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Abstract: - Asymmetric filtering algorithms with the shifted origins (zero points) of impulse responses are
proposed to use for expanding time intervals of the relaxation and retardation spectra (RRS) and increasing
density of spectrum points. A filter bank is presented recovering RRS from the real part of complex compliance
recorded at frequencies spaced geometrically with progression ratio 2, which produces the spectrum points with
doubled density over the retardation time interval 4 times exceeding the reciprocal frequency range.
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1 Introduction discrete-time filter processing geometricalsampled
Relaxation and retardation spectrum (RRS) is one ofdata
the most fundamental quantities in linear theory of —o, , n= 0t 1+ 2., gq>1, 1)

viscoelasticity [1-4] and other relaxation theories
[4-6]. RRS is independent of loading (excitation) and yyhereq is progression ratio specifying the sampling
is used in various studies, such as examination of theate jn the sense thdnq specifies the distance

relationship between the molecular weight
distribution and properties of a material, prediction

of '_[he_ behawour of _materlals after an_arbltrary reciprocal describes the appropriate sampling
excitation, interconversion of material functions, etc. frequency

clasAsF#i)(rac()ja;hez r;;i?rizogn%iin?e;?;ﬂngfg é:an be In the functional filtering context [12,13], RRS
The arames'fr)'c approach pres n?esa iorf n[wo d(]e.l recovery relates to severely ill-posed linear inverse
P 'C-app presu qomort (deconvolution) problem, where the ill-posedness of

form for the material behaviour and RRS is the problem and the ill-conditioness of the algorithms

g%tr?trrg;edn:yaﬁsrzn;ssxpggavﬁsﬂt%g%Jegggﬁtu?ﬁémanifest as extremely hig_h nois«_s amplific_a_tion_. Based
material ,behaviour in the non-parametric approach on Igarnmg a_nd controlling noise amplification by
here RRS is determined by numerical inversion Of’varylng sampling rate (progression rajpa method

w y [14-16] has been developed for designing

the integral transforms interconnecting the rT]aterialdeconvolution filters with the desired noise gains
responses with the spectrum. These inversions arﬁroducing maximum accurate output signals

:gﬁjvggntg \t/)v?]esr?avgrrﬁgl ”léﬁgjﬁg;gﬁ:I};n?héni:nitzg; The filtering algorithms, although computational
(noise) cém ield unreaﬁstic high erturbationps in theefﬁdent’ accurate and have be constructed with
spectra y ghp prescribed noise amplification [14], are not free from

Based on the advanced signal processing concep ome drawpacks, Whlc.h “.mlt their usage, and

) ) e articularly implementation in measuring systems
[9,10], a non-parametric, computationally efficient [17]
functional filtering approach [11] has been recently \
developed for a wide class of interconversions
between linear rheologic and viscoelastic material
functions, including also RRS recovery. The approach
treats an interconversion problem as a linear filtering
(convolution) task on the logarithmic frequency (time)
scale and suggests to solve it by the appropriaté | ogarithmic samplingandexponential samplingre

also used in literature for arrangement (1)

between samples on logarithmic scale, i.e. plays
formally a role of sampling period, whereas its

And so, RRS recovery filters, as all discrete
convolution algorithms [9], suffer from of so-called
end effectproblem [10], appearing as shortening
usable filtered sequences. Due to the geometric
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sampling (1), relaxation/retardation time intervals relaxation/retardation timew,=1/7, at which the
reduces exponentially, and, comparing to thegpectrum is calculated. For IR with 6 coefficients
frequency (time) ranges of input functions, reachesghown in Fig. 1, this position coincides with the
shortenings of hundreds and more times in practice. geometric mean of the frequencies for samples 5 and
Next, to keep noise amplification at acceptablyg A RRS recovery filter isliding or moving one,
low level, relatively high progression ratios gepending on descending or ascending order of the
q=24-42 must be used [13] resulting in relaxation/retardation times chosen to calculate the
relatively rare spectrum points and, therefore, poorspectrum, it moves one sample to the left or right and

resolution. In addition, non-integer — finite decimal repeats processing to produce next spectrum value.
progression ratios are not practical and require

resampling input data. ¢ Input function, x(w)
The presented paper focuses on elimination of the * .
mentioned drawbacks of filtering algorithms used for < Sliding |
RRS recovery. T'T anoai|
1] 2| 3| 4] s J?T;TSTEJ?'
. . T S . log ®
2 RRS_Recovery by Filtering MNEXRLEX
Algorithms G EIT T
To determine the spectrum, a RRS recovery filter _
convolves samples of geometrically sampled material _,—-0--~95T“t f“”CIt__"(’r;
function with filter's impulse response. In [12,13], ,x" Tl !
three basic algorithms have been derived for ," =
calculation of RRS from the eight material functions. ‘ -log ©
For example, the algorithm for RRS recovery from the T=lo,

real and imaginary parts of dynamic material functions

can be presented in the following form: Fig. 1. lllustration of calculating a spectrum value by

a 6-point RRS recovery filter.

(N-1)/2
F(z) = Z m‘]{iqnj (2) Algorithm (2) may be used for input sequences
e g sampled geometrically with the rate increased by an
whereF(7) is relaxation or retardation spectrux) is ~ integer factor ofi, i.e. for the data sampled at the
a dynamic material function[n] is the impulse ratio g”*. Then the filter must process everyth
response (IR) containiny non-zero coefficients. In  input sample, however, it should move one sample to
the case of odd numbeéd of coefficients, integer the left or right to calculate next spectrum value,
indexesn are used in Eq. (2), while becomes halves therefore, producing the spectrum points with the
of odd numbers for even numbbr of coefficients.  sampling density equal to that of input data.
Filtering algorithm (2) is symmetric with the origin It has been demonstrated [12,13] that at least two
(zero point) of IR located in its geometric centre and performance parameters -accuracy and noise
having an equal number of coefficientdl (2 for amplification conflicting with one another, shall be
evenN and (- 1)/2 for odd N) about the origin  controlled for RRS recovery filters. Following the
with negative and positive indices. suggestion in [14’15]L mean squared error between
The same coefficient§n] are used for recovery calculated spectrumF z( )and exact spectrum
of the relaxation and retardation spectrum from the g (; )
imaginary parts of dynamic material functions "

[12,13], however, the coefficients differ by signs for Ko~ ,

calculation of the relaxation spectrum from the real E=WK) Z[F(Tm)_F(Tm)] (3)

part of modulus and the retardation spectrum from ™

the real part of compliance function. will be used here as an accuracy measure. As a

Algorithm (2) multiplies a set of geometrically reference spectrunff(z) corresponding to the Cole-
sampledN samples of a material functioR w,@" ) Cole (CC) relaxation model [18] will be used in Eq.
(samples 3 — 8, in Fig. 1) by the reversed filter (3) with « = 0.7 and 7, = 1, calculated forM = 100

CoefﬁCientSh[n] and adds the prOdUCtS. The Origin of equa”y Spaced time points on a |Ogarithmic scale
IR is centred at the position on the frequency axisithin the rangel0”® <7, <10°.

corresponding to the reciprocal of the
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In its turn, noise amplification will be measured points located from each other by timg"".

by noise gain (amplification coefficient) [14,15] Combining such filters in an array and calculating
S=th[n] @) the spectrum by sliding the array along the input
- sequence, will increase the density of the spectrum

points by an integer factor &f to compare with the
showing how the noise varianeg of input data is density of input samples.

transmitted to the noise varianeg of the spectrum

A J

S=o.lo,. ‘~ L Available input data
3 Asymmetric Algorithms o~ e
In the sliding filtering mode (see the previous TT T"f"f'- -~
Section), a value of the relaxation/retardation time is LAl b .
varied by moving an IR along the input sequence o ® f f * ¢ il ]
discretely. Apart from this traditional mode, one 5 0 5 L aAhg
more way is to alter the relaxation/retardation time 2 29 * 7 ? ? g
by moving the origin of a standing (fixed) IR. In 3 0 3
practice, this mode may be implemented by
processing a fixed set dfinput samples by multiple ;,r"'e ?"w...
filters, whose origins of IRs are shifted according to o Usable output @~ _
the desired alteration of relaxation/retardation time. /" o function O ==~

In this multiple filtering mode, IRs become 0 © ogt

asymmetric against their origins and the algorithm of

a separate filter may be described by an expression Fig. 2. Ultimate alignments of IR to an input
s 1 sequence and a ugable output 'sequence for a

F(r)= Y r(n)x{—q"J, (5) symmetric 6-point filter. Open circles are the
n (N D) /2o T unusable spectrum points calculated from incomplete

_ _ . _ _ information containing zeros.
wheres is the shift of the origin of IR. Filters with

s= 0 will be qualified further as asymmetric ones.

The advantage of asymmetric filters is ag»5 Expansion of Time I ntervals
possibility to determi_ne multiple spectrum values Algorithm (1) and (5) produces a spectrum value
from the same set & input samples. This allows 0 ¢ rrectly only if allN input samples without zeros
employ asymmetric filters for increasing density of 56 inyolved in calculation. Since the origin of IR
spectrum points, as well ‘as, to compensategnecifiing a value of relaxation/retardation time is
shortening relaxation/retardation time intervals duenormally located in the vicinity of IR midpoint, input
to the end eff_ect;. samples are required at the both ends of input

Asymmetric filters have been used to expandgeq ence for aligning IR to calculate spectrum points
OUtpl.Jt Sequence In Conyertlng the Sta..tIStIC materlalcorrectly from all theN input samples (Flg 2) With
functions into the dynamic ones, and vice versa [20].g,ch |R ‘alignment, a usable output sequence shortens
as well as in calculating the imaginary part of ¢ the noth — left and right ends by a total reduction
dynamic material functions from the real part [21]. j¢ N _q samples to compare with the input
Experience gained with these interconversions haSsequence. This shortening is particularly undesirable

showed t_hat,. in genera}l, the p?rfofmance. of thefor geometrically sampled datasets, because reduces
asymmetric filters deteriorates with increasing the relaxation/retardation  time  interval =/t

shift of the origin, however, the intervals for output , N _
functions to be approximately equal to those of inputexponentially — by g™ times to compare with
data can be attained to keep acceptable performancerequency rangew,,/w,, of input function. It

min

should be remembered that elongation of filter length
_ _ N, resulting normally in the higher accuracy, will
3.1 Increase of Density of Spectrum Points shorten ranger, /7, .

Processing of a fixed set dfl input samples in turn Usually, the shortening output sequences due to

by L filters, whose origins of IRs are shifted from o oy effects is compensated by artificial extension
each other by a distancelLl/produces. spectrum
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of the original data at the both ends by extrapolation Input sequence of M (M>11) samples recorded
[19] and placement of the end effects out of range of geometrically at q=2
the available input data. However, the extrapolation [
is not in compliance with the philosophy of non- . _ : .
parametric model-free interconversion of material | First 11 input All input Last 71 inpuit
. . samples samples 1-M samples
functions [11] when data transformations are
implemented without preliminary assumptions about {} {} ‘
the behaviour of the material and its responses. Array of 11 fixed Basic array of | |/ATaY of 12 fixed
As it is seen from Fig. 2, the output sequence| asymmetric 2 sliding filters asymmelig
T filters with z _ filters with
formed from the low frequency data can be| s=11t06 by §=0 & 5=0.5, =-0.5 to -6 by
prolonged by processing the fitdtinput samples by step 0.5, q=2 (e step -0.5, q=2

asymmetric filters, whose origins of the reversed IR {} {}
are shifted the left§> Pe.g.,,s= 12..,). These < ~ /< ~

. . . Output samples Output samples Output samples
asymmetric filters contain decreased number of 1-11, 12 - M+2, M+3 - M+14,
positively indexed coefficients and increased number\ q=1.414 ) q=1.414 )\ q=1.414 )
of negatively indexed coefficients. Similarly, the
output sequence formed from the high frequency,:ig_ 4. Structure of the filter bank.

data can be prolonged by processing theNaistput
samples by filters, whose origins are shifted the right e algorithm was formed as a filter bank
(s<0, eg., s=-1,-2..) having decreased omposed of 6-point filters operating @& . Bhis

number of negatively indexed coefficients and pogression ratio was chosen in order to provide a
increased number of positively indexed coefficients. trade-off between accuracy, noise amplification and

a possibility of adjusting the filter to process data

sg nput function, x(@) sampled with doubled sampling rate. To adapt the
N Siding filters to process data sampled &= , 2ero
~o.. | window coefficients were inserted between every other
=2 coefficient of IR (Fig. 3) modifying a 6-point filter

T.T?T'?'f--,. operating atg= 4into an 11-point filter operating at

| ¥ i ilogco g=2. Since multiplication of input samples by zero
<::| ?_. ? ° I T ° ? ._? coefficients gives zero products, the filter processes
F48 21 012345 every other input sample, and according to Eq. (4)
F(1/a,) retains original low noise gain corresponding to

Fig. 3. IR of a 6-point filter adapted for processing q=4.

data sampled at doubled sampling rate. Every other The structure of the bank is shown in Fig. 3. The
input sample (open circles) makes a contribution inPank was composed of 25 filters whose coefficients

the spectrum point. h[n] were found by the method [14,15]. The filters
were integrated in 3 arrays:
() a basic array composed of a sliding

4 Filter Bank symmetric filter 6= 0 and an sliding

To overcome the inherent drawbacks of the filtering asymmetric filter 6= 05 . .
algorithms  (shortening intervals of relaxation/ (i) an array for processing th? first 11 Input
retardation time, rare spectrum points, inconvenience s_amples compoge_d of 11 f”?ed asymmetric
of finite decimal (non-integer) progression ratios), filters, whose origins are shifted positively
we had set a target to construct a RRS recovery _ With s=1106 Dby step 0.5, _
algorithm that in addition to high accuracy and (i) an array for processing the last 11 input
acceptably low noise amplification would allow to samples composed of 12 fixed asymmetric
process data recorded at geometrically spaced filters, whose origins are shifted negatively
frequencies with progression ratip= 2, typically with s=-05 to -6 by step -0.5.

used in interconversions between material functions  The filter bank is applicable for input sequences
[11], and to produce the spectrum points with of M =11 samples and longer and it produces the

doubled density withg =+ 2= 1414 over the time spectrum - sequences  consisting  fromM +14

) ) samples.
intervals as expanded as possible.
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Fig. 5. Retardation spectrum recovered from the reafrig. 7. Noise gair$ of the filters of the bank. Open
part of complex compliance corresponding to CC sguares correspond to the sliding filters.
model with different values of paramete{numbers
near the curves). Solid lines — exact spectrum. It is worth paying particular attention to the fact
that the first 2 and last 2 spectrum points (see Fig. 5)
& are located outside the reciprocal frequency range of
11 input samples involved in calculation. A
possibility to determine such points has been
I theoretically justified in [23], where it has been
o proved that the relaxation spectrum can in principle
be recovered from the data limited to any range,
0.1F /' ; however short and wherever located. Therefore, the
®w 0 /-' \ results obtained here give some experimental
- \/ T / [\ A . evidence in the part of the proof that the relaxation
/ \: [,!,-’ . spectrum can be recovered from the détaited to

0.2

Error, E
| |

P I N N A any range wherever located”
6 4 -2 0 2 4 6 In Fig. 6, error (3) is shown for the filters of the
Shift, s bank as a function of the shift of the origins of IRs,

Fig. 6. ErrorE of the filters of the bank. Open while Fig. 6 illustrates noise gains (4). Here, the

sguares correspond to the sliding filters. interval reciprocal to frequency range, as well as the
shortened one predicted by the sampling localization

theorem is also shown.
. Within the retardation time interval reciprocal to
> Performance evaluation the frequency range, both parametdéfsand S

Fig. 5 Sh.OWS the spectrum re(;overed by the b‘ijlﬁ)scillate between some maximum and minimum
from 11 input samples occupying frequency rang€yalues and the parameters vary in “anti-phase”, i.e.

@, lo,,=1024. In this case, each of 25 spectrum gqror minimums are related to maximums of noise
points is calculated by a separate filter. If, in the gain, and vice versa. Out of the reciprocal frequency
normal sliding filtering mode, only central points range, both the parameters grow. The filters of the
(open squares) can be obtained by the slidingbank have relatively low noise gains with mean
symmetric filter with s= Q then integration of the \,5jue S= 326 for all the filters andS = 247 — for

filters into the bank allows to recover the spectrumine fijters within the reciprocal frequency range.
with the doubled density over the retardation time

interval 7, £, = 4096 or, in general, over the

max m

interval 05w,, <7 <2, , which 4 times exceeds § Conclusions

max mi

the reciprocal frequency range,, <7 <w,, (pale  The inherent drawbacks of filtering algorithms used
shaded area in Fig. 5) and 92.6 times — the intervafor recovering the relaxation and retardation
wle?<r<w'e™ predicted by so-called SpPectrum (RRS) have been identified, such as (i)
sampling localization theorem [22] (the darker exponential shortening intervals of relaxation/
shaded area) retardation time due to the end effects of discrete

convolution algorithms for geometrically sampled
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datasets, (ii) rare spectrum points due to relatively[11] V. Shtrauss, Digital interconversion between

large progression ratios have to be used to keep noise

amplification at acceptably low levels, (iii)
inconvenience of finite decimal (non-integer)
progression ratios requiring resembling input data.

To overcome the
construction of RRS recovery algorithms has been
proposed by uniting asymmetric filters with shifted
origins (zero points) of impulse responses.

linear rheologic and viscoelastic material
functions. In: Advances in Engineering
Research. Vol. 3, Ed. V.M. Petrova, Nova
Science Publishers, 2012, pp. 91-170.

mentioned drawbacks, [12] V. Shtrauss, Determination of the relaxation and

retardation spectra — A view from the up-to-date
signal processing perspectidech. Comp. Mat.
Vol. 48, 2012, pp. 27-46.

A filter bank composed of 25 filters has been[13] V. Shtrauss, Determination of relaxation and

developed, which from the real part of complex
compliance recorded at frequencies
geometrically with progression ratio 2 recovers the

retardation spectrum with doubled sampling density[14] V. Shtrauss,

over the time intervaD5w* <7 <20

max min

Acknowledgements

This work was supported by the European Regional
Development Fund (ERDF) under project No.
2010/0213/2DP/2.1.1.1.0/10/APIA/VIAA/017.

References:

[1] J.D. Ferry\Viscoelastic Properties of Polymers
3rd. ed., J. Wiley and Sons, 1980.

[2] N.W. Tschoegl,The Phenomenological Theory
of Linear Viscoelastic Behavior;Springer-
Verlag, 1989.

[3] N.G. McCrum, B.E. Read, G. Wiliams,
Anelastic and Dielectric Effects in Polymer
Solids, J. Wiley and Sons, 1967.

[4] A.K. JonscherDielectric Relaxation in Solids
Chelsea Dielectric, 1983.

[5] F. Kremer, A. Schonhals, W. LucBroadband
Dielectric Spectroscopyspringer-Verlag, 2002.

[6] C.P. Slichter, Principles of Magnetic
Resonance; 3rd. enlarged and updated ed.,
Springer-Verlagl1996.

[7] J.R. Macdonald, Comparison of parametric and
nonparametric methods for the analysis and
inversion of immittance data: Critique of earlier
work, J. Comp. Phys.Vol. 157, 2000, pp.
280-301.

[8] J.R. Macdonald, E. Tuncer, Deconvolution of
immittance data: Some old and new methdds,
Electroanalytical ChemyYol. 602, 2007, pp. 255-
262.

[9] A.V. Oppenheim, R.V. SchafeDiscrete-Time
Sgnal Processing Sec. Ed., Prentice-Hall
International, 1999.

[10] S.W. Smith,The Scientist and Engineer’s Guide
to Digital Signal Processing?2™, California
Technical Publishing, 1999.

ISBN: 978-960-474-305-6 26

spaced

[16] V.

[22] A.R. Davies,

retardation spectrum by inverse functional
filtering, J. Non-Newtonian Fluid Mechyol.
165, 2010, pp. 453-465.

A user-oriented approach to
designing FIR deconvolution filterdProc. 12th
WSEAS International Conference on Systems
Theory and Scientific ComputatioAdvances

in Systems Theory, Signal Processing &
Computational Science, Istanbul, Turkey,
August 21-23, 2012, pp. 130-135.

[15] V. Shtrauss, Sampling and algorithm design for

relaxation data conversiodYSEAS Transactions
on Signal Processing/ol. 2, 2006, pp. 984-990.
Shtrauss, Decomposition of  multi-
exponential and related signals — Functional
filtering approach, WSEAS Transactions on
Sgnal ProcessingVol. 4, 2008, pp. 44-52.

[17] A. Kalpinsh, V. Shtrauss, Measurement systems

for distribution of relaxation and retardation
times, Proc. 15th WSEAS International
Conference on Systems RECENT
RESEARCHES in SYSTEM SCIENGEorfu

Island, Greece, July 14-16, 2011, pp. 106-111.

[18] K.S. Cole, R.H. Cole, Dispersion and absorption

in dielectric. Alternating current characteristics,
J. Chem. PhysVol. 9, 1941, pp341-351.

[19] A. Arguez, P. Yu, J.J. O'Brien, A new method

for time series filtering near endpointg,

Atmos. Oceanic Tech., Vol. 25, 2008, pp. 534-

546.

[20] V. Shtrauss, Spectrum analysis and synthesis of

relaxation signalsSignal ProcessingVol. 63,
1997, pp. 107-119.

[21] V. Shtrauss, FIR Kramers-Kronig transformers

for relaxation data conversion, Signal
Processing, Vol. 86, 2006, pp. 2887-2900.

R.S. Anderssen, Sampling
localization in determining the relaxation
spectrum,J. Non-Newtonian Fluid Mech., Vol.
73, 1997, pp. 163-179.

[23] M. Renardy, On the use of Laplace transform

inversion for reconstruction of relaxation spectra,
J. Non-Newtonian Fluid MechVol. 154 2008,
pp. 47-51.





