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Abstract: - Asymmetric filtering algorithms with the shifted origins (zero points) of impulse responses are 
proposed to use for expanding time intervals of the relaxation and retardation spectra (RRS) and increasing 
density of spectrum points. A filter bank is presented recovering RRS from the real part of complex compliance 
recorded at frequencies spaced geometrically with progression ratio 2, which produces the spectrum points with 
doubled density over the retardation time interval 4 times exceeding the reciprocal frequency range. 
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1   Introduction 
Relaxation and retardation spectrum (RRS) is one of 
the most fundamental quantities in linear theory of 
viscoelasticity [1-4] and other relaxation theories  
[4-6]. RRS is independent of loading (excitation) and 
is used in various studies, such as examination of the 
relationship between the molecular weight 
distribution and properties of a material, prediction 
of the behaviour of materials after an arbitrary 
excitation, interconversion of material functions, etc. 
     Approaches used for RRS determination can be 
classified as parametric and non-parametric [7,8]. 
The parametric approach presumes an a priori model 
form for the material behaviour and RRS is 
determined by parametric curve fitting techniques. 
Contrary, no any assumption is made about the 
material behaviour in the non-parametric approach, 
where RRS is determined by numerical inversion of 
the integral transforms interconnecting the material 
responses with the spectrum. These inversions are 
known to be severely ill-posed resulting in unstable 
solutions, where small perturbations in the input data 
(noise) can yield unrealistic high perturbations in the 
spectra. 
     Based on the advanced signal processing concepts 
[9,10], a non-parametric, computationally efficient 
functional filtering approach [11] has been recently 
developed for a wide class of interconversions 
between linear rheologic and viscoelastic material 
functions, including also RRS recovery. The approach 
treats an interconversion problem as a linear filtering 
(convolution) task on the logarithmic frequency (time) 
scale and suggests to solve it by the appropriate 

discrete-time filter processing geometrically1 sampled 
data 

1...,,2,1,0,0 >±±== qnqn

n
ωω , (1) 

where q is progression ratio specifying the sampling 
rate in the sense that qln  specifies the distance 
between samples on logarithmic scale, i.e. plays 
formally a role of sampling period, whereas its 
reciprocal describes the appropriate sampling 
frequency. 
     In the functional filtering context [12,13], RRS 
recovery relates to severely ill-posed linear inverse 
(deconvolution) problem, where the ill-posedness of 
the problem and the ill-conditioness of the algorithms 
manifest as extremely high noise amplification. Based 
on learning and controlling noise amplification by 
varying sampling rate  (progression ratio q), a method  
[14-16] has been developed for designing 
deconvolution filters with the desired noise gains 
producing maximum accurate output signals. 
     The filtering algorithms, although computational 
efficient, accurate and have be constructed with 
prescribed noise amplification [14], are not free from 
some drawbacks, which limit their usage, and 
particularly implementation in measuring systems 
[17]. 
     And so, RRS recovery filters, as all discrete 
convolution algorithms [9], suffer from of so-called 
end effect problem [10], appearing as shortening 
usable filtered sequences. Due to the geometric 

                                                           
1 Logarithmic sampling and exponential sampling are 
also used in literature for arrangement (1) 
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sampling (1), relaxation/retardation time intervals 
reduces exponentially, and, comparing to the 
frequency (time) ranges of input functions, reaches 
shortenings of hundreds and more times in practice. 
     Next, to keep noise amplification at acceptably 
low level, relatively high progression ratios 

2.44.2 −=q  must be used [13] resulting in 
relatively rare spectrum points and, therefore, poor 
resolution. In addition, non-integer – finite decimal 
progression ratios are not practical and require 
resampling input data. 
     The presented paper focuses on elimination of the 
mentioned drawbacks of filtering algorithms used for 
RRS recovery.  
 
  

2   RRS Recovery by Filtering 
Algorithms 

To determine the spectrum, a RRS recovery filter 
convolves samples of geometrically sampled material 
function with filter’s impulse response. In [12,13], 
three basic algorithms have been derived for 
calculation of RRS from the eight material functions. 
For example, the algorithm for RRS recovery from the 
real and imaginary parts of dynamic material functions 
can be presented in the following form:  

∑
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where F(τ) is relaxation or retardation spectrum, x(.) is  
a dynamic material function, h[n] is the impulse 
response (IR) containing N non-zero coefficients. In 
the case of odd number N of coefficients, integer 
indexes n are used in Eq. (2), while n becomes halves 
of odd numbers for even number N of coefficients. 
Filtering algorithm (2) is symmetric with the origin 
(zero point) of IR located in its geometric centre and 
having an equal number of coefficients (2/N  for 
even N and 2/)1( −N  for odd N) about the origin 
with negative and positive indices.  
     The same coefficients h[n] are used for recovery 
of the relaxation and retardation spectrum from the 
imaginary parts of dynamic material functions 
[12,13], however, the coefficients differ by signs for 
calculation of the relaxation spectrum from the real 
part of modulus and the retardation spectrum from 
the real part of compliance function. 
     Algorithm (2) multiplies a set of geometrically 
sampled N samples of a material function )(0

nqx ω  
(samples 3 – 8, in Fig. 1) by the reversed filter 
coefficients h[n] and adds the products. The origin of 
IR is centred at the position on the frequency axis 
corresponding to the reciprocal of the 

relaxation/retardation time τω /10 = , at which the 
spectrum is calculated. For IR with 6 coefficients 
shown in Fig. 1, this position coincides with the 
geometric mean of the frequencies for samples 5 and 
6. A RRS recovery filter is sliding or moving one, 
depending on descending or ascending order of the 
relaxation/retardation times chosen to calculate the 
spectrum, it moves one sample to the left or right and 
repeats processing to produce next spectrum value. 
 

 
 

Fig. 1. Illustration of calculating a spectrum value by 
a 6-point RRS recovery filter. 

 
     Algorithm (2) may be used for input sequences 
sampled geometrically with the rate increased by an 
integer factor of L, i.e. for the data sampled at the 
ratio Lq /1 . Then the filter must process every L-th 
input sample, however, it should move one sample to 
the left or right to calculate next spectrum value, 
therefore, producing the spectrum points with the 
sampling density equal to that of input data.  
     It has been demonstrated [12,13] that at least two 
performance parameters – accuracy and noise 
amplification, conflicting with one another, shall be 
controlled for RRS recovery filters. Following the 
suggestion in [14,15], mean squared error between 

calculated spectrum )(ˆ
m

F τ  and exact spectrum 
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will be used here as an accuracy measure. As a 
reference spectrum, F(τ) corresponding to the Cole-
Cole (CC) relaxation model [18] will be used in Eq. 
(3) with 7.0=α  and 10 =τ , calculated for 100=M  
equally spaced time points on a logarithmic scale 
within the range 3

0

3 1010 ≤≤− τ . 
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     In its turn, noise amplification will be measured 
by noise gain (amplification coefficient) [14,15] 

∑
n

2 nh = S ][   (4) 

showing how the noise variance 2
x

σ  of input data is 

transmitted to the noise variance 2

F
σ  of the spectrum 

22 /
xF

S σσ= . 
 
  

3   Asymmetric Algorithms 
In the sliding filtering mode (see the previous 
Section), a value of the relaxation/retardation time is 
varied by moving an IR along the input sequence 
discretely. Apart from this traditional mode, one 
more way is to alter the relaxation/retardation time 
by moving the origin of a standing (fixed) IR. In 
practice, this mode may be implemented by 
processing a fixed set of N input samples by multiple 
filters, whose origins of IRs are shifted according to 
the desired alteration of relaxation/retardation time.  
     In this multiple filtering mode, IRs become 
asymmetric against their origins and the algorithm of 
a separate filter may be described by an expression  
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where s is the shift of the origin of IR. Filters with 
0≠s  will be qualified further as asymmetric ones.  

     The advantage of asymmetric filters is a 
possibility to determine multiple spectrum values 
from the same set of N input samples. This allows to 
employ asymmetric filters for increasing density of 
spectrum points, as well as, to compensate 
shortening relaxation/retardation time intervals due 
to the end effects. 
     Asymmetric filters have been used to expand 
output sequence in converting the statistic material 
functions into the dynamic ones, and vice versa [20], 
as well as in calculating the imaginary part of 
dynamic material functions from the real part [21]. 
Experience gained with these interconversions has 
showed that, in general, the performance of the 
asymmetric filters deteriorates with increasing the 
shift of the origin, however, the intervals for output 
functions to be approximately equal to those of input 
data can be attained to keep acceptable performance.  
 
 
3.1 Increase of Density of Spectrum Points 
Processing of a fixed set of  N input samples in turn 
by L filters, whose origins of IRs are shifted from 
each other by a distance 1/L, produces L spectrum 

points located from each other by time Lq /1 . 
Combining such L filters in an array and calculating 
the spectrum by sliding the array along the input 
sequence, will increase the density of the spectrum 
points by an integer factor of L to compare with the 
density of input samples.    
     

  
 
Fig. 2. Ultimate alignments of IR to an input 
sequence and a usable output sequence for a 
symmetric 6-point filter. Open circles are the 
unusable spectrum points calculated from incomplete 
information containing zeros. 

 
 
3.2 Expansion of Time Intervals 
Algorithm (1) and (5) produces a spectrum value 
correctly only if all N input samples without zeros 
are involved in calculation. Since the origin of IR 
specifying a value of relaxation/retardation time is 
normally located in the vicinity of IR midpoint, input 
samples are required at the both ends of input 
sequence for aligning IR to calculate spectrum points 
correctly from all the N input samples (Fig. 2). With 
such IR alignment, a usable output sequence shortens 
at the both – left and right ends by a total reduction 
of 1−N  samples to compare with the input 
sequence. This shortening is particularly undesirable 
for geometrically sampled datasets, because reduces 
relaxation/retardation time interval minmax /ττ  

exponentially – by 1−Nq  times to compare with 

frequency range minmax /ωω  of input function. It 
should be remembered that elongation of filter length 
N, resulting normally in the higher accuracy, will 
shorten range minmax /ττ . 
     Usually, the shortening output sequences due to 
the end effects is compensated by artificial extension 
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of the original data at the both ends by extrapolation 
[19] and placement of the end effects out of range of 
the available input data. However, the extrapolation 
is not in compliance with the philosophy of non-
parametric model-free interconversion of material 
functions [11] when data transformations are 
implemented without preliminary assumptions about 
the behaviour of the material and its responses. 
     As it is seen from Fig. 2, the output sequence 
formed from the low frequency data can be 
prolonged by processing the first N input samples by 
asymmetric filters, whose origins of the reversed IR 
are shifted the left ( 0>s , e.g., ...,2,1=s ,). These 
asymmetric filters contain decreased number of 
positively indexed coefficients and increased number 
of negatively indexed coefficients. Similarly, the 
output sequence formed from the high frequency 
data can be prolonged by processing the last N input 
samples by filters, whose origins are shifted the right 
( 0<s , e.g., ...,2,1 −−=s ,) having decreased 
number of negatively indexed coefficients and 
increased number of positively indexed coefficients. 
 

 

Fig. 3. IR of a 6-point filter adapted for processing 
data sampled at doubled sampling rate. Every other 
input sample (open circles) makes a contribution in 
the spectrum point. 

 
  

4   Filter Bank 
To overcome the inherent drawbacks of the filtering 
algorithms (shortening intervals of relaxation/ 
retardation time, rare spectrum points, inconvenience 
of finite decimal (non-integer) progression ratios), 
we had set a target to construct a RRS recovery 
algorithm that in addition to high accuracy and 
acceptably low noise amplification would allow to 
process data recorded at geometrically spaced 
frequencies with progression ratio q = 2, typically 
used in interconversions between material functions 
[11], and to produce the spectrum points with 

doubled density with 414.12==q  over the time 
intervals as expanded as possible. 

 
 
Fig. 4. Structure of the filter bank. 
       
     The algorithm was formed as a filter bank 
composed of 6-point filters operating at 4=q . This 
progression ratio was chosen in order to provide a 
trade-off between accuracy, noise amplification and 
a possibility of adjusting the filter to process data 
sampled with doubled sampling rate. To adapt the 
filters to process data sampled at 2=q , zero 
coefficients were inserted between every other 
coefficient of IR (Fig. 3) modifying a 6-point filter 
operating at 4=q  into an 11-point filter operating at 

2=q . Since multiplication of input samples by zero 
coefficients gives zero products, the filter processes 
every other input sample, and according to Eq. (4) 
retains original low noise gain corresponding to 

4=q . 
     The structure of the bank is shown in Fig. 3. The 
bank was composed of 25 filters whose coefficients 
h[n] were found by the method [14,15]. The filters 
were integrated in 3 arrays: 

(i) a basic array composed of a sliding 
symmetric filter ( 0=s ) and an sliding 
asymmetric filter ( 5.0=s ), 

(ii)  an array for processing the first 11 input 
samples composed of 11 fixed asymmetric 
filters, whose origins are shifted positively 
with 1=s  to 6 by step 0.5,  

(iii)  an array for processing the last 11 input 
samples composed of 12 fixed asymmetric 
filters, whose origins are shifted negatively 
with 5.0−=s  to -6 by step -0.5.  

     The filter bank is applicable for input sequences 
of 11=M  samples and longer and it produces the 
spectrum sequences consisting from 14+M  
samples. 
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Fig. 5. Retardation spectrum recovered from the real 
part of complex compliance corresponding to CC 
model with different values of parameter α (numbers 
near the curves). Solid lines – exact spectrum. 

 

 

Fig. 6. Error E of the filters of the bank. Open 
squares correspond to the sliding filters.  
 
 

5   Performance evaluation 
Fig. 5 shows the spectrum recovered by the bank 
from 11 input samples occupying frequency range 

1024/ minmax =ωω . In this case, each of 25 spectrum 
points is calculated by a separate filter. If, in the 
normal sliding filtering mode, only central points 
(open squares) can be obtained by the sliding 
symmetric filter with 0=s , then integration of the 
filters into the bank allows to recover the spectrum 
with the doubled density over the retardation time 
interval 4096/ minmax =ττ , or, in general, over the 

interval 1

min

1

max 25.0 −− << ωτω , which 4 times exceeds 

the reciprocal frequency range 1

min

1

max

−− << ωτω  (pale 
shaded area in Fig. 5) and 92.6 times – the interval 

2/1

min

2/1

max

ππ ωτω −−− << ee  predicted by so-called 
sampling localization theorem [22] (the darker 
shaded area). 

 

Fig. 7. Noise gain S of the filters of the bank. Open 
squares correspond to the sliding filters. 
 
     It is worth paying particular attention to the fact 
that the first 2 and last 2 spectrum points (see Fig. 5) 
are located outside the reciprocal frequency range of 
11 input samples involved in calculation. A 
possibility to determine such points has been 
theoretically justified in [23], where it has been 
proved that the relaxation spectrum can in principle 
be recovered from the data limited to any range, 
however short and wherever located. Therefore, the 
results obtained here give some experimental 
evidence in the part of the proof that the relaxation 
spectrum can be recovered from the data “limited to 
any range, wherever located”. 
     In Fig. 6, error (3) is shown for the filters of the 
bank as a function of the shift of the origins of IRs, 
while Fig. 6 illustrates noise gains (4). Here, the 
interval reciprocal to frequency range, as well as the 
shortened one predicted by the sampling localization 
theorem is also shown. 
     Within the retardation time interval reciprocal to 
the frequency range, both parameters E and S 
oscillate between some maximum and minimum 
values and the parameters vary in “anti-phase”, i.e. 
error minimums are related to maximums of noise 
gain, and vice versa. Out of the reciprocal frequency 
range, both the parameters grow. The filters of the 
bank have relatively low noise gains with mean 
value 26.3=S  for all the filters and 47.2=S  – for 
the filters within the reciprocal frequency range.  
 
 

6   Conclusions 
The inherent drawbacks of filtering algorithms used 
for recovering the relaxation and retardation 
spectrum (RRS) have been identified, such as (i) 
exponential shortening intervals of relaxation/ 
retardation time due to the end effects of discrete 
convolution algorithms for geometrically sampled 
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datasets, (ii) rare spectrum points due to relatively 
large progression ratios have to be used to keep noise 
amplification at acceptably low levels, (iii) 
inconvenience of finite decimal (non-integer) 
progression ratios requiring resembling input data.  
     To overcome the mentioned drawbacks, 
construction of RRS recovery algorithms has been 
proposed by uniting asymmetric filters with shifted 
origins (zero points) of impulse responses. 
     A filter bank composed of 25 filters has been 
developed, which from the real part of complex 
compliance recorded at frequencies spaced 
geometrically with progression ratio 2 recovers the 
retardation spectrum with doubled sampling density 
over the time interval 1

min

1

max 25.0 −− << ωτω  
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