by the robot to a high extend of accuracy. For
example, the room category ’kitchen’ is recog-
nized and represented by three nodes in the global
map: reference locations 2, 3 & 4. Figure 3 shows
the output low level topological map. It shows
the decomposition of node 3 to produce sub-map,
which consists of fife views and connection be-
tween them.

Table 1 describes the distribution of the
dataset, where only 965 images are selected as
key frames from a total of 4782 images. The table
shows that 906 key frames were correctly matched
from the entire key frames.

5 Conclusion
In this paper, a global image signature together with a
local feature extractor module is combined in a frame-
work for mobile robot two-level topological localiza-
tion and mapping. This approach allows a detailed
two levels map building and robot localization in an
indoor environment. The system reduced the number
of images needed to describe the environment with-
out losing important details by applying the key frame
selection technique. The detected SIFT features are
tracked and maintained and terminated based on the
missed count C as explained above. The similarity
matching of the global map level is achieved in an ef-
ficient way by comparing the test image with a set of
features that represent a reference location instead of
comparing it by all relevant images in the database. A
successful experiment of accuracy 93.8% is presented,
the output map is validated with the ground truth,
which proved the validity of the proposed system, and
the reference locations are correctly detected as well
as the robot locations are correctly obtained during
operation.
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