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Abstract: Cuckoo Search is one of the recent swarm itelligence metaheuritics. It has been succesfuly applied to a
number of optimization problems, but is stil not very well researched. In this paper we present a parallelized version
of the Cuckoo Search algorithm. The parallelization is implemented using CUDA architecture. The algorithm is
significantly changed compared to the sequential version. Changes are partialy done to exploit the power of mass
parallelization by the graphical processing unit and partialy as a consequence of the memory access restrictions
that exist in CUDA. Tests on standard benchmark functions show that our proposed parallized algorithm greatly
decreases the execution time and achieves similar or slightly better quality of the results compared to the sequential
algorithm.
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1 Introduction
In recent years a wide range of nature inspired algo-
rithms has been developed for solving hard optimiza-
tion problems. Among such algorithms swarm intel-
ligence is becoming prominent. Swarm intelligence
is collective behavior of decentralized, self-organized
systems. A wide range of animal and insect species
like fish, birds and ants exhibit this type of behav-
ior where many extremely primitive individuals ex-
hibit remarkable collective intelligence and by doing
so greatly increase their chance of survival in nature.

Swarm intelligence has inspired the development
of many metaheuristics for solving hard combinatorial
as well as continuous optimization problems. They
include Ant Colony Optimization [1], Particle Swarm
Optimization [2], Artificial Bee Colony Optimization
[3] etc. with numerous improvements [4], [5], [6], [7].

A new and very promising member of the swarm
intelligence metaheuristics family is the Cuckoo
Search (CS) algorithm which mimics the behavior of
the brood parasites [8], [9]. It has not yet been thor-
oughly researched, but there have already been suc-
cessful applications to many different problems like
component design [10], training neural models [11],
[12], mesh optimization [13], test data generation
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[14], etc. There have also been several attempts to im-
prove its performance by adding changes to the basic
algorithm [15], [16], [17], [18] or by taking special
consideration to the generation of the initial popula-
tion [19]. One of the most successful modification is
the Cuckoo Optimization Method but it has a signifi-
cant increase in the algorithm complexity [20].

Closely related to swarm intelligence algorithms
are different types of older evolutionary algorithms
that are also population based. Many of the con-
cepts used to improve performance of evolutionary al-
gorithms can also be applied to algorithms based on
swarm intelligence. One of the common problems
is transition from global to local search i.e. moving
from wide search to a fine one localized near already
found good solutions [21], [22]. Another approach to
improving the performance of population based algo-
rithms is hybridization that combine more than one of
such algorithms [23], [24].

Population based algorithms are very suitable for
parallelization. This is due to the fact that such al-
gorithms always contain large number of population
members, each conducting very similar tasks. It has
been shown that even superlinear speed improvement
compared to the sequential version of the algorithm
can be achieved [25] by using the island based ap-
proach where separate colonies are executed in par-
allel.
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Until recently massive parallelization has been
reserved for supercomputers only, however nowadays
with the development of the powerful Graphic Pro-
cessor Units (GPU), it become available even on av-
erage personal computers. The GPU has evolved into
a highly parallel, multi-threaded, many-core proces-
sor with tremendous computational power and very
high memory bandwidth. Several tools have been
created for developing software to exploit the power
of the GPU like NVIDIAs CUDA (Compute Unified
Device Architecture) [26], Khronos Group’s Open-
CL (Open Computing Language) [27] and Microsoft
DirectCompute which is a part of Microsoft DirectX
[28].

In this paper we focus on the parallelization of the
Cuckoo Search algorithm on the GPU using CUDA.
Previously the parallelization of the CS has been done
using multi-core processors [29], but that approach
yields much lower number of threads that are executed
simultaneously, compared to the possibilities of the
GPU.

In our algorithm parallelization is used on three
levels. First, parallel reduction is used to speedup the
calculation of the fitness function for colony mem-
bers. Second, all members of one colony are calcu-
lated in parallel in one block which contains several
threads. Finally, several colonies are run in parallel in
separate thread blocks.

The developed algorithm has been designed in a
way to comply with CUDA memory access restric-
tions. We show in our tests that proposed approach
greatly increases the speed of calculation giving sim-
ilar or slightly better quality results compared to the
sequential algorithm. Slightly better quality results
are achieved even though we only parallelized the ba-
sic version of the algorithm and did not introduce any
communication among parallel entities, which would
be another possibility. The improvement is due to
more systematic exploration.

The rest of the paper is organized as follows. In
the next section the sequential Cuckoo Search algo-
rithm is presented. The parallel version of this algo-
rithm is presented in the following section. In the final
section, experimental results and discussion are pre-
sented.

2 Cuckoo Search
Cuckoo search (CS) is an optimization algorithm that
has been inspired by the brood parasitism of some
cuckoo species. Cuckoos lay their eggs in the nests

of other host birds (of other species). The shape and
color of the cuckoo eggs have evolved to mimic the
eggs of the host. If host birds discover that the eggs in
the nest are not their own, they will either throw these
alien eggs away or abandon their nest and build a new
nest elsewhere. If the cuckoo eggs hatch, the cycle is
repeated.

This type of behavior has been converted to a
meta-heuristic called Cuckoo Search in the following
way. Each egg in a nest represents a solution, and
cuckoo egg represents a new solution. The idea is
to create new, similar and potentially better solutions
(cuckoos) to replace the not-so-good solutions in the
nests. In the simplest form, each nest contains one
egg.

CS is based on three idealized rules:

1. Each cuckoo in the colony lays one egg (solu-
tion) at a time, and dumps it in a randomly cho-
sen nest.

2. The best solution will be carried to the next gen-
eration.

3. The number of available hosts nests is fixed, and
the egg laid by a cuckoo is discovered by the host
bird with a probability pa. The discovering (dis-
carding) operation is only done on some set of
worst nests.

These rules can be converted to the standard CS
algorithm given by the following pseudo-code [8]:

Objective function: f(X), X = (x1, x2, .., xd)

Generate an initial population of n host nests;
while (t < MaxGeneration) or (stopcriterion)
do

Get a cuckoo randomly (say, i) and replace its
solution by performing Levy flight;
Evaluate its quality/fitness Fi

Choose a nest among n nests (say, j) randomly;
if Fi < Fj then

Replace j by the new solution;
end if

A fraction (pa) of the worse nests are abandoned
and new ones are built;
Keep the best solutions/nests;
Rank the solutions/nests and find the current
best;
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Pass the current best solutions to the next gener-
ation;

end while
Levy flight, noticed in the nature, which is a com-

bination of short and very long steps and sudden turns
is of essential importance for the CS algorithm; it is
performed using the following equation:

Xi(t+ 1) = Xi(t) + α
⊗

Levy(λ), (1)

where α (α > 0) represents a step size. This
step size should be closely related to the scale of the
test function that the algorithm is applied on. In most
cases, α can be set to the value of 1. The product⊗

is used for entry-wise multiplications. It has been
shown that the use of Levy flight is much more effi-
cient in exploring the search space as its step length
is significantly longer when a large number of steps is
performed compared to a simple random walk. The
random step length is drawn from a Levy distribution
which has an infinite variance with an infinite mean:

Levy ∼ u = t−λ , λ ∈ (0, 3] (2)

The consecutive positions generated through
steps/iterations of a cuckoo, create a random walk pro-
cess which obeys a power-law step length distribution
with a heavy tail.

Some of the main advantages of the CS algorithm
compared to other population based methods are that
it is relatively easy to implement and it has a very
small number of parameters that control the method.

3 Parallelization of the CS algorithm
In the parallelization of CS we assume that it is used
to optimize functions that are similar to standard test
functions like the Sphere, Rosenbrocks valley, Schwe-
fels and others. These functions are in the form of
sums that makes it possible to greatly increase calcu-
lation speed using parallel reduction.

3.1 Analysis

When analyzing the sequential CS algorithm we no-
tice two parts of it that are not natural to parallel algo-
rithms.

The first one is to generate one new solution Fi
from nest i and compare it to a single solution Fj that
corresponds to nest j. In the sequential algorithm this
is done to minimize the number of objective function

evaluations. In the case of parallel algorithm, in which
separate threads are dedicated to individual nests, this
is not an advantage for the calculation speed. The
reason for this is that if the fitness function is calcu-
lated for only one nest (thread), during that step all
other threads will be idle (a high level of divergence
amongst threads).

The second problematic part in the sequential CS
is the sorting of solutions corresponding to nests and
abandoning the worst pa fraction. In case of parallel
algorithm it is more natural to use a partial parallel
reduction for the maximization problem. If parallel
reduction is stopped at the third step we know that
all the values that have passed to this stage are greater
than at least 3 other elements which means they have a
high probability of belonging to the worst 25%. This
makes them suitable for change using Levy flight as
explained in the previous section. It is not of essen-
tial importance in the CS algorithm that the worst pa
fraction is abandoned since that stage is used just for
diversification of the search. What is important is that
the best solution is passed to the next generation and
that some ”relatively bad” nests are abandoned, which
is achieved with this reduction approach.

4 Tests and Results
In this section we compare the performance of the
sequential and our proposed parallelized CUDA im-
plementation of the CS algorithm. Both algorithms
are implemented using Microsoft Visual Studio 2010
combined with CUDA version 4.0 for the parallel im-
plementation. The calculations have been done on a
machine with Intel(R) Core(TM) i7-2630 QM CPU
@ 2.00 GHz, 4GB of DDR3-1333 RAM, with Nvidia
GTX 540M 1GB graphics card running on Microsoft
Windows 7 Home Premium 64-bit. The graphics card
had 96 CUDA Cores.

Due to the restraints given by the amount of
shared memory that a thread block can efficiently use,
the block size used in our implementation is 25x16.
The optimal size of the block has been calculated us-
ing the CUDA occupancy calculator [30]. The block
size means that each colony has 25 nests and that 16
threads are dedicated to each nest. In our tests we
first compare the quality of results, to verify that the
proposed approach does not degrade the performance.
In the tests we have used only three of the simpler
benchmark functions for which there is no necessity
for fine tuning of the algorithm which is common in
the improved versions of the CS. We did that since the
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Table 1: Comparison of quality of results achieved by sequential and parallel CS algorithm.
FunctionNumber of Parallel CS Sequential CS

Parameters Average Stdev. Best Average Stdev. Best
Sphere 5 3.54E-05 2.88E-05 4.11E-06 9.67e-13 1.36e-12 2.71e-14
Min=0 10 0.0055 0.0110 0.0004 5.34e-4 0.0021 0.0029

16 0.0383 0.0312 0.0050 0.1356 0.0476 0.0522

Rastrigin 5 0.7926 0.7712 0.0011 2.8088 0.8766 0.6566
Min=0 10 2.787 2.069 0.111 21.962 3.896 14.583

16 6.526 3.633 1.127 58.491 5.064 50.303

Schwefell 5 -2051.39 41.52 -2092.0 -1873.1 65.1 -2037.7
Min= 10 -3615.0 144.5 -4063.5 -3.094.3 162.9 -3434.1
-
418.9*NP

16 -5224.5 289.6 -5833.6 -4272.6 239.4 -4730.1

goal of our proposed approach is to significantly in-
crease the calculation speed and not to try to improve
the quality of results compared to the sequential CS
algorithm.

The sequential CS algorithm that is used for com-
parison is presented in the article [8]. The tests are
done on the standard test functions Sphere, Rosen-
brock’s valley, Schwefel’s function with 5, 10 and
16 parameters. In Table 1, we present the average
and best found solutions as well as standard deviation
for 25 independent runs of the algorithm with 10,000
evaluations for each test function. The values for the
sequential algorithm are calculated using the Matlab
code provided by Yang which has also been used in
article [8].

It is noticeable and very interesting that our par-
allel version of the CS algorithm in most of the test
cases outperforms the sequential version when qual-
ity of the results is considered. The expected reason
for this improvement, which we did not try to achieve
since we did not introduce any communication among
parallel colonies, is that more diverse solutions are
generated and tested. This is the consequence of our
modification where lower quality solutions (nests) are
not simply overwritten but are used in the creation of
new ones. The newly created nests are a linear com-
bination of the good and the lower quality solution,
and in a sense represent a transition between them.
This has a consequence that in a relatively small num-
ber of iterations, the lower quality solution becomes
very close to the good one, but the space between

them will also be checked. The number of interme-
diate solutions checked is low enough not to decrease
the effectiveness of the basic algorithm, but provides
a more systematic exploration of the solution space.
The parallel algorithm performs worse in the case of
the Sphere function that we believe is due to the fact
that in our implementation the step in the Levy’s flight
does not decrease fast enough.

In the second part of our experiments we ana-
lyze the calculation speed of our parallel algorithm
and the sequential one. In Table 2, we compare the
time needed for the execution of 25 CS algorithm runs
when 100,000 function evaluations are conducted for
each of the test functions.

For these tests we have implemented the sequen-
tial algorithm given by Yang using C++. From the
results in Table 2, we can see a tremendous decrease
in calculation time of even 10-25 times. The big dif-
ference in the level of speedup: 10 times in the case
of 5 parameters and 25 times in case of 16 parame-
ters, is due to the use of a fixed block size in all of
our tests. This has been done for simplicity of imple-
mentation. In the case of smaller problems with only
5 parameters a large number of threads is idle dur-
ing the program execution. This dramatic speedup is
similar to the case of parallelization of the PSO algo-
rithm given in article [31]. This parallelization of PSO
using CUDA also involves the use of multiple threads
for function evaluation for individual colony members
using parallel reduction.
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Table 2: Comparison of execution speed of the se-
quential and parallel CS algorithm for 100,000 func-
tion evaluations.

Function Number of Execution time
Parameters Sequential Parallel

Sphere 5 15.32 1.42
10 20.52 1.42
16 27.34 1.43

Rastrigin 5 17.44 1.50
10 22.21 1.50
16 33.50 1.51

Schwefell 5 19.43 1.51
10 24.45 1.51
16 35.67 1.52

5 Conclusion

In this paper we have presented a massive parallel
version of the CS. The implementation is done using
CUDA for execution on the GPU. The new algorithm
consists of parallelization on several levels: first nu-
merous threads are used for evaluating fitness func-
tion for individual nests in the colony, all the nests in
one colony are executed in parallel and finally several
colonies are simulated at the same time. The original
sequential algorithm has been significantly modified
for this parallel implementation. The proposed paral-
lel algorithm exhibits significant decrease in calcula-
tion time of even 25 times compared to the sequen-
tial CS algorithm. Since our proposed algorithm has
also been able to improve the quality of results for the
same number of objective function evaluations even
though that was not the target of this research, the fu-
ture research can include introduction of inter-colony
communication that would further improve the quality
of the results.
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