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Abstract: - This paper presented a computational framework of interaction analysis for an EDS (electro-
dynamic suspension) maglev train traveling over a suspension bridge shaken by horizontal earthquakes. The 
suspended guideway girder is modeled as a single-span suspended beam and the maglev train traveling over it 
as a series of maglev masses. To tune the magnetic forces in a maglev suspension system, an on-board hybrid 
LQR+PID controller is designed to control the dynamic response of a running maglev mass. Then the 
governing equations of motion for the suspended beam associated with all the controlled maglev masses are 
transformed into a set of generalized equations by Galerkin’s method, and solved using an incremental-iterative 
procedure. Numerical investigations demonstrate that when a controlled maglev train travels over a suspended 
guideway shaken by horizontal earthquakes, the proposed hybrid controller has ability to reduce the vehicle’s 
acceleration response for ride quality. 
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1 Introduction 
In the past one decade, various dynamic interaction 
models of maglev/guideway coupled system were 
developed by the researchers from different 
countries. Most of them focused on the vibration of 
a maglev vehicle running on a flexible guideway 
system [1-5]. Cai and Chen [1] provided a literature 
review for various aspects of the dynamic 
characteristics, magnetic suspension systems, 
vehicle stability, suspension control laws of 
maglev/guideway coupling systems. Concerning the 
interaction response of a maglev train traveling over 
a flexible guideway girder, Cai et al. [2] pointed out 
that a concentrated-load vehicle model would result 
in larger response on the vehicle/guideway system 
than a distributed-load one. Zheng et al. [3,4] 
developed two kinds of vehicle/guideway coupling 
models with controllable magnetic suspension 
systems to observe the phenomena of divergence, 
flutter, and collision on the dynamic stability of a 
maglev-vehicle traveling on a flexible guideway. 
Zhao and Zhai [5] simulated a TR06 carriage as a 
ten-degree-of-freedom (10-dof) rigid vehicle model 
to investigate the ride quality of a maglev vehicle 
traveling on elevated guideways. In the latest study, 
Yau [6,7] proposed an on-board PI controller to 
control the interaction response of a maglev vehicle 
running on flexible guideways by using an 

incremental-iterative procedure. However, rather 
limited research works seem available to conduct 
the influence of seismic ground motion on 
interaction behaviour of a maglev train crossing a 
suspended guideway.. 

The objective of this study is to present a 
computational framework of interaction analysis 
using an incremental-iterative procedure to compute 
the dynamic response of a controlled maglev train 
travelling over a suspended guideway shaken by 
horizontal earthquakes. Control of levitation forces 
between the magnet and guide-rail requires the 
guideway clearance be continuously monitored. 
Thus a hybrid LQR+PID controller is designed to 
meet the performance criteria of desired workable 
air gaps and restricted acceleration amplitudes for a 
running maglev vehicle. Considering the shaking 
effect of horizontal ground motion, the coupled 
equations of motion for maglev vehicle/guideway 
system are formulated using a dynamic interaction 
model of a single-span suspended beam carrying 
multiple moving maglev masses. Then the 
governing equations of motion for the suspended 
beam associated with all the controlled maglev 
masses are transformed into a set of generalized 
equations by Galerkin’s method and solved by the 
Newmark method in the time domain.  
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From the numerical results, although the 
inclusion of horizontal seismic ground motion may 
result in a significant amplification on both dynamic 
responses of the vehicle/guideway interaction 
system, the proposed hybrid controller has the 
ability to achieve the performance criteria of 
travelling safety and ride quality through continuous 
air-gap monitoring and sustaining acceleration 
adjustment.  
 

 
Fig. 1  Suspended guideway traveled by a maglev 

train. 
 

2 Problem Formulation 
Figure 1 shows a schematic diagram for an EDS 
maglev train running on a suspended guideway. 
This study will model a maglev train as a series of 
maglev masses and focus on the vertical response of 
the maglev masses traveling over a single-span 
suspended guidedway. Based on the deflection 
theory [8,9] that can take into account the additional 
cable tension of a suspended beam due to live loads, 
appreciable simplifications for the suspended 
guideway and maglev vehicles are outlined as 
follows:  
(1) the suspended guideway girder is modeled as a 
linear elastic Bernoulli-Euler beam with uniform 
cross section;  
(2) as shown in Fig. 2, the bridge towers are 
assumed so rigid that their deformations are 
negligible;  
(3) the suspension cable can carry all the dead loads 
of the stiffening girder with the aid of inextensible 
vertical hangers so that the suspended beam is in an 
un-stressed state before the action of live loads;  
(4) the maglev train passing over the suspended 
beam is simulated as a sequence of moving maglev 
masses with regular intervals;  
(5) only the horizontal ground motion in 
longitudinal direction along the guideway is 
considered;  
(6) there is no time delay between the input voltage 
and output current in the maglev suspension 

system.

 

Fig. 2 Model of a series of maglev masses running 
on a suspended beam. 

 
 
2.1 Governing equations 
Based on the deflection theory for small 
deformations of suspension bridges [8,9], the 
equation of vertical motion for a suspended beam 
carrying multiple moving maglev masses is given 
by: 
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where ( ) ' ( ) / x• = ∂ • ∂ , ( ) ( ) / t• = ∂ • ∂ɺ , m = mass of 
the beam and cable per unit length along x-axis, c = 
damping coefficient, fk = additional control force 
induced by a hybrid controller, Gk = control 
magnetic force, ik = control current, hk = levitation 
gap, u(x,t) = vertical deflection of the beam, EI = 
flexural rigidity of the beam, T = horizontal 
component in the initial cable tension (due to dead 
loads), T∆ = additional horizontal component in 
cable force due to external loads, ( )δ •  = Dirac's 
delta function, H(t) = unit step function, tk = arrival 
time of the kth maglev mass into the beam, k = 1, 2, 
3, …, Kth moving maglev mass on the suspended 
beam, tg = time lag for the first maglev mass 
entering the suspended beam, and p(x,t) = loading 
function of moving maglev masses. Consider the 
shaking effect of horizontal seismic support motion 
acting on the rigid bridge towers shown in Fig. 2, 
the time-dependent boundary conditions for the 
suspended beam with hinged ends are given by: 
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where (dx0, dxL) represent the horizontal support 
movements at the left and right bridge towers, 
respectively. By including the horizontal support 
movements, an additional horizontal component 

T∆  in the cable due to external excitation is equal 
to[25] 
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in which Ec = elastic modulus of the cable, Ac = area 
of the cable, and Lc = the effective length of the 
cable. Substituting Eq. (3) into Eq. (1) yields the 
following equation of motion for a suspended beam 
under the simultaneous action of multiple moving 
maglev masses and horizontal support movements 
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As shown in Eq. (4), the horizontal ground motion 
may affect the vertical vibration of a suspended 
beam through multiple support movements, that is, 

0x xLd d≠ . Since the increment of horizontal 

component of cable force in Eq. (3) is dependent on 
both the beam deflection u(x,t) and horizontal 
support movements (dx0, dxL), the integro-differential 
equation of motion in Eq. (4) is non-linear in nature 
because of the presence of sT∆ .  

 
2.2 Control equation of the maglev system 
The control equation of the maglev mass with LQR 
control algorithm is given by [8]: 

2 1 0( , ) ,k k k k k kMy y y G i h pρ ρ+ + = −ɺɺ ɺ     (6) 

with 

( )1 2/ , 2 / 1/ .b bk R M k R Rρ ρ= = +    (7) 

and R the weighting parameter for the input control 
force. Observing the term 1/R in Eq. (19), it 
indicates that if R approaches to a very large value, 
i.e., 1/ 0R → , Eq. (20) is reduced to the initial 
equation of motion with less input control gains to 
the controlled maglev mass. Moreover, the designer 
may select a pair of suitable stiffness and damping 
coefficients to reduce the vehicle’s response to 
various degrees by trying different combinations of 
weighting parameters (kb,R). 
     By the theory of electromagnetic circuits, the 
electromagnetic equation of magnet current and 
control voltage for the kth magnetic wheel in the 
magnetic suspension system is given by [8] 
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where 
0 02κΓ = = initial inductance of the coil 

winding the suspension magnet, R0 = coil resistance 
of electronic circuit, and Vk = control voltage. To 
conduct the dynamic response of mgalev 
vehicle/guideway system subject to ground 
settlement, an on-board PI controller with constant 
tuning gains is employed for the moving maglev 
vehicle. On the other hand, the control voltage Vk 

can be expressed using PID tuning algorithm as [11-
13] 
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where Kd = derivative gain, Kp = proportional gain 
and Ki = integral gain. Let us adopt the variable 
transformation as /k k ki hγ = , and the error function 

of 
0 0 0/ /k k k ke i h i h γ γ= − = −  in the control process. 

Then substituting Eq. (9) into Eq. (8) and 
differentiating this equation with respect to time, 
after some mathematical manipulation, one can 
achieve the following differential equation for 
control error function 
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With the aid of control error function ek and 

0 0 0/i hγ =  defined previously, the equations of 

motion in Eqs. (3) and (4) for the kth maglev mass 
equipped with an on-board hybrid LQR+PID 
controller are rewritten  
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of which the displacement vector {uv,k}, force vector 
{ fv,k}, and structural matrices of [kv,k], [cv,k], and [mv,k] 
are given as follows: 
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3 Problem Solution 
According to the homogeneous boundary conditions 
shown in Eq. (2), the dynamic deflection of the 
suspended beam can be approximated by: 
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where qn(t) means the generalized coordinate 
associated with the nth assumed mode of the 
suspended beam. By Galerkin’s method, one can 
transform the equation of motion for the suspended 
beam in Eq. (4) into the following generalized 
system equations. Then, the nth generalized 
equation of motion of the suspended beam is: 
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where 
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with /n n v Lϖ π= . It is noted that the generalized 

loading function pn(t) in Eq. (16) is related to the 
control levitation forces obtained from Section 2. 
For this reason, an iterative method has to be carried 
out for solving the dynamic response of the maglev 
mass/guideway coupling system. 
 
 

4 Numerical Studies 
Because of the motion-dependent nature of 
electromagnetic forces, the nonlinear dynamic 
analysis of the maglev vehicle/guideway system 
needs to be solved by iterative method. The 
procedure of incremental-iterative dynamic analysis 
conventionally involves three phases: predictor, 
corrector, and equilibrium checking [6]. Details 
concerning the incremental-iterative procedure for 
nonlinear dynamic analysis of vehicle-bridge 
interaction are available in Ref. [6].  
 Prior to investigating the dynamic response of 
the maglev vehicle/guideway system subject to 
horizontal ground motion, a TR06 maglev vehicle 
model referred to as Ref. [5] is selected to simulate 
its dynamic behavior running on a single-span 
concrete guideway girder with smooth surface. Let 
us represent the TR06 maglev vehicle as 8 lumped 
maglev masses with identical intervals (d1 = d2 = 3m) 
moving at constant speed of 400km/h [5]. The main 
data for the TR06 maglev vehicle model and the 
guideway girder [5] are given as follows: EI = 
24.56x106kNm2, L = 24.854m, m = 3760kg/m, M = 
7.6t, h0 = 8mm, i0 = 37ampere(A), and R0 = 
1.1ohm(Ω ).  
 As the schematic diagram of Fig. 2, a series of 
moving maglev masses (4 cars simulated by 8 
lumped masses) are crossing a single-span 
suspended beam at constant speed v. The properties 
of the suspended beam and maglev mass unit are 
listed in Tables 1 and 2, respectively. In Table 1, the 
symbol of fi represents the ith modal frequency of 
the suspended beam. Generally speaking, the 
acceleration response of vehicle-bridge system is 
usually used to evaluate the ride quality and 
manoeuvrability of high-speed ground transport 
system. In this study, the use of first 16 modes is 
considered sufficient to compute the dynamic 
response of a suspended beam under the action of 
multiple moving loads. For this reason, the same 
number of modes will be used in all the examples to 
follow. Moreover, as the passage frequency (= v/d) 

of train loadings with regular interval (d) matches 
any of natural frequencies (fi) of a bridge, the 
resonant response of the bridge will be developed 
[14,15], and the corresponding speed is denoted as 

, =res i iv f d . This is so called resonance 

phenomenon for train-induced response of railway 
bridges. In the following numerical examples, the 
levitation gap (hk) of any of the moving maglev 
masses should be always positive for running safety. 
. 

Table 1.  Properties of the suspended beam. 
L 

(m) 
EI 

(kN-m2) 
EcAc 
(kN) 

m 
(t/m) 

c 
(kN-

s/m/m) 

y0 
(m) 

EcAc /Le 
(kN/m) 

80 2.96x107 1.6x107 5 1.88 8.8 1.82 x105 
 

Table 2.  Properties of moving maglev mass 
d d1 

(m) 
d2 

(m) 
Mv 
(t) 

mw 
(t) 

i0 
(A) 

R0 

( Ω ) 
25 20 5 18 2 25 1.0 

 
Table 3.  PID optimal parameters based on the Z-N 

tuning method. 
Type h0 

(m) 
Kcr Tcr 

(s) 
Kp K i Kd 

MG-1 / MG-2 0.15 / 0.10 1.2 0.31 0.72 4.65 0.047 

 

4.1 Maximum acceleration response analysis 
Let us use the optimal PID parameters listed in 
Table 3 to tune the control voltage of the maglev 
suspension system. By ranging the running speeds 
from 150km/h~350km/h with an increment of 
5km/h, the computed maximum acceleration 
responses (av,max) of MG-1 and MG-2 against the 
speed (v) have been drawn in Fig. 3. Such a plot will 
be called av,max–v plot in the following examples. 
The numerical results indicate that the acceleration 
amplitude reaches its maximum value at the first 
resonant speed of 218km/h but is suppressed at the 
second resonant speed of 245km/h. One reason for 
this is that as a row of moving masses, with regular 
intervals of (d1 = 20m, d2 = 5m) far smaller than the 
guideway span (L = 80m), travel over a suspended 
beam, the simultaneous presence of multiple maglev 
masses on the guideway may produce a suppression 
action on the first symmetric bending mode 
(i.e., ), making the mid-span acceleration of 
the suspended guideway less severe compared with 
the first resonant case involving the anti-symmetric 
mode. Such a phenomenon can be observed in the 
following illustration. Consider the maximum 
acceleration response amplitude (ab,max) along the 
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suspended beam (x/L) under the action of MG-1 and 
MG-2 moving with the first two resonant speeds, 
i.e., v1,res and v2,res, respectively. The corresponding 
ab,max–x/L plots have been drawn in Fig. 4. As can be 
seen from the resonant and sub-resonant peaks, the 
maximum acceleration response along the 
suspended beam with respect to the first two 
resonant speeds of 218 and 245km/h are governed 
by the anti-symmetrical and symmetrical modes, 
respectively. But the mid-span acceleration 
amplitude of the beam is significantly suppressed at 
the second resonant speed of 245km/h. 
 

1.5 2.0 2.5 3.0 3.5

Speed (100km/h)

0.00

0.25

0.50

0.75

1.00

M
a

xi
m

u
m

 a
cc

e
le

ra
tio

n
 (

m
/s2 
) MG-1 (h0 = 0.15m)

MG-2 (h0 = 0.10m)

with seismic inputs

w/o seismic inputs
v1,res= 218km/h v2,res= 245km/h

0.5 m/s2

 
Fig. 3 av,max–v plot for the maglev masses. 
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Fig. 4 Seismic effect on ab,max–x/L plot 

 
4.2 Effect of horizontal ground motion 
To investigate the influence of seismic ground 
motion on interaction response of maglev-
vehicle/guideway system, the far-field ground 
motion recorded at free-field station (TAP003) 
during the 1999 Chi-Chi Earthquake in Taiwan [19] 
are used to simulate the seismic support inputs 
acting on the suspended guideway. The histogram of 
ground displacement containing the EW horizontal 
component has been plotted in Fig. 12. As can be 
seen, the intensive zone of horizontal ground 
movements appears nearby 25s. In order to let the 
rear part of the maglev masses moving on the 
suspended guideway has the possibility to 
experience the action of peak ground motions in the 
duration between 25s and 28s, the critical time of 
25s is employed for the maglev train model to start 
entering the gudieway girder in the following 

examples. Besides, suppose the bridge foundations 
are anchored to bedrock in a rock site with a seismic 
wave speed of 1000m/s and the ground motion at 
the right bridge support has a time lag of L/1000 (= 
0.08s) behind the left one.  
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Fig. 5 Histogram of EW horizontal ground 

displacement of TAP003 Station. 
 
Let us use the TAP003-EW seismic inputs shown in 
Fig. 5 to shake the suspended beam. The ab,max–x/L 
plots with respect to the first two resonant speeds 
have been drawn in Fig. 4 as well, in which the 
maximum acceleration amplitudes are totally 
amplified and slightly greater than 0.5g (= 4.9m/s2). 
Obviously, such excessive oscillations in the 
vibrating suspended beam will be feedback to the 
maglev mass system over it. The corresponding 
av,max–v plots for MG-1 and MG-2 have been 
depicted in Fig. 3 as well. As can be seen from the 
av,max–v plots denoted by “with seismic inputs”, the 
maximum acceleration amplitudes of the maglev 
masses are totally amplified due to seismic wave 
passage effect.  
     From the present study, the av,max–v plots with 
seismic inputs in Fig. 3 indicate that most of which 
have exceeded the upper bound of coded 
acceleration amplitude of 0.05g (= 0.49 m/s2) [5]. 
Besides, the vertical working air gap of the magnet 
motion in practice for a moving maglev vehicle 
should be restricted within a desired workable range. 
For this consideration, a further study will be carried 
out by adopting another control algorithm with 
constraint rules. 
 
 

6 Conclusion 
This paper presented an iteration-based 
computational procedure for maglev 
vehicle/guideway interaction system subjected to 
horizontal earthquake. From the numerical studies, 
the following conclusions are reached:  
(1) The PID+LQR tuning algorithm incorporating 

with Z-N rule is available to control the 
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magnetic forces of a running maglev train. 
(2) As the passage frequencies (v/d) caused by an 

EDS maglev train traveling over a suspended 
guideway girder coincides with any of the girder 
frequencies, resonance will be developed on the 
girder. Such a phenomenon has been observed 
from the ab,max–x/L plots, in which higher modes 
are also excited. 

(3) Because of the trait of large air gaps, an EDS-
type maglev vehicle offers enough guideway 
clearance to accommodate additional vertical 
motion of the magnets induced by earthquakes. 
Thus the dynamic responses of both the maglev 
mass systems, MG-1 (h0 = 0.15m) and MG-2 (h0 
= 0.1m), are quite close. 
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