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Abstract:In this paper, there are depicted optimization solutions for the segmented sum algorithmic function, 
developed using the Compute Unified Device Architecture (CUDA), a powerful and efficient solution for 
optimizing a wide range of applications. The parallel-segmented sum is often used in building many data 
processing algorithms and through its optimization, one can improve the overall performance of these 
algorithms. In order to evaluate the usefulness of the optimization solutions and the performance of the 
developed segmented sum algorithmic function, I benchmark this function and analyse the obtained 
experimental results.     
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1Introduction 
In contrast to traditional Graphics Processing Units 
(GPUs), novel GPUs from the latest generations 
provide an increased computational power and 
memory bandwidth, in the same time being much 
more easier to program. These processors have 
evolved into General Purpose Computation 
Graphics Processing Units (GPGPU), gaining the 
attention of software developers and having 
applications in different scientific fields, such as 
medicine, telecommunications, financial, image 
processing etc. The GPGPUs’ computational 
processing power is comprised of hundreds parallel 
processing cores and surpasses the parallel 
processing power of Central Processing Units 
(CPUs) to a large extent. Therefore, these processors 
are particularly useful when processing huge data 
workloads, as the execution time is significantly 
reduced. An important advantage of a GPGPU 
compared to a CPU consists in the performance per 
watt and the resulting low processing cost that 
comes with an increased number of features. 
Initially, GPUs have been designed to accelerate 
solely graphics rendering, but afterwards, due to an 
increase of graphic requirements, they evolved from 
a one specialized architecture to many multi-
purpose architectures, offering a wide range of 
features, not only video rendering. 

The Compute Unified Device Architecture 
(CUDA) enables a NVIDIA graphics processing 
unit to execute software code sequences written in 
different programming languages such as OpenCL, 
FORTRAN, Direct Compute, C, C++ and others. A 

Compute Unified Device Architecture program 
invokes multiple program kernels that launch a set 
of parallel threads, grouped in parallel thread blocks 
and grids of thread blocks. Every thread has an 
unique associated ID, register and private memory 
[1]. 

The programming environment of the Compute 
Unified Device Architecture (CUDA) exposes three 
levels of abstractions (the thread blocks hierarchy, 
shared memory and barrier synchronization) that 
can be employed by the developer using a minimal 
C-extensions set language [1]. These result in both 
fine-grained parallelism (for data and threads) and 
large grained parallelism (for data and tasks). A big 
problem is divided into many small-sized ones that 
can be parallelly processed by the available 
processing cores, thus allowing the threads to 
cooperate within a thread block.  

The Graphics Processing Unit (GPU) instantiates 
kernel grids, while a streaming multiprocessor (SM) 
processes the thread blocks. The processing cores 
within the SM execute the block’s threads being 
able to process them in warps (groups of up to 32 
threads). Each SM has a 32-bit register memory and 
a block-level shared memory thatcan be accessed by 
the multiprocessor’s cores and varies from one GPU 
generation to another. The SM also contains two 
read-only memory caches, designed for storing the 
texture and the constants.  

The great amount of parallel processing power of 
the CUDA-enabled GPUsbecomes available to 
application developers through the CUDA-C 
programming language that allows them to define 
how the tasks are being decomposed in order to be 
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executed by the Graphics Processing Unit [2]. 
As the CUDA-C language offers a detailed 

control of the resources’ allocation, it helps 
obtaining a set of basic powerful algorithmic 
functions that can be used in optimizing a wide 
range of high resource consuming applications [3]. 
Among these basic functions is the segmented sum 
algorithmic function that is developed and analysed 
in this paper.  

By applying the parallel-segmented sum 
function, the developers have the opportunity to 
implement efficient data processing algorithms 
without having to know how resources are allocated 
or to optimize the algorithmic function. The 
developer is not compelled to define how tasks are 
being divided and allocated to the CUDA cores as 
the parallel-segmented sum function automatically 
defines all the optimal technical specifications. The 
parallel-segmented function is a common functional 
block useful in building many data processing 
algorithms, thus, through its optimization, one can 
improve the overall performance of all these 
algorithms. Another aspect that has been taken into 
account when developing the parallel-segmented 
sum function was the modularity, through which the 
designed function could be easily integrated in 
designing other software applications. The designed 
parallel-segmented sum function offers major 
advantages to the developers, being a useful tool in 
developing data processing algorithms with 
significant economic advantages. The parallel-
segmented sum function also offers the advantage of 
reusing its source code when developing different 
data processing algorithms, thus bringing a 
significant improvement to their performance.  

 

 

2Designing an efficient parallel-

segmented sum function in CUDA 
The parallel-segmented sum function generalizes the 
parallel prefix sum function [2] by simultaneously 
summing in parallel arbitrary sized partitions 
(segments) of the input vector.  

Given an associative binary operator � on the set 
of real numbers and �an input segmented�-
dimensional real sequence� � ����, … , ���

, ������, 
… , ���

, … , ��������, … , �����a parallel-
segmented sum function produces an output �-
dimensional sequence ��, where  
�� � ����, �� � ��, … , �� � … � ����, ������, ����� �

�����, … , ����� � … � ����, . . . , ��������, ������� �
�������, … , ������� � … � �����(1) 

For example, considering the input vector 
� � ��10,3,2, �1,3,4,9, �5,0, �11�, if one choses 
the associative binary summation operator, after 
computing theparallel-segmented sum function, one 
obtains the output vector 
�� � ��10,13,15, �1,4,8,17, �5,5, �11�. 

The parallel-segmented sum offers the same 
amount of parallelism as the parallel prefixed 
(unsegmented) sum, but it processes different 
partitions of the input vector. Thus, this function is 
extremely useful as itallocates different processing 
tasks to uniform execution structures, such as the 
CUDA execution thread blocks. This situation 
occurs frequently in sorting algorithms as “the 
quick-sort algorithm” or in sparse matrix 
multiplication applications. The usual representation 
of those segmented vectors is realised using a 
combination of a sequence of values and a vector 
containing the associated segments’ flags that 
specifies how the input vector is partitioned. For 
example, I have chosen the representation that stores 
a “1” for each element from the start of the vector 
and a “0” for the rest of the partitions’ elements. In 
the literature, this representation is considered to be 
the most suitable for massively parallel computing 
systems [2].  

In the above depicted case, the sequence of 
values is �. ��& � �10,3,2,1,3,4,9,5,0,11� and the 
vector containing the associated segments’ flags is 
�. '() � �1,0,0,1,0,0,0,1,0,1�. In [4] is depicted a 
way for implementing the parallel-segmented sum 
function as a parallel prefixed (unsegmented) sum 
by transforming the associative binary operator � in 
a new one, denoted by �*, defined on the set of all 
pairs consisting of the values and their 
corresponding flags, denoted �+, �: 
�+�, �� ** �+�, �� � �+�|+� , ./ +� � 1 01(� 2�(   

 312'(' ��, (&'( .0 .' 324560(+ �� * ��    (2) 
I have designed the parallel-segmented sum 

algorithmic function, as to obtain a self-adjustable 
and self-configurable processing solution (regarding 
the number of thread blocks, the number of threads 
within a block and the number of processed 
elements per thread), depending on the graphic 
processor’s architecture. Within the experimental 
tests, I have used three different graphic processing 
units from the CUDA architecture: the Tesla GT200 
architecture, launched on 16 Jun 2008; the Fermi 
GF100 architecture, launched on 26 March 2010 
and the KeplerGK104 architecture, released on 22 
March 2012. I have designed the parallel-segmented 
sum algorithmic function as to offer, when 
executed, a high level of performance, by allocating 
the appropriate amount of resourcesfor each GPU. I 
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have chosen a block size of 256 threads for the GTX 
280 from the GT200 architecture; a block size of 
512 threads for the GTX 480 from the Fermi GF100 
architecture and a block size of 512 threads for the 
GTX 680 from the KeplerGK104 architecture. Each 
execution thread processes 8 elements in the case of 
the GTX 280 GPU, 16 elements in the case of the 
GTX 480 GPU and 32 elements in the case of the 
GTX 680 GPU.  

 

 
Fig. 1. The parallel-segmented sum algorithmic 

function at the block and global level 
 

In order to implement an efficient parallel-
segmented sum algorithmic function, I have first 
designed the algorithmic function within a warp, 
then I have called it within the block level and 
finally I have designed the parallel-segmented sum 
algorithmic function at the global level. At the warp 
level, it is first computed the current thread’s index 
within the warp and depending on this index it is 
processed the element of the output vector 
combining the values of the input vector and the 
vector containing the associated segments’ flags that 
specifies how the input vector is partitioned. The 
obtained result is further processed at the block level 
and at the global level (Fig. 1). 

In the following, I present the main optimization 
solutions that I have developed and applied for 
improving the performance of the parallel-
segmented sum algorithmic function.  

 

3 Solutions for optimizing the 

performance of theparallel-segmented 

sum algorithmic function in CUDA 
In order to improve the performance of the parallel-
segmented sum algorithmic function in CUDA, I 
have developed and applied a series of optimization 
solutions: 
 Solution 1 - optimizing the allocated tasks of 
each thread: processing a single element per thread 
does not generate an enough computational load that 
reduces the memory latency. This is the reason why 
I have allocated 8/16/32 input elements to each 
thread of the GTX 280/480/680 GPU.  

Solution 2 – reducing the number of used 
registers: the available number of execution threads 
is often limited by their registers requirements. 
Minimizing the number of used registers is very 
important in the case of the parallel-segmented sum 
algorithmic function, as this function requires a 
large number of registers in order to store and 
handle the segments’ flags. This solution is also 
useful for optimizing web applications 
readability[5].  

Solution 3 – using the warp shuffle operation in 
order to save shared memory: this solution can be 
implemented only for the GTX 680 graphic 
processing unit from the Kepler architecture, as the 
warp shuffle operation is supported on devices 
having the compute capability 3.x. Using this 
technique, threads within the same warp exchange 
data between them, without having to use the shared 
memory, thus reducing the memory latency. 

Solution 4–synchronizing the parallel execution 
tasks: the synchronization of the parallel tasks 
represents their real time coordination and is often 
associated with intra-thread communication. I have 
used this solution for the Tesla GT200 architecture, 
and the Fermi GF100 architecture, while for the 
Kepler architecture I have used the Solution 3. The 
warp level function significantly reduces the 
necessity to synchronize data. The synchronizationis 
necessary only when sharing data between threads 
from different warps. In order to process a 
segmented-sum, the warps write their last element in 
a shared-memory vector and afterwards a single 
warp sums all these elements. In the end, every 
processing thread adds the warp’s sum to the first 
step sum. 

Solution 5 – reducing the number of parallel 
processing steps: although this determined initially 
an increase of the computational load, the SIMT 
(Single Instruction Multiple Threads) warp 
execution model facilitated the processing.  
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Solution 6 – using multiple execution thread 
blocks: this leads to a significant improvement of 
the execution time when processing the parallel-
segmented sum algorithmic function in CUDA, 
compared to its sequential implementations, run on 
CPU.  

Solution 7 – managing shared memory bank 
conflicts: the shared memory used by the parallel-
segmented sum algorithmic function in CUDA, is 
composed from many memory banks. When 
multiple data requests originate from the same 
memory bank, memory bank conflicts occur. In 
order to eliminate these conflicts, if all the execution 
threads use the same memory address, a complex 
triggering mechanism is activated and thus data is 
simultaneously delivered to multiple execution 
threads.  

Solution 8 – partitioning data in warp-sized 
fragments and then processing them independently, 
using one warp per each of them. This kind of 
solution proves very useful when optimizing 
security solutions implemented by the use of the 
multi-layered structural data like the MSDSSA 
presented in [6]. 

Solution 9 – the balanced loading of the 
necessary computational volume. The optimized 
parallel-segmented sum algorithmic function 
provides a balanced computational load for each of 
the input vectors’ partitions, even if they have 
different dimensions (in the next section, in the 
experimental tests, the input vectors have been 
randomly segmented). No matter how the input 
vector has been partitioned, the tasks’ parallelization 
determines the obtaining of an increased level of 
performance compared to the sequential 
implementations of the segmented sum algorithmic 
function.  

In the next section, I have developed and 
implemented a benchmark suite in order to analyse 
the software performance of the parallel-segmented 
sum algorithmic function in CUDA, that has been 
optimized using the Solutions 1-9. 

 
 

4The experimental results and the 

performance analysis for the parallel-

segmented sum algorithmic function 
In the following, I analyse the software performance 
of the parallel-segmented sum algorithmic function 
described above and compare it with an alternative 
sequential approach run on the CPU. In the 
benchmark suite, I have used the following 
configuration: Intel i7-2600K operating at 3.4 GHz 
with 8 GB (2x4GB) of 1333 MHz, DDR3 dual 

channel. I have used the Windows 8 Pro 64-bit 
operating system. I have analysed how the main 
technical features of the used graphic cards 
influence the experimental results. In order to 
program and access the GPUs, I have used the 
CUDA Toolkit 5.0 and the NVIDIA developer 
driver version 306.97. Moreover, in order to reduce 
the external traffic to the Graphics Processing Unit, 
all the processes related to the graphical user 
interface have been disabled. When I ran the tests on 
the CPU, I have used only the integrated Intel HD 
Graphics 3000 graphics core from the CPU and in 
the system, no discrete graphic cardwas installed. 

In the first series of experimental tests, I have 
evaluated the execution times obtained by applying 
theparallel-segmented sum algorithmic function on 
various sized vectors, containing float type 
elements, using the summation as binary operator. 
The parallel-segmented sum algorithmic function 
has been run on the three graphic cards and on the 
CPU mentioned above. The results represent the 
average of 10,000 test iterations. The vectors’ 
elements and the segments’ dimensions have been 
randomly generated, but the designed parallel-
segmented sum algorithmic function allows the 
specification of the input vector (the elements and 
their flags). I have highlighted the execution times 
and the memory bandwidth corresponding to each 
of the input vectors and and each of the processing 
units. 

After having highlighted the execution 
timecorresponding to each of the input vectors for 
each of the processing units, I have computed the 
Total Execution Time (TET) for the 10,000 
iterations corresponding to all the 26 vectors of 
different dimensions. I have used an energy meter 
device (Voltcraft Energy Logger 4000) to measure 
the Power Consumption PC (kW) and afterwards I 
have computed the Energy Consumption EC (kWh) 
for each processing unit. When the benchmark suite 
is run on the GTX 280 GPU, the system consumes 
10 times less energy than when using the i7-2600K 
CPU; on the GTX 480, the system consumes 15 
times less energy than on the CPU; when the GTX 
680 is used, the system consumes 68 times less 
energy than when using the CPU [7].  

By analysing the obtained results, I have noticed 
that the parallel-segmented sum algorithmic 
function developed in CUDA and run on the GPUs 
offers a high degree of performance (highlighted by 
the reduced execution times) and considerable 
economic advantages due to the reduced energy 
consumption, surpassing the results obtained when 
using the sequential approach, run on the CPU 
(Table 1). 
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Table 1.Synthetic experimental results 

Experimental 

results 

The processing unit 

CPU 
GTX 

280 

GTX 

480 

GTX 

680 

TET (h) 2.426 0.156 0.087 0.024 
PC (kW) 0.198 0.306 0.358 0.307 

EC (kWh) 0.480 0.048 0.031 0.007 
The consumption on the 

GPUvs on the CPU 
10 x 

lower 
15 x 

lower 
68 x 

lower 
 

By analysing the experimental results obtained 
for the parallel-segmented sum algorithmic function 
when the input vector’s dimension is 35-1030 
elements, I have noticed that the best results (lower 
execution time, higher bandwidth) are those 
registered by the CPU. This happens becausethe 
huge parallel processing capacity of the GPUs has 
not been used at its entire potential as it has not been 
generated an enough computational load (Fig. 2, 
Fig. 3).  

 

 
Fig. 2. The execution time for 35-1030 elements of 

the input vector 
 

 
Fig. 3.The memory bandwidth for 35-1030 elements 

of the input vector 
 

I have analysed the obtained experimental results 
when processing vectors of32768-60000000 
elements and I have noticed that in this case the best 
results (lower execution time, higher bandwidth) are 
obtained when running the parallel-segmented sum 
algorithmic function on the GPUs: the GTX 680, 
then on the GTX 480 and on the GTX 280(Fig. 4, 
Fig. 5). 

 

 
Fig. 4.The execution time for 32768-60000000 

elements of the input vector 
 

 
Fig. 5.The memory bandwidth for 32768-60000000 

elements of the input vector 
 

This time, the GPUs were able to use their huge 
parallel processing capacity, because it has been 
processed a sufficient computational load.  

Afterwards, I have analysed the impact of the 
data type on the parallel-segmented sum algorithmic 
function’s performance. I have designed the 
function as to allow the specification of the input 
vector’s elements data type, that can be of integer, 
unsigned integer, float, double, long long or 
unsigned long long data type. In this case, I have 
benchmarked the performance on the GTX 680 
processor and I have used the same testing 
methodology as in the previous experimental tests, 
highlighting the variation of the execution time 
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depending on the input vector’s size for different 
data type elements. I have recorded similar levels of 
performance when the input data type is integer, 
unsigned integer or float, the execution time ranging 
from 0.028399 ms to 2.319234 ms(Fig. 6).   

 

 
Fig. 6.The impact of the data type–  

the execution time 
 

I have benchmarked the variation of the 
bandwidth for different input vector’s sizes of 
different data types (Fig. 7). The parallel-segmented 
sum algorithmic function offers a high level of 
performance no matter what the data type is 
(integer, unsigned integer, float, double, long long 
or unsigned long), the results being comparable in 
all the 6 analysed cases. 
 

 

Fig.7.The impact of the data type  – 
the bandwidth 

 
   I have also analysed the performance impact of 
the associative binary operator (as the function 
allows to select the binary operator that can be 
summation, maximum, minimum or multiplication). 

I have concluded that the performance is similar for 
all the studied binary operators. 
 
 

5Conclusions 
The optimization solutions of the parallel-

segmented sum algorithmic function offer a high 
level of performance on a wide range of CUDA 
enabled graphics processors, covering different 
scenarios and applications, without being affected 
by the processed data type or binary operator. The 
Compute Unified Device Architecture offers a 
tremendous potential for optimizing data-parallel 
problems, overcomingmost of the limitations posed 
by traditional central processing units. 

 
 

References 

[1] J.Sanders, E. Kandrot, CUDA by Example: An 
Introduction to General-Purpose GPU 

Programming, Addison-Wesley Professional,  
2010. 

[2] M. Harris, M. Garland, Optimizing Parallel 
Prefix Operations for the Fermi Architecture, 
GPU Computing Gems Jade Edition, Morgan 
Kaufmann, 2011. 

[3] I. Lungu, A. Pîrjan, D.M. Petroşanu, Solutions 
for optimizing the data parallel prefix sum 
algorithm using the Compute Unified Device 
Architecture, Journal of Information Systems & 
Operations Management, Vol. 5, No. 2.1, 2011, 
pp. 465-477. 

[4] J. T. Schwartz, Ultracomputers, ACM 

Transactions on Programming Languages and 

Systems, Vol. 2, No.4, 1980, pp. 484-521. 
[5] G. Garais, Web Applications Readability, 

Journal of Information Systems & Operations 

Management, Vol. 5, No. 1, 2011, pp. 114-120. 
[6] A. Tăbușcă, A new security solution 

implemented by the use of the multilayered 
structural data sectors switching algorithm 
(MSDSSA),  Journal of Information Systems & 
Operations Management, Vol.4, No.2, 2010, 
pp. 164-168. 

[7] D. M. Petroşanu, A.Pîrjan, Economic 
considerations regarding the opportunity of 
optimizing data processing using graphics 
processing units, Journal of Information 

Systems & Operations Management, Vol. 6, 
No. 1, 2012, pp. 204-215. 

 

Recent Researches in Applied Economics and Management - Volume I

ISBN: 978-960-474-323-0 320




