

A Methodology for Safety Critical Software Systems Planning

EHAB SHAFEI

1
, IBRAHIM F. MOAWAD

2
, HANY SALLAM

1
,

ZAKI TAHA
3
, MOSTAFA AREF

3

1
Operation Safety and Human Factors Department,

2
Information Systems Department,

3
Computer Science Department

1
Nuclear and Radiological Regulatory Authority,

2,3
Faculty of computer and information

sciences, Ain Shams University

Egypt

ehab_vip@yahoo.com, ibrahim_moawad@cis.asu.edu.eg, salamhany@yahoo.com,

 ztfayed@hotmail.com, aref_99@yahoo.com

Abstract:- Recently Safety Critical Software Systems (SCSSs) become essential part of many critical

systems such as Nuclear Power Plants (NPPs), radiation therapy, aircrafts, and many medical devices.

Although of the vital role of SCSSs in saving human life, environment, and properties, there is no generic

methodology for developing such systems based on standards and guidelines. This methodology sets an

integrated model that concerned about the safety of critical software systems as a component of the

critical systems. It consists of the needed processes and operations required for developing SCSSs free of

faults. This methodology ensures that SCSSs are developed using processes which based on appropriate

standards and guidelines and can be accordingly certified. The objective of this methodology is to

produce certified critical software systems that comply and conform to standards and guidelines. The

methodology consists of three phases (safety planning and requirements phase, safety analysis phase, and

design, implementation, and operation phase). This paper is going to focus on safety plans phase. The

insulin pump system is applied as a case study on the safety planning and requirements phase.

Key-Words: - Safety Critical Software Systems, Safety Analysis and Requirements, Insulin Pump

1 Introduction
Critical software systems become an important

factor in assuring the safe operation of many

critical systems. Safety must always be

considered throughout the overall critical

systems not limited to software but extended to

contain computer hardware, electronic/electrical

hardware, mechanical hardware, and operators.

Critical software faults are often caused by

deficient requirements analysis and design

faults.

Certification of SCSSs is the hot issue in many

industries. That relies on the use of safety

critical software in controlling and monitoring

critical devices. SCSSs must be certified before

installation and operation phase. Certification

ensures that the system will not fail

consequently will not cause harm to human

beings or environment and if it fails, it will fail

safely. Considering existing models for

developing SCSSs, most of existing

methodology did not follow standards,

guidelines and related documents for developing

SCSSs. The methodology consists of three

phases: Phase1, safety planning and

requirements that consists of four processes

(describe the critical system, identify critical

system functions, determine the SCSSs safety

plan, identify the functions of SCSSs). Phase2,

safety analysis which consists of (analyze and

identify the hazards, apply risk management

process, specify safety requirements of critical

software systems). Phase3, design,

implementation, and operation that consists of

(design and implement SCSSs, verify and

validate SCSSs, certify SCSSs, operate, and

maintain SCSSs). This paper is going to focus

on safety planning phase.

Literatures showed that safety issue should be

considered in the whole critical software

systems and from the beginning. Already there

Recent Advances in Information Science

ISBN: 978-960-474-304-9 173

are three methodologies for modeling software

safety in safety critical computing systems.

Some of them share common processes and

differ in other processes. Also the

implementation and the sequence of such

common processes are different. Although of

already exciting models follow standards in

developing some process and neglect standards

in developing other processes, beside they did

not based on standards from early process. The

first methodology [1] is a primitive one, it based

on four essential processes for developing safety

software. These processes are software safety

planning, safety critical computer system

function identification, software and computing

system hazard analyses, and finally validation

and verification. The second methodology [2] is

a more complex model with more seven

processes than the first one. The new processes

are software safety requirements analysis,

software safety architecture design analysis,

software safety detailed design analysis,

software safety code analysis, software safety

test analysis, software safety evaluation, and

software safety process review and

documentation. The third methodology [3]

nearly is the same process as the second

methodology. These models neglecting

describing the critical system in which the

software is subcomponent of the whole system.

They are missing the importance of developing

critical software systems according to standards

and guidelines. They did not give attention to the

process of software certification. The missing

processes could produce deficient critical

software systems which might cause failures

during the operation. For these reasons the

proposed methodology for developing SCSSs

based on standards and guidelines is presented to

overcome the weak points of exciting models.

The paper is organized as follows: section 2

describes SCSSs. Section 3 represents the

critical software systems certification. Section 4

presents the methodology for SCSSs safety

planning for developing certified SCSSs based

on standards and guidelines. Section 5 presents a

case study performed according to our

methodology. The last section concludes the

discussion, and explores trends for future

research work.

2 Safety Critical Software Systems
SCSSs can be defined as software that monitors,

exercises direct command and controls over the

condition or state of hardware components. And

if not performed, performed out-of-sequence, or

performed incorrectly could result in improper

control functions, which could cause a hazard or

allow a hazardous condition to exist. SCSSs

require rigorous work related to safety analysis,

testing and verification to assure safety in the

overall system. Software systems are considered

as safety critical if it perform one of the

following functions [4]:

1) Implement a critical decision making

process.

2) Control or monitor safety critical functions

of software or hardware.

3) Cause or contribute to hazards.

4) Intervene when an unsafe condition is

present or imminent.

5) Execute on the same target system as safety

critical software.

6) Mitigate damage if risk occurs.

3 Critical Software Systems

Certification

Certification can be defined as “the process of

issuing a certificate to indicate conformance

with a standard, a set of guidelines, or some

similar document.” [5]. According to software

engineering, certification is typically associated

with three meanings: certifying product, process,

or personnel. Product and process certification

are the most challenging in developing software

for safety critical systems such as NPPs,

radiation therapy, medical devices, flight

control, etc [6]. These critical systems may

cause significant damage or loss of life, if not

operating properly.

Many governments and international agencies

have issued a number of standards, guidelines,

and reports related to certification and/or other

aspects of software assurance, such as licensing,

qualification, or validation, in their specific

areas of interest. The goal of certification is to

ensure that the safety of critical software

systems is satisfied in overall the system and to

ensure also the correctness of the system and

Recent Advances in Information Science

ISBN: 978-960-474-304-9 174

that system is developed according to standards

and guidelines [7, 8].

4 A Methodology for Safety Critical

Software Systems Planning and

Requirements
The proposed methodology describes the

development of certified SCSSs based on

standards and guidelines. The methodology

consists of three phases (safety planning and

requirements phase, analysis phase, and design,

implementation, and operation phase) as shown

in Figure 1. The safety planning and

requirements phase consists of four processes as

shown in Figure 2. It starts from description of

the critical system and its components, relation

between components, identification of the

critical system functions, specification of SCSSs

safety plan, and finally identification of the

SCSSs functions.

 Fig.1 SCSSs Development

 Methodology

4.1 Describe the Critical System
The first step is to understand the critical system

and its operation, including the resources to be

protected. The critical system components as

shown in figure 3 include hardware (computer,

mechanical electronic), software which monitors

or controls the critical system, humans

interacting with the system, and system

environment. Even that we concerning about the

safety of critical software systems but in the

same time we cannot neglect to describe and

identify all system components because they

have affective relation with software system as

shown in Figure 3 and in turn affect in the

overall safety of the system. The boundaries of

that system must be understood, including the

interfaces between subsystems and external

entities. The critical system must be described in

terms of subsystems, components, interface

between components, equipments, tools,

resources, human factors, and the hazards.

Fig. 3 Critical System Environment

Regarding to the effective relation between

SCSS and other components in the critical

system and according to NASA-STD-8719.13A

[9], software can be used to detect and control

hazards of critical system components

(hardware, and operator), but software failures

can also contribute to the occurrence of hazards.

Some software hazard causes can be eliminated

with hardware controls. For every hazard cause,

there must be at least one control method,

usually a design feature (hardware and/or

software). Examples of hazard causes and

controls are given in Table 1.

4.2 Identify Critical System Functions
The requirements analysis and functions

identification should be extended to critical

system with all components not limited to

software. Because software is a single

component of the system.

According to IEC 61508 [10] critical system

functions should include the following:

Proce

ss

Input

s and

Outp

uts

Safety Planning

 &
Requirements

Safety

Analysis

Design,

Implementation

& Operation

Fig.2 Processes of
 Safety Planning and

 Requirements Phase

Operators

Hardware

System

Critical System

Components

Software

System

 Describe Critical

System

Identify Critical

System Functions

Specify SCSS

Safety Plan

Identify Functions

of SCSS

Recent Advances in Information Science

ISBN: 978-960-474-304-9 175

1) Function descriptions, indicating the intent

of the functions.

2) Operation descriptions, indicating what the

system is supposed to do in all major phases

of operation.
3) Subsystems and components that make up

the critical system.

4) Process inputs and outputs of the critical

system.

5) System data.

6) Critical system equipments and tools.

Table 1 Hazard Causes and Controls

Cause Control Example of Control Action

Hardware Software Fault detection and saving function, or

event checks which activate or prevent

hazardous conditions.

Software Hardware Hardwired timer or discrete hardware
logic to screen invalid commands or

data. Sensor directly triggering a safety

switch to override a software control
system. Hard stops for some events.

Software Software Two independent processors, one
checking the other and intervening if a

fault is detected. Emulating expected

performance and detecting deviations.

Operator Software Software validation of operator-initiated
hazardous command. Software prevents

operation in unsafe mode.

Software Operator Operator sees control parameter

violation on display and terminates

process.

4.3 Specify Safety Critical Software

Systems Safety Plan
Software safety planning is performed in the

context of software safety management which

includes responsibilities of applying the defined

safety principles, criteria, safety targets, purpose,

objectives of software safety program, generic

safety requirements, and design tools approved

for use in the system. Which aid in achieving

and establishing safety plan to meet specified

requirements. The software management plan is

formatted, and documented in accordance with

NASA-STD 2100-91 [11], section 306 of NHB

1700.1 (V1-B) [12], and IEEE STD-1228-1994

[13]. The plan should describe how the activities

specified by this standard will be implemented.

The plan should specify the activities to be

carried out, the schedule on which they will be

implemented, and the products that will result.

The plan is addresses the interrelationships

among system safety analysis, software safety

analysis, and the software development efforts.

The plan is specifically addresses the

mechanism by which safety critical requirements

are generated, implemented, and verified.

Additional information about software safety

planning can be found in [2].

4.4 Identify the Functions of Safety

Critical Software Systems
Once safety critical system functions had been

identified, the functions of safety critical

software system will be easily identified [4] such

as:

1) Controlling, or monitoring safety critical

functions of software or hardware.

2) Intervenes when an unsafe condition is

present.

3) Handle safety critical data either providing

information related to safety or analysis critical

data.

Identifying these functions help in identifying

the special measures that should be required for

understanding and mitigating risks.

At this step of the proposed procedure, the top

level and general requirements are defined [1].

These requirements are general not related to

specific hazard but derived from safety critical

functions knowledge, safety standards, design

standards, mishap reports, experience and

lessons gained from similar software [2]. This

process compliances with standards

MOD0055’89 [14], ISO 26262 [15], and JSSC

Software System Safety Handbook [16].

5 Case study: An Insulin Pump

Control System

The insulin pump is a medical system that

mimics the operation of the pancreas. It used by

people who cannot make their insulin and

suffering from diabetics. It helps to achieve

rapid, precise, and control varying glycemic.

The critical insulin delivery system is used to

monitor the blood sugar levels and deliver an

appropriate dose of insulin when required.

Modern insulin pumps depend increasingly on

embedded control software. Software is

responsible for safety functions such as sensing

Recent Advances in Information Science

ISBN: 978-960-474-304-9 176

blood data, providing display output, dosage

control, and mitigating certain hazards through

alarms and alerts. To develop insulin pump

system with high assurance of its reliability and

safety, we should follow IEC 61508 [10]. The

insulin pump system includes eleven

components (pump, needle assembly, insulin

reservoir (inside the pump), data stores, blood

sugar sensor, power supply, controller,

communication, displays, alarms, and clock

components) as shown in Figure 4. The entire

system is controlled by the controller

component. The measuring time and compared

blood sugar level data are stored in data stores

component. These data are used to analyze the

diabetic’s health condition. The insulin is stored

in the reservoir component and pumped from the

reservoir to needle assembly by using pump

component. The insulin devise is communicated

to doctor’s computer through communication

component to download system setup

parameters and upload the data stored. Alarm

component using to alert the user and set status

to warning.

Fig.4 Insulin Pump System Structure

The insulin pump safety plans should include

1) Functional description. 2) Data resources

which show all data items, and their relations to

different operations. 3) The constraints which

indicate the restrictions on the functionalities of

operations or data. 4) Hazard analysis by using

Fault Tree Analysis (FTA) to identify the hazard

causes, and apply risk management techniques.

5) Safety requirements identification. 6) Safety

validation and safety assurance by using formal

methods and safety proofs. 7) Safe design

principles applied. 8) Verification activities and

methods including (software analysis, software

inspection, and software test). 9) System testing

for both normal and abnormal operation

including (software/hardware integration test,

interface test, and operation test). The function

of insulin pump system is to monitor the blood

sugar levels and deliver an appropriate dose of

insulin when required. This function requires

reading the blood parameters using sensor, then

analyzing the blood parameters, and monitoring

the blood sugar levels. Consecutive readings are

compared and if they indicate that the level of

glucose is rising, compute the required insulin

dose then actuate insulin pump signal to inject

the insulin to counteract this rise. The current

sugar level and required dose are displayed to

the user. Also the system issuing alerts to the

user in case of system sugar level is low. The

insulin dose computed according to sugar levels

(unsafe, safe, and undesirable). The computed

dose of insulin injection depends on cumulative

reading at interval times not on absolute level of

glucose. There are four scenarios for injection 1)

level of sugar in safe band. 2) Level of sugar is

failing. 3) Level of sugar is stable. 4) Level of

sugar is increasing. The embedded critical

control software is responsible for reading blood

parameters, measuring level of blood sugar at

periodic intervals, comparing between the

consecutive readings, computing required

insulin dose, actuating insulin pump signal,

issuing alerts to the user, coordinate the

functions of the various components within the

pump to ensure safe operation of the pump.

6 Conclusion
In this paper a new methodology for developing

certified SCSSs plans is presented. This

methodology which is commonly used for

developing certified SCSSs consisting of three

phases. This paper discussed deeply the first

phase and related processes. These processes

inspired on many standards, guidelines, and

related documents for developing software

systems generally and SCSSs specifically. This

phase of methodology relies on a generic and

domain specific standards. The proposed safety

and requirements phase of methodology

integrates and complements these standards.

Recent Advances in Information Science

ISBN: 978-960-474-304-9 177

This phase of methodology is applied to the

insulin pump system. The main advantage and

contribution of this methodology is that the

proposed methodology help the practitioners to

developed certified SCSSs beside other

advantages such as overcoming the weak points

of the existing methodologies for developing

SCSSs. This paper represents a milestone for

developing certified critical software. It shed the

light on the importance of embedding standards

and guidelines in the analysis, design,

implementation and testing processes of SCSSs.

Our future work is dedicated for completing the

methodology. It will discuss in detailed phase 2

and phase 3. And apply this methodology for

developing NPPs system.

References:

[1] Daniel P. Murray, Terry L. Hardy,

‘‘Development Safety Critical Software

Requirements for Commercial Reusable

Launch Vehicles’’, National Technical

Information Science, 2009.

[2] S.Phani Kumar, P. Seetha Ramaiah,

 V. Khanaa, ‘‘Identification of Software

Safety Metrics for Building Safer Software

based Critical Computing Systems’’,

International Journal of Computer Science

and Application, ISSN 0974-0767, 2010.

[3] Srinivas Acharyulu, P.V., P. seethe ramaiah,

‘‘A Methodological Framework for

Software Safety in Safety Critical

Computer Systems’’, Journal of Computer

Science 8 (9), ISSN 1549-3636, Science

Publications, 2012, pp. 1564-1575.

[4] NASA STD-8719.13. NASA software

 safety guidebook: NASA technical

 standard. Department of Defense, 2004.

[5] Neil Storey, Safety-Critical Computer

 Systems. Addison-Wesley, 1996.

[6] Andrew Kornecki, Janusz Zalewski,

“Software Certification for Safety-Critical

 Systems: A Status Report”, Proceedings of

 the International Multi conference on

 Computer Science and Information

 Technology, IEEE, 2008, pp. 665 – 672.

[7] NASA/CR–2003-212806. Certification

 Processes for Safety-Critical and Mission-

 Critical Aerospace Software. Stacy

 Nelson. June 2003.

[8] Dr. Holger Giese. Slides of lecture

 Software Engineering for Safety Critical

Computer Systems, Software Engineering

Group, University of Paderborn, 2003.

[9] NASA Software Safety Guidebook, NASA

 Technical Standard, NASA-GB-8719.13A,

 2004.

[10] IEC 61508, International Standard,

 Functional Safety of Electrical /Electronic

 /Programmable Electronic Safety- Related

 Systems, 1998.

[11] NASA-STD-2100-91, NASA Software

Documentation Standard Software

Engineering Program, 1991.

[12] NHB 1700.1(V1-B), NASA Safety Policy

and Requirements Document, 1993.

[13] IEEE STD 1228-1994. IEEE Standard for

Software Safety Plans. 1994.

[14] MOD0056'89, Interim Defense Standard

00-56, (DRAFT) Requirements for the

Analysis of Safety Critical Hazards,

Ministry of Defense, UK, May 1989.

[15] International Organisation for Standardiz-

ation. ISO 26262: Road Vehicles-

Functional Safety, Draft International

Standard (DIS), 2009.

[16] D. Alberico, J. Bozarth, M. Brown, et. Al.

JSSC Software System Safety Handbook;

A Technical and Managerial Team

Approach December 1999.

Recent Advances in Information Science

ISBN: 978-960-474-304-9 178

