
Optimization solutions for the segmented sum algorithmic function

ALEXANDRU PÎRJAN
Department of Informatics, Statistics and Mathematics

Romanian-American University
1B, Expozitiei Blvd., district 1, code 012101, Bucharest

ROMANIA
alex@pirjan.com

Abstract:In this paper, there are depicted optimization solutions for the segmented sum algorithmic function,
developed using the Compute Unified Device Architecture (CUDA), a powerful and efficient solution for
optimizing a wide range of applications. The parallel-segmented sum is often used in building many data
processing algorithms and through its optimization, one can improve the overall performance of these
algorithms. In order to evaluate the usefulness of the optimization solutions and the performance of the
developed segmented sum algorithmic function, I benchmark this function and analyse the obtained
experimental results.

Keywords:GPGPU, CUDA, segmented sum, parallel processing, registers, memory, warp.

1Introduction
In contrast to traditional Graphics Processing Units
(GPUs), novel GPUs from the latest generations
provide an increased computational power and
memory bandwidth, in the same time being much
more easier to program. These processors have
evolved into General Purpose Computation
Graphics Processing Units (GPGPU), gaining the
attention of software developers and having
applications in different scientific fields, such as
medicine, telecommunications, financial, image
processing etc. The GPGPUs’ computational
processing power is comprised of hundreds parallel
processing cores and surpasses the parallel
processing power of Central Processing Units
(CPUs) to a large extent. Therefore, these processors
are particularly useful when processing huge data
workloads, as the execution time is significantly
reduced. An important advantage of a GPGPU
compared to a CPU consists in the performance per
watt and the resulting low processing cost that
comes with an increased number of features.
Initially, GPUs have been designed to accelerate
solely graphics rendering, but afterwards, due to an
increase of graphic requirements, they evolved from
a one specialized architecture to many multi-
purpose architectures, offering a wide range of
features, not only video rendering.

The Compute Unified Device Architecture
(CUDA) enables a NVIDIA graphics processing
unit to execute software code sequences written in
different programming languages such as OpenCL,
FORTRAN, Direct Compute, C, C++ and others. A

Compute Unified Device Architecture program
invokes multiple program kernels that launch a set
of parallel threads, grouped in parallel thread blocks
and grids of thread blocks. Every thread has an
unique associated ID, register and private memory
[1].

The programming environment of the Compute
Unified Device Architecture (CUDA) exposes three
levels of abstractions (the thread blocks hierarchy,
shared memory and barrier synchronization) that
can be employed by the developer using a minimal
C-extensions set language [1]. These result in both
fine-grained parallelism (for data and threads) and
large grained parallelism (for data and tasks). A big
problem is divided into many small-sized ones that
can be parallelly processed by the available
processing cores, thus allowing the threads to
cooperate within a thread block.

The Graphics Processing Unit (GPU) instantiates
kernel grids, while a streaming multiprocessor (SM)
processes the thread blocks. The processing cores
within the SM execute the block’s threads being
able to process them in warps (groups of up to 32
threads). Each SM has a 32-bit register memory and
a block-level shared memory thatcan be accessed by
the multiprocessor’s cores and varies from one GPU
generation to another. The SM also contains two
read-only memory caches, designed for storing the
texture and the constants.

The great amount of parallel processing power of
the CUDA-enabled GPUsbecomes available to
application developers through the CUDA-C
programming language that allows them to define
how the tasks are being decomposed in order to be

Recent Researches in Applied Economics and Management - Volume I

ISBN: 978-960-474-323-0 315

executed by the Graphics Processing Unit [2].
As the CUDA-C language offers a detailed

control of the resources’ allocation, it helps
obtaining a set of basic powerful algorithmic
functions that can be used in optimizing a wide
range of high resource consuming applications [3].
Among these basic functions is the segmented sum
algorithmic function that is developed and analysed
in this paper.

By applying the parallel-segmented sum
function, the developers have the opportunity to
implement efficient data processing algorithms
without having to know how resources are allocated
or to optimize the algorithmic function. The
developer is not compelled to define how tasks are
being divided and allocated to the CUDA cores as
the parallel-segmented sum function automatically
defines all the optimal technical specifications. The
parallel-segmented function is a common functional
block useful in building many data processing
algorithms, thus, through its optimization, one can
improve the overall performance of all these
algorithms. Another aspect that has been taken into
account when developing the parallel-segmented
sum function was the modularity, through which the
designed function could be easily integrated in
designing other software applications. The designed
parallel-segmented sum function offers major
advantages to the developers, being a useful tool in
developing data processing algorithms with
significant economic advantages. The parallel-
segmented sum function also offers the advantage of
reusing its source code when developing different
data processing algorithms, thus bringing a
significant improvement to their performance.

2Designing an efficient parallel-

segmented sum function in CUDA
The parallel-segmented sum function generalizes the
parallel prefix sum function [2] by simultaneously
summing in parallel arbitrary sized partitions
(segments) of the input vector.

Given an associative binary operator � on the set
of real numbers and �an input segmented�-
dimensional real sequence� � ����, … , ���

, ������,
… , ���

, … , ��������, … , �����a parallel-
segmented sum function produces an output �-
dimensional sequence ��, where
�� � ����, �� � ��, … , �� � … � ����, ������, ����� �

�����, … , ����� � … � ����, . . . , ��������, ������� �
�������, … , ������� � … � �����(1)

For example, considering the input vector
� � ��10,3,2, �1,3,4,9, �5,0, �11�, if one choses
the associative binary summation operator, after
computing theparallel-segmented sum function, one
obtains the output vector
�� � ��10,13,15, �1,4,8,17, �5,5, �11�.

The parallel-segmented sum offers the same
amount of parallelism as the parallel prefixed
(unsegmented) sum, but it processes different
partitions of the input vector. Thus, this function is
extremely useful as itallocates different processing
tasks to uniform execution structures, such as the
CUDA execution thread blocks. This situation
occurs frequently in sorting algorithms as “the
quick-sort algorithm” or in sparse matrix
multiplication applications. The usual representation
of those segmented vectors is realised using a
combination of a sequence of values and a vector
containing the associated segments’ flags that
specifies how the input vector is partitioned. For
example, I have chosen the representation that stores
a “1” for each element from the start of the vector
and a “0” for the rest of the partitions’ elements. In
the literature, this representation is considered to be
the most suitable for massively parallel computing
systems [2].

In the above depicted case, the sequence of
values is �. ��& � �10,3,2,1,3,4,9,5,0,11� and the
vector containing the associated segments’ flags is
�. '() � �1,0,0,1,0,0,0,1,0,1�. In [4] is depicted a
way for implementing the parallel-segmented sum
function as a parallel prefixed (unsegmented) sum
by transforming the associative binary operator � in
a new one, denoted by �*, defined on the set of all
pairs consisting of the values and their
corresponding flags, denoted �+, �:
�+�, �� ** �+�, �� � �+�|+� , ./ +� � 1 01(� 2�(

 312'(' ��, (&'(.0 .' 324560(+ �� * �� (2)
I have designed the parallel-segmented sum

algorithmic function, as to obtain a self-adjustable
and self-configurable processing solution (regarding
the number of thread blocks, the number of threads
within a block and the number of processed
elements per thread), depending on the graphic
processor’s architecture. Within the experimental
tests, I have used three different graphic processing
units from the CUDA architecture: the Tesla GT200
architecture, launched on 16 Jun 2008; the Fermi
GF100 architecture, launched on 26 March 2010
and the KeplerGK104 architecture, released on 22
March 2012. I have designed the parallel-segmented
sum algorithmic function as to offer, when
executed, a high level of performance, by allocating
the appropriate amount of resourcesfor each GPU. I

Recent Researches in Applied Economics and Management - Volume I

ISBN: 978-960-474-323-0 316

have chosen a block size of 256 threads for the GTX
280 from the GT200 architecture; a block size of
512 threads for the GTX 480 from the Fermi GF100
architecture and a block size of 512 threads for the
GTX 680 from the KeplerGK104 architecture. Each
execution thread processes 8 elements in the case of
the GTX 280 GPU, 16 elements in the case of the
GTX 480 GPU and 32 elements in the case of the
GTX 680 GPU.

Fig. 1. The parallel-segmented sum algorithmic

function at the block and global level

In order to implement an efficient parallel-
segmented sum algorithmic function, I have first
designed the algorithmic function within a warp,
then I have called it within the block level and
finally I have designed the parallel-segmented sum
algorithmic function at the global level. At the warp
level, it is first computed the current thread’s index
within the warp and depending on this index it is
processed the element of the output vector
combining the values of the input vector and the
vector containing the associated segments’ flags that
specifies how the input vector is partitioned. The
obtained result is further processed at the block level
and at the global level (Fig. 1).

In the following, I present the main optimization
solutions that I have developed and applied for
improving the performance of the parallel-
segmented sum algorithmic function.

3 Solutions for optimizing the

performance of theparallel-segmented

sum algorithmic function in CUDA
In order to improve the performance of the parallel-
segmented sum algorithmic function in CUDA, I
have developed and applied a series of optimization
solutions:
 Solution 1 - optimizing the allocated tasks of
each thread: processing a single element per thread
does not generate an enough computational load that
reduces the memory latency. This is the reason why
I have allocated 8/16/32 input elements to each
thread of the GTX 280/480/680 GPU.

Solution 2 – reducing the number of used
registers: the available number of execution threads
is often limited by their registers requirements.
Minimizing the number of used registers is very
important in the case of the parallel-segmented sum
algorithmic function, as this function requires a
large number of registers in order to store and
handle the segments’ flags. This solution is also
useful for optimizing web applications
readability[5].

Solution 3 – using the warp shuffle operation in
order to save shared memory: this solution can be
implemented only for the GTX 680 graphic
processing unit from the Kepler architecture, as the
warp shuffle operation is supported on devices
having the compute capability 3.x. Using this
technique, threads within the same warp exchange
data between them, without having to use the shared
memory, thus reducing the memory latency.

Solution 4–synchronizing the parallel execution
tasks: the synchronization of the parallel tasks
represents their real time coordination and is often
associated with intra-thread communication. I have
used this solution for the Tesla GT200 architecture,
and the Fermi GF100 architecture, while for the
Kepler architecture I have used the Solution 3. The
warp level function significantly reduces the
necessity to synchronize data. The synchronizationis
necessary only when sharing data between threads
from different warps. In order to process a
segmented-sum, the warps write their last element in
a shared-memory vector and afterwards a single
warp sums all these elements. In the end, every
processing thread adds the warp’s sum to the first
step sum.

Solution 5 – reducing the number of parallel
processing steps: although this determined initially
an increase of the computational load, the SIMT
(Single Instruction Multiple Threads) warp
execution model facilitated the processing.

Recent Researches in Applied Economics and Management - Volume I

ISBN: 978-960-474-323-0 317

Solution 6 – using multiple execution thread
blocks: this leads to a significant improvement of
the execution time when processing the parallel-
segmented sum algorithmic function in CUDA,
compared to its sequential implementations, run on
CPU.

Solution 7 – managing shared memory bank
conflicts: the shared memory used by the parallel-
segmented sum algorithmic function in CUDA, is
composed from many memory banks. When
multiple data requests originate from the same
memory bank, memory bank conflicts occur. In
order to eliminate these conflicts, if all the execution
threads use the same memory address, a complex
triggering mechanism is activated and thus data is
simultaneously delivered to multiple execution
threads.

Solution 8 – partitioning data in warp-sized
fragments and then processing them independently,
using one warp per each of them. This kind of
solution proves very useful when optimizing
security solutions implemented by the use of the
multi-layered structural data like the MSDSSA
presented in [6].

Solution 9 – the balanced loading of the
necessary computational volume. The optimized
parallel-segmented sum algorithmic function
provides a balanced computational load for each of
the input vectors’ partitions, even if they have
different dimensions (in the next section, in the
experimental tests, the input vectors have been
randomly segmented). No matter how the input
vector has been partitioned, the tasks’ parallelization
determines the obtaining of an increased level of
performance compared to the sequential
implementations of the segmented sum algorithmic
function.

In the next section, I have developed and
implemented a benchmark suite in order to analyse
the software performance of the parallel-segmented
sum algorithmic function in CUDA, that has been
optimized using the Solutions 1-9.

4The experimental results and the

performance analysis for the parallel-

segmented sum algorithmic function
In the following, I analyse the software performance
of the parallel-segmented sum algorithmic function
described above and compare it with an alternative
sequential approach run on the CPU. In the
benchmark suite, I have used the following
configuration: Intel i7-2600K operating at 3.4 GHz
with 8 GB (2x4GB) of 1333 MHz, DDR3 dual

channel. I have used the Windows 8 Pro 64-bit
operating system. I have analysed how the main
technical features of the used graphic cards
influence the experimental results. In order to
program and access the GPUs, I have used the
CUDA Toolkit 5.0 and the NVIDIA developer
driver version 306.97. Moreover, in order to reduce
the external traffic to the Graphics Processing Unit,
all the processes related to the graphical user
interface have been disabled. When I ran the tests on
the CPU, I have used only the integrated Intel HD
Graphics 3000 graphics core from the CPU and in
the system, no discrete graphic cardwas installed.

In the first series of experimental tests, I have
evaluated the execution times obtained by applying
theparallel-segmented sum algorithmic function on
various sized vectors, containing float type
elements, using the summation as binary operator.
The parallel-segmented sum algorithmic function
has been run on the three graphic cards and on the
CPU mentioned above. The results represent the
average of 10,000 test iterations. The vectors’
elements and the segments’ dimensions have been
randomly generated, but the designed parallel-
segmented sum algorithmic function allows the
specification of the input vector (the elements and
their flags). I have highlighted the execution times
and the memory bandwidth corresponding to each
of the input vectors and and each of the processing
units.

After having highlighted the execution
timecorresponding to each of the input vectors for
each of the processing units, I have computed the
Total Execution Time (TET) for the 10,000
iterations corresponding to all the 26 vectors of
different dimensions. I have used an energy meter
device (Voltcraft Energy Logger 4000) to measure
the Power Consumption PC (kW) and afterwards I
have computed the Energy Consumption EC (kWh)
for each processing unit. When the benchmark suite
is run on the GTX 280 GPU, the system consumes
10 times less energy than when using the i7-2600K
CPU; on the GTX 480, the system consumes 15
times less energy than on the CPU; when the GTX
680 is used, the system consumes 68 times less
energy than when using the CPU [7].

By analysing the obtained results, I have noticed
that the parallel-segmented sum algorithmic
function developed in CUDA and run on the GPUs
offers a high degree of performance (highlighted by
the reduced execution times) and considerable
economic advantages due to the reduced energy
consumption, surpassing the results obtained when
using the sequential approach, run on the CPU
(Table 1).

Recent Researches in Applied Economics and Management - Volume I

ISBN: 978-960-474-323-0 318

Table 1.Synthetic experimental results

Experimental

results

The processing unit

CPU
GTX

280

GTX

480

GTX

680

TET (h) 2.426 0.156 0.087 0.024
PC (kW) 0.198 0.306 0.358 0.307

EC (kWh) 0.480 0.048 0.031 0.007
The consumption on the

GPUvs on the CPU
10 x

lower
15 x

lower
68 x

lower

By analysing the experimental results obtained
for the parallel-segmented sum algorithmic function
when the input vector’s dimension is 35-1030
elements, I have noticed that the best results (lower
execution time, higher bandwidth) are those
registered by the CPU. This happens becausethe
huge parallel processing capacity of the GPUs has
not been used at its entire potential as it has not been
generated an enough computational load (Fig. 2,
Fig. 3).

Fig. 2. The execution time for 35-1030 elements of

the input vector

Fig. 3.The memory bandwidth for 35-1030 elements

of the input vector

I have analysed the obtained experimental results
when processing vectors of32768-60000000
elements and I have noticed that in this case the best
results (lower execution time, higher bandwidth) are
obtained when running the parallel-segmented sum
algorithmic function on the GPUs: the GTX 680,
then on the GTX 480 and on the GTX 280(Fig. 4,
Fig. 5).

Fig. 4.The execution time for 32768-60000000

elements of the input vector

Fig. 5.The memory bandwidth for 32768-60000000

elements of the input vector

This time, the GPUs were able to use their huge
parallel processing capacity, because it has been
processed a sufficient computational load.

Afterwards, I have analysed the impact of the
data type on the parallel-segmented sum algorithmic
function’s performance. I have designed the
function as to allow the specification of the input
vector’s elements data type, that can be of integer,
unsigned integer, float, double, long long or
unsigned long long data type. In this case, I have
benchmarked the performance on the GTX 680
processor and I have used the same testing
methodology as in the previous experimental tests,
highlighting the variation of the execution time

Recent Researches in Applied Economics and Management - Volume I

ISBN: 978-960-474-323-0 319

depending on the input vector’s size for different
data type elements. I have recorded similar levels of
performance when the input data type is integer,
unsigned integer or float, the execution time ranging
from 0.028399 ms to 2.319234 ms(Fig. 6).

Fig. 6.The impact of the data type–

the execution time

I have benchmarked the variation of the
bandwidth for different input vector’s sizes of
different data types (Fig. 7). The parallel-segmented
sum algorithmic function offers a high level of
performance no matter what the data type is
(integer, unsigned integer, float, double, long long
or unsigned long), the results being comparable in
all the 6 analysed cases.

Fig.7.The impact of the data type –
the bandwidth

 I have also analysed the performance impact of
the associative binary operator (as the function
allows to select the binary operator that can be
summation, maximum, minimum or multiplication).

I have concluded that the performance is similar for
all the studied binary operators.

5Conclusions
The optimization solutions of the parallel-

segmented sum algorithmic function offer a high
level of performance on a wide range of CUDA
enabled graphics processors, covering different
scenarios and applications, without being affected
by the processed data type or binary operator. The
Compute Unified Device Architecture offers a
tremendous potential for optimizing data-parallel
problems, overcomingmost of the limitations posed
by traditional central processing units.

References

[1] J.Sanders, E. Kandrot, CUDA by Example: An
Introduction to General-Purpose GPU

Programming, Addison-Wesley Professional,
2010.

[2] M. Harris, M. Garland, Optimizing Parallel
Prefix Operations for the Fermi Architecture,
GPU Computing Gems Jade Edition, Morgan
Kaufmann, 2011.

[3] I. Lungu, A. Pîrjan, D.M. Petroşanu, Solutions
for optimizing the data parallel prefix sum
algorithm using the Compute Unified Device
Architecture, Journal of Information Systems &
Operations Management, Vol. 5, No. 2.1, 2011,
pp. 465-477.

[4] J. T. Schwartz, Ultracomputers, ACM

Transactions on Programming Languages and

Systems, Vol. 2, No.4, 1980, pp. 484-521.
[5] G. Garais, Web Applications Readability,

Journal of Information Systems & Operations

Management, Vol. 5, No. 1, 2011, pp. 114-120.
[6] A. Tăbușcă, A new security solution

implemented by the use of the multilayered
structural data sectors switching algorithm
(MSDSSA), Journal of Information Systems &
Operations Management, Vol.4, No.2, 2010,
pp. 164-168.

[7] D. M. Petroşanu, A.Pîrjan, Economic
considerations regarding the opportunity of
optimizing data processing using graphics
processing units, Journal of Information

Systems & Operations Management, Vol. 6,
No. 1, 2012, pp. 204-215.

Recent Researches in Applied Economics and Management - Volume I

ISBN: 978-960-474-323-0 320

