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Abstract: - A study has been carried out to investigate the effect of magnetic field presence on the mixed 

convection boundary layer flow of viscoelastic fluid past a sphere with Newtonian heating embedded in a 

porous medium. The governing non-similar partial differential equations are transformed into dimensionless 

forms and then solved numerically using the Keller-Box method. Results on the effect of the viscoelastic 

parameter K, magnetic parameter M, and mixed convection parameter λ on the velocity and temperature of the 

fluid flow have been shown graphically and discussed briefly. Numerical results of skin friction as well as wall 

temperature are also presented in tabular form. The comparison of results obtained in the present work with the 

existing publication is found in excellent agreement. 
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1 Introduction 
During these recent years, the interest of flows in 

viscoelastic fluids has grown considerably because 

of their applications in engineering and several 

industrial-manufacturing processes involving 

petroleum drilling, manufacturing of foods and 

papers. On the other hand, this type of fluid also has 

some applications involving atomization such as 

paints, coating, inks, jet fuels and possible to reduce 

frictional drag on the hulls of ships and submarines. 

Based on our literature survey, there has been 

extensive research done on viscoelastic fluid in last 

few decades [1-14].  

 

Magnetohydrodynamics (MHD is a branch of 

science that deals with the motion of electrically 

conducting fluids under the presence of magnetic 

field. This situation is essentially one of mutual 

interaction between the fluid velocity field and the 

magnetic field; the motion affects the magnetic field 

and the magnetic field affects the motion. Thus, the 

term MHD attempts to convey this relationship [15].  

Investigations on MHD flow problems in non-

Newtonian fluids focusing on viscoelastic fluids 

have attracted a number of researchers. For 

example, Abel et al. [16] concentrate on buoyancy 

force and thermal radiation effects in MHD 

boundary layer viscoelastic fluid flow over 

continuously moving stretching surface while 

Cortell [17] investigates the effects of viscous 

dissipation and work done by deformation on the 

MHD flow and heat transfer of a viscoelastic fluid 

over a stretching sheet. Effect of the variable 

viscosity and thermal conductivity on MHD flow 

and heat transfer in viscoelastic fluid over a 

stretching sheet has been investigated by Salem 

[18]. 

 

The heat transfer in porous medium is a process 

involving its application in a broad spectrum of 

disciplines ranging from chemical engineering to 

geophysics. Many metallurgical processes involve 

the cooling of continuous strips or filaments by 

drawing them through a quiescent fluid. 

Nandeppanavar et al. [19] have studied the flow and 

heat transfer characteristics of a viscoelastic fluid in 

a porous medium over an impermeable stretching 

sheet with viscous dissipation using the power series 

method (Kummer’s function) while Hayat et al. [20] 

have conducted an investigation on heat and mass 

transfer for Soret and Dufour’s effect on mixed 

convection boundary layer flow over a stretching 

vertical surface in a porous medium filled with a 

viscoelastic fluid. 

 

Motivated by studies conducted and mentioned 

above, this present paper aims to study the effects of 

magnetic field presence on mixed convection 

boundary layer flow in a viscoelastic fluid past a 

sphere with Newtonian heating embedded in porous 
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medium. The governing boundary layer equations 

are first transformed into a system of dimensionless 

equations using the dimensionless variables, and 

then attain non-similar equations by using similarity 

transformation. Later, a finite difference scheme 

called the Keller-Box method is applied in order to 

solve the problem. 

 

2 Governing Equations 
Consider a steady mixed convection boundary 

layer flow about an isothermal sphere of radius 

a, where it is placed in a viscoelastic fluid with 

uniform ambient velocity U . Figure 1 

illustrates the physical model and coordinate 

system of the problem. For the case of 

Newtonian heating, the heat transfer rate from 

the bounding surface with a finite heat capacity 

is proportional to the local surface temperature 

as proposed by Merkin [21], 

 

                                                           

                 (1) 

 

where wT
 

is the unknown local surface 

temperature and sh  is a coefficient of 

proportionality for the surface heat flux. 

 

 
 

 

 

 

 

 

Figure 1: Physical model and coordinate system 

If  u  and v are the velocity components along 

the x  and y  axes, and T is the fluid 

temperature, then the boundary layer equations 

can be written as follow: 

Continuity equation: 

    0,
 

 
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r u r v
x y

                                 (2)       

 

Momentum equation 
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where ρ, g, β, μ, k0, and   are the density, 

gravitational acceleration, coefficient of thermal 

expansion, dynamic viscosity, vortex viscosity 

and thermal diffusivity of the fluid, 

respectively. Meanwhile,  eu x  is the local free 

stream velocity outside the boundary layer and 

 r x  is the radial distance from the symmetrical 

axis to the surface of the sphere which are given 

by 

   
3

sin , sin
2
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x x
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Then, the following dimensionless variables are 

introduced. 
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where Re



U a
is the Reynolds number.  

By substituting Equation (7) into Equations (2)-

(4), the following dimensionless equations are 

obtained. 

    0,
 

 
 

ru rv
x y

                                      (8)              
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where K is the viscoelastic parameter, M is the 

magnetic parameter, P is the porosity and   is 

the mixed convection parameter which are 

denoted as 

0
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with 3 3Gr ( ) /  wg T T a being the Grashof 

number. It is worth mentioning that 0   is for 

assisting flow and 0  is for opposing flow, 

respectively. 

The boundary conditions (5) now become  
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3 Solution Procedures  
In order to solve Equations (8)-(10), it is 

assumed that as 0x  ,  
sin

1
x

x
 .  

Furthermore, an appropriate transformation 

called similarity transformation is introduced in 

the following form: 

  ( , ), ( , ),   xr x f x y x y                   (13)

                                                                                                           

where   is the stream function defined as  
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Which is fully satisfied Equation (8). By 

applying the similarity variables (13) into 

Equations (9)-(10), the following non-similar 

equations are obtained. 
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It is noticed that at the lower stagnation point of 

the sphere ( 0x ), Equations (15)-(16) are 

reduced to 

2

2

9
''' 2 '' ' (M+P)( ' 1)

4

2K( ' ''' '''' '' ) 0,

f ff f f

f f ff f
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            (18) 
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  f                                    (19)   

with the boundary conditions 
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where prime denotes differentiation with 

respect to y. 
 

4 Results and Discussion 
The system of partial differential equations (15) 

and (16) subjects to the boundary conditions 

(17), and the system of ordinary differential 

equations (18) and (19) subjects to the boundary 

conditions (20) are solved numerically using the 

Keller-Box method: which is very well 

described in the book by Cebeci and Bradshow 

[22], for some values of viscoelastic parameter 

K, mixed convection parameter  , and 

magnetic parameter M for the value of Prandtl 

number 7. In order to ensure the accuracy and 

convergence of the numerical solution, the step 

size  has been optimized and the results 

presented are independent of the step sizes at 

least up to the six decimal places.  

 

The convergence criterions are based on the 

relative difference between the current and 

previous iteration values of velocity and 

temperature gradients at wall. The present 

results for values  0f ''  and  0  are 

compared with those of Salleh et al. [23] in 

order to validate the numerical results obtained. 

The comparison shows that the numerical 

solutions (see Table 1) obtained by the present 

authors concurs very well with those of existing 

publication. It can be concluded that the 

numerical method works efficiently for present 

problem and the authors are confident that the 

results presented are accurate.  

 

Table 2 shows the numerical values of skin 

friction  0f ''  and wall temperature  0  for 

the fixed values of mixed convection parameter 

0.5 , Prandtl number Pr = 7, magnetic 

parameter M = 1.0, porosity parameter P = 0.5  

and various values of viscoelastic parameter K, 

respectively. It can be seen from the table that 

as the viscoelastic parameter K increases, the 

values of skin friction are decreased while wall 

temperature are increased.  

 

Numerical values of skin friction  0f ''  and 

wall temperature  0  for various values of 

mixed convection parameter    at Pr = 7, M = 

1.0, P = 0.5 and K = 0.2 are shown in Table 3. It 

is found that as   increases, it leads to 

increasing skin friction and reducing wall 

temperature. This behavior can also be found in 

Salleh et al. [23] for the viscous fluid case.
 

 

The velocity and temperature profiles near 

lower stagnation point ( 0x  ) for some values 

of mixed convection parameter   when Pr = 7, 

K = 0.2, M = 1.0 and P = 0.5 are given in Figs. 

2 and 3. It is found that the fluid velocity is 

increasing while the temperature profile 

decreasing as the mixed convection parameter,  

  is increased.  
 

The effect of viscoelastic parameter on velocity 

and temperature profile at the lower stagnation 

point at Pr = 7.0, M = 1.0, P = 0.5 and 0 5.  

are illustrated in Figs. 4 and 5. Based on Fig. 4, 

it is noticed that the fluid velocity is decreasing 

when the value of viscoelastic parameter K is 

increased. Moreover, the fluid velocity is lower 

for a viscoelastic fluid to be compared to the 

fluid velocity for a Newtonian fluid (K = 0) and 

it can be said that the thickness of the velocity 

boundary layer for a viscoelastic fluid is higher 

than for a Newtonian fluid. Further, Fig. 5 

shows that by increasing the value of 
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viscoelastic parameter K may lead to lower 

fluid temperature up to one point (y = 1.3) and 

lead to higher fluid temperature for other y. This 

behavior reflects the coupling of the energy 

equation to the momentum equation through the 

temperature dependent body forces.  

 

The velocity and temperature profiles for 

different values of magnetic parameter M are 

displayed in Figs. 6 and 7. It can be observed 

that both velocity and temperature of the flow 

are decreasing as the value of magnetic 

parameter is increased. 
 

5 Conclusion 

In this paper, the problem of steady MHD 

mixed convection boundary layer flow of a 

viscoelastic fluid past a sphere with Newtonian 

heating embedded in porous medium has been 

investigated numerically. The governing 

boundary layer equations are transformed into a 

dimensionless form and the resulting nonlinear 

systems of partial differential equations are 

solved numerically using the Keller-Box 

method. This study has revealed how the mixed 

convection  , viscoelastic parameter K as well 

as magnetic parameter M affect the fluid flow 

significantly. From the results obtained, it is 

revealed that  

 An increase on the values of mixed 

convection parameter  may lead to 

higher fluid velocity and reduce the 

fluid temperature. 

 As viscoelastic parameter K is 

increased, both fluid velocity and 

temperature are decreased. 

 Both velocity and temperature of the 

flow are reduced when the Prandtl 

number Pr is increased. 
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APPENDIX 

 

Table 1:  Comparison of  0f ''  and  (0) for various values of    

when K = 0.0, Pr = 7, M = 0.0 and P = 0.0 

 

  

Pr = 7.0 

Salleh et al. [ 23] Present results 

(0)f ''  (0) (0)f ''  (0) 

0.05 2.4235 1.1174 2.423580 1.115154 

0.10 2.4365 1.1141 2.436594 1.112504 

0.50 2.5378 1.0933 2.537790 1.092512 

1.00 2.6579 1.0709 2.657596   1.070125 

2.00 2.8808 1.0326 2.880535 1.031973 

3.00 3.0854 1.0009 3.085097 1.000291 

4.00 3.2760 0.9739 3.275562 0.973278 

5.00 3.4552 0.9503 3.454659 0.949787 

6.00 3.6249 0.9296 3.624330 0.929047 

7.00 3.7867 0.9110 3.786018 0.910512 

8.00 3.9415 0.8943 3.940828 0.893782 

9.00 4.0904 0.8790 4.089630 0.878558 

10.00 4.2340 0.8651 4.233122 0.864606 

20.00 5.4682 0.7679 5.466887 0.767471 

 

 

 

 

 Table 2: Values of  0f ''  and  (0) for 

various values of K when    0.5, Pr = 7, 

M = 1.0 and P = 0.5 

K f ''  (0)  (0) 

0.1 2.321080 1.203917 

0.5 1.657244 1.529397 

1.0 1.320725 1.843319 

2.0 1.019421 2.371827 

3.0 0.870813 2.851849 

4.0 0.779390 3.316204 

 5.0 0.716645 3.778204 

6.0 0.670675 4.244801 

7.0 0.635511 4.720131 

8.0 0.607788 5.206843 

9.0 0.585441 5.706693 

10.0 0.567123 6.220847 

 

 

 

 

 

Table 3:  Values of 0f ''( )  and  (0) for 

variousvalues of   when K = 0.2, Pr = 7, 

M = 1.0 and P = 0.5 

  f ''  (0)  (0) 

0.05 1.554009 1.580540 

0.10 1.657244 1.529397 

0.50 1.573778 1.570378 

1.00 1.753193 1.485792 

2.00 1.924419 1.415965 

3.00 2.075756 1.361417 

4.00 2.212711 1.316891 

5.00 2.338641 1.279430 

6.00 2.455773 1.247205 

7.00 2.565671 1.219009 

8.00 2.669487 1.194004 

9.00 2.768096 1.171585 

10.00 2.862183 1.151301 

20.00 3.638658 1.015844 
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 Figure 2: Velocity profile  for Pr = 7, 

 K = 0.2, M = 1.0, P = 0.5 and various values of 

  
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Figure 3: Temperature profile for Pr = 7, K = 

0.2, M = 1.0, P = 0.5 and various values of   
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Figure 4 Velocity profile for Pr = 7,  

  = 0.5, M = 1.0, P = 0.5 and various values of 

K 
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Figure 5: Temperature profile for Pr = 7, = 

0.5, M = 1.0, P = 0.5 and various values of K 
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 Figure 6: Velocity profile for Pr = 7, 

 = 0.5, K = 0.2, P = 0.5 and various values of 

M 
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 Figure 7 Temperature profile for Pr = 7, 

 = 0.5, K = 0.2, P = 0.5 and various values of 

M 
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