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Abstract: This paper presents new techniques for simultaneous localization of multiple mobile robots using di-
rectional received signal strength (RSS). The RSS data is collected from the XBee wireless module with ZigBee
technology. Directional RSS was achieved by a corner reflector antenna installed on the top of each mobile robot.
The design parameters of the antenna were chosen by experiments and physical constraints of the robots. To map
the RSS data to physical distance values, we first filtered the data using the well-known RANdom Sample Consen-
sus (RANSAC) technique and then applied the least square regression method to further remove a large amount of
outliers. In addition, real-time multi-robot localization and path planning are achieved by using an online statis-
tical filter. The algorithm first identifies well-conditioned RSS values and sets a dynamic step size for trajectory
generation. The online statistical filter was experimentally evaluated by comparing with two other algorithms, i.e.,
the Kalman and particle filters, and showed better performance than the other filters in terms of processing time.
Preliminary evaluation on the directivity achieved by the corner reflector revealed that the mean orientation error
of −4.01◦.

Key–Words: Received signal strength (RSS), random sample consensus (RANSAC), multi-robot localization, an-
tenna design, mobile robots

1 Introduction
Localization is one of the most challenging topic in
the area of multi-robot systems and applications. An
extensive amount of research has been conducted on
outdoor navigation and localization using the Global
Positioning System (GPS) [1, 2]. Research on indoor
applications has somewhat lagged behind due to dif-
ficulties involved in wireless networking, pose mea-
surements, and reliable data transmission [3].

Camera-based localization for both indoor and
outdoor applications is one of the widely accepted
methods for mobile robotic systems while its perfor-
mance can be often sensitive to the camera charac-
teristics (e.g., resolution and frame rate) and external
factors (e.g., lighting and shadow) [4, 5]. In general,
a high-speed processor is also required to handle on-
board image processing. Ultrasound, infrared (IR) ra-
dio frequency identification (RFID) and radio-signal-
based technologies (e.g., time difference of arrival
(TDOA) and received signal strength (RSS)) have also
been employed for indoor/outdoor localization of mo-
bile robots. These technologies can provide a reliable
communication range while requiring a much lower
level of data processing than the camera-based ap-
proach. Ultrasound-based localization requires mul-
tiple pairs of ultrasonic emitters and receivers, as well

as an additional RF (radio frequency), or equivalent,
system in order to synchronize the receivers. Com-
pared to the camera-based localization, this system
can be easily implemented at a relatively low cost [6].
However, it also presents several limitations such as
multi-path interferences, which may disturb the dis-
tance measurements between the emitter and receiver,
and the exponentially increasing complexity when im-
plemented in large scale [7].

IR-based systems are commonly found in com-
mercial applications [8]. While IR cameras are less
sensitive to external factors such as lighting or shadow
when compared to regular cameras, it still requires
line-of-sight in order to collect information for lo-
calization. In addition, IR proximity sensors usually
work within a range of a meter that only allows short-
distance localization. RFID tags and readers commu-
nicate via magnetic coupling and read the range be-
tween the tag and the reader. Passive tags, however,
limit the reading range to less than 4 inches in general.
Ultra high-frequency (UHF) RFID reader can extend
the reading range up to 100 ft, but the modules are
typically very expensive (e.g., $500-2000 per mod-
ule). Regarding the radio signal based localization,
some studies reveal that TDOA shows better sens-
ing range and resolution characteristics than RSS [9].
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However, it usually uses a sound source for measur-
ing the TDOA and therefore can be more susceptible
to environmental barriers than a radio signal. TDOA
may use a radio signal source instead of sound while
requiring additional hardware implementation to en-
able high-speed data processing.

RSS-based localization techniques are well-
suited for multiple mobile robot applications due to
their simplicity, easy identification of multiple robots,
and communication and distance sensing capabilities.
There still exist several technical challenges: i) noisy
raw RSS data and inconsistent radiation patterns; ii)
nonlinearity between RSS data and physical distance
values; iii) low signal transmission power limiting the
range of distance measurements; iv) difficulty in si-
multaneous mobile localization; and v) no informa-
tion on orientation. In an attempt to address these
challenges, several filtration techniques, such as a par-
ticle filter [10] or an extended Kalman filter (EKF)
[11], have been applied to smoothen the noisy RSS
data. Distance-only measurements often requires an
additional algorithm, such as triangulation, to estimate
the position [12]. Range-only SLAM (Simultaneous
localization and mapping) can perform position es-
timation without such additional algorithm [13]. To
obtain the orientation in addition to the distance, the
system may utilize additional hardware such as mag-
netic landmarks for magnetic field based global local-
ization [14]. Range-only SLAM may utilize an odom-
etry sensor, such as a camera, or kinematics of a mo-
bile robot to detect orientation.

In terms of inconsistent radiation patterns, reflec-
tors are widely employed to modify the radiation pat-
terns or increase RSS for low-power radio localiza-
tion [15, 16, 17]. A recent study investigated the ac-
curacy of RSS-based indoor localization by identify-
ing the channel parameters by applying linear regres-
sion [18]. In addition, the Signal-Index-Pair method
was proposed to preprocess the data to enhance the
precision of the NN (Neural Network) locating model
[19]. Graefenstein et al. [15] proposed a system that
maps RSS to distance and direction measurements
with improved localization performance compared to
the direction-only techniques. The system achieved
improved directivity of the radiation pattern by adding
a simple aluminum metal plate as a reflector antenna.
In terms of the antenna reflector design, a parabolic
reflector with rotational actuator is employed and ex-
perimentally evaluated to estimate direction of arrival
(DoA) of radio signal [17]. However, no extensive
research has been conducted in the area of the an-
tenna reflector design for RSS-based localization of
networked mobile robots.

This paper presents a localization method for
multiple mobile robots using filtered directional RSS

as illustrated in Fig. 1. Antennas are designed to in-
crease directivity of the radiated signal patterns, but
have been minimally used for RSS-based localization.
In our system, however, a single corner reflector is
designed to better estimate the relative orientation of
the target. For the collected raw RSS data, robust pa-
rameter estimation is conducted using a well-known
path loss model [20] for distance measurements. The
RANdom Sample Consensus (RANSAC) method is
first applied to filter out outliers in the data. Selected
inliers are then fitted into a least square model. Simul-
taneous localization involves two steps: i) real-time
data filtration to identify well-conditioned RSS data
for pose (position and orientation) estimation; and ii)
path planning between the tracker and the target. The
Kalman or particle filter is frequently used for noise
cancellation to solve this specific problem [21, 22].
However, these filters require processing time for pre-
dicting and correcting the data. To reduce the com-
putational costs, a simple statistical filter is proposed
in this paper and its processing time is evaluated by
comparing with the methods using the Kalman filter
and the particle filter.

Figure 1: Localization is realized by 1) improving the
signal strength and directivity by adding a corner re-
flector; 2) estimating the parameters; 3) identifying
well-conditioned RSS data; and then 4) controlling
the robot to locate the stationary/mobile target.

2 Signal Reflector Design

Figure 2: A corner reflector with a dipole located in
between two plates

2.1 Infinite-sized corner reflectors
Among various reflector candidates, a corner reflec-
tor is considered due to its simplicity in design and
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large azimuth response width compared to a flat or
parabolic reflector [23]. Assuming that the robots
move horizontally on a flat surface propagating the
signal in the azimuth angle, a corner reflector is suffi-
cient to receive the signal along the azimuth direction.

A general design of the corner reflector contains a
dipole antenna located between the two infinite-sized
flat plates which limits the radiation patterns. The an-
gle between the two plates may vary, but we selected
90◦ to ensure maximum directivity while maintaining
the communication range. Although a smaller angle
would provide better directivity, it limits the commu-
nication range significantly [24]. When the angle be-
tween the two plates are fixed at 90◦, the maximum
directivity (ρmax) is found at the half of the given RF-
module’s wavelength [24].

2.2 Directivity vs. reflector size

Figure 3: Experimental results of RSS and directivity
ρ versus d, measured at D= 36 [in] (distance from the
target)

It is physically impossible to build an infinite-
sized antenna. For multi-robot applications, it can be
further constrained by the physical size of the robot
in order for not to interfere the robots’ trajectories.
To observe the changes in signal directivity due to
the size of the corner reflector and the location of the
dipole, six different sizes were tested experimentally
for varying d (distance from the corner to the dipole):
(1× 1),(2× 2), · · · ,(6× 6) [in2]. Fig. 3 shows RSS
values and ρ (directivity) versus d for six selected
finite-sized reflectors using a 2.4 GHz RF-module
with 5 [in] of wavelength. Higher RSS and ρ values
were observed for larger reflectors. More specifically,
the maximum radiation intensity was found around
d = 2.5 [in] for the reflectors larger than (2×2) com-
plying with the infinite-size antenna model described
in [24]. On the other hand, the smaller reflectors
showed that ρmax is near the vertex. This may be re-
sulted by diffracted signals captured by the dipole near

the corner. Moreover, the signals are hardly blocked
on the other side of the reflector causing a lower di-
rectivity and RSS for the smaller reflectors.

2.3 Mobile platform with a corner reflector
Fig. 4 shows the mobile platform where the developed
RSS-based localization techniques are implemented.
The robot is about 3 inches (in) along each dimension.
This mobile robot is equipped with a differential drive
system, an onboard microprocessor (ATmega328), a
magnetometer, batteries (7.4V lithium polymer), and
an XBee wireless module with ZigBee network tech-
nology. The quadrature encoder provides a resolution
of 48 counts per revolution which corresponds to a
linear resolution of slightly under 3mm. The mag-
netometer (HMC5883L, Honeywell) measures the di-
rection of the magnetic field, providing digital values
through the I2C interface, so that the robot can recog-
nize its absolute orientation. In indoor environments,
the magnetometer does not provide an accurate orien-
tation as the magnetic field is often distorted. How-
ever, it can sufficiently provide low-resolution angles,
for example 45◦ of rotation.

The robot contains two DC gear motors installed
for driving the system and enabling the tracked wheels
360◦ of rotation without translational motion. While
a larger reflector seems to achieve a better directiv-
ity and detection range, the size of the physical robot
shown in Fig. 4 is about 3×3×3 which constrains the
distance between the two outer edges of the plates to 3
[in] in order not to exceed the size of the robot. There-
fore, we selected W = H = 2 and located the dipole
near the corner, where d = 0.1 [in], which showed suf-
ficiently high values of RSS and ρ as shown in Fig. 3.

Figure 4: CAD drawing (left) and physical prototype
of the mobile robot (right).

3 RSS to Distance Mapping
3.1 Log-distance path loss model
The RSS measurement quantifies the received power
of wireless packets sent via the IEEE 802.15.4 pro-
tocol. In the real (free space) case, this value varies
inversely with the square of the distance and therefore
has been suggested as a means to estimate distances
between nodes in mobile sensor networks [9, 25]. In

Recent Advances in Circuits, Communications and Signal Processing

ISBN: 978-1-61804-164-7 268



order to map the RSS values to the distance measures,
we adopt the indoor propagation model based on the
log-distance path loss model given by [20]

L = L0 +10γ log10

(
D
D0

)
+Xg (1)

where L0 is the pass loss at the distance D0 measured
in decibel (dB), γ is the path loss exponent, and Xg
is a Gaussian random variable with zero mean and a
standard deviation, σ .

Fig. 5 (left) shows the mean RSS values of 10
samples measured at each distance between 2 to 130
[in] where the bar length indicates the standard de-
viation. The standard deviation tends to increase as
the distance becomes farther. Also, the RSS measure-
ments decreases monotonically until about 84 [in] and
starts to slow down afterwards. Fig. 5 (right) shows
that the RSS data is linearly dependent to the log10-
distance up to 101.7 ∼ 101.8, corresponding to 50∼ 63
[in]. Therefore, we consider the reliable range of
robot-to-robot distance measurements is up to 60 [in],
where it follows the log10-distance path loss model in
Eq. (1). The estimated parameters for this range are
computed by L0 =−19.96 dB, γ =−2.14, and d0 = 2.

Figure 5: RSS vs. distance measurements (left) and
log10-distance (right)

3.2 RANSAC with least sqaure regressions
One of the major advantages of using RSS for dis-
tance sensing is that it is already built in most radios
and therefore requires no additional sensing hardware.
However, recent work has showed that the inherent
inaccuracies of using RSS in practical environments
makes it almost useless for distance sensing without
significant preprocessing or computational resources
[25, 26]. RSS data typically involves a large amount
of outliers and therefore the data preprocessed through
the linear regression can only fall into a bad fit. To
address this problem, we first applied RANSAC [27]
which is an iterative method to estimate model param-
eters from a set of observations containing outliers. A

subset of measurements is randomly sampled, its av-
erage is computed, and finally all the other measure-
ments are tested against this average value. If mea-
surements fit well to the average, they are added to
the subset and rejected otherwise. To further remove
the outliers, we applied the least square method to the
RANSAC filtered data. Fig. 6 shows the RSS data
processed by the RANSAC and least square regres-
sion methods.

Figure 6: Inliers extraction from raw RSS data versus
distance (left) and log10-distance (right)

4 Online Filter and Path Planning
4.1 Online statistical RSS filter
For multiple mobile robot applications, online RSS
data processing and path planning using the processed
data are essential. While there exist several well-
known algorithms, such as the Kalman and particle
filters, that are proven to handle noisy measurement
data, these filters still require the data training process
which may not be desirable for real-time, embedded
applications.

To reduce computational costs, we developed a
simple, yet effective, online filtering algorithm based
on accumulated statistical data. This filter determines
well-conditioned RSS measurements for estimating
the target distance. The filtered RSS data is consid-
ered well conditioned if the sampled data forms a
Gaussian distribution. A previous work showed that
RSS data is non-Gaussian [28]. However, by adding
the corner reflector, our experiments showed that di-
rectional RSS data exhibit a Gaussian distribution in
a near field (less than 60 [in]). A non-Gaussian dis-
tribution is observed when two RF-modules are apart
from each other by more than 60 [in], or when there is
no corner reflector. The second case is obvious since
the radiation pattern is not symmetric.

The ‘GET RSS’ function shown in Algorithm
1 achieves well-conditioned RSS values by compar-
ing them with the mean-median-mode statistic met-
ric. Consecutive RSS values satisfy the normality if
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the mean, median and mode values are the same. To
be comparable with the RSS values given by integers,
the mean value is also rounded to a nearest integer.
It also eliminates the outliers if the values are not in
±2σ (95% confidence interval), where σ is the stan-
dard deviation.

Algorithm 1 Online RSS filter
1: procedure GET RSS(rss)
2: X̂ = sort(X); Xsd = std(X̂)
3: Xmean = round(mean(X̂))
4: Xmedian = round(median(X̂))
5: Xmode = round(mode(X̂))
6: if Xmean = Xmedian = Xmode then
7: RSS = Xmean

8: else
9: if rss−2Xsd ≤ rss≤ rss+2Xsd then

10: X ← rss
11: end if
12: end if
13: return RSS
14: end procedure

4.2 Online path planning
Algorithm 2 estimates the target distance by mapping
the RSS values into the euclidean or log10 distance.
If the estimated distance is less than Da, the shortest
distance threshold, the robot stops and waits for the
next task. Otherwise, the robot first scans RSS around
itself by rotating 360◦ for orienting the target. As the
corner reflector provides a significant RSS change ev-
ery 45◦ rotations, initial scanning is conducted at ev-
ery 45◦. Once the robot collects eight measurements,
it returns to the orientation where RSSmax was ob-
tained. The robot then moves forward with the step
distance, D(RSS), defined by

D(RSS) = 2 ·α ·10−(RSS+19.96)/21.4 (2)

where α is the ratio of the step distance to the esti-
mated distance. The step size is a function of RSS,
i.e. a longer step distance when the target is far away
and a shorter step distance when the target is close.
Constant values were determined by replacing L in
(1) with D. A smaller value of α results in a smaller
D(RSS). That means, the robot will take a greater
number of steps to reach the target. On the other hand,
a large α indicates a large D(RSS) implying that the
robot will move a rather large distance in a single step,
proportional to the exponential of RSS. In any case,
the robot will converge to the target as D(RSS) would
be fairly small near the agent. To find the optimal
value of α (0.2, 0.4, 0.6, and 0.8), we ran 10 simula-
tions for different values of α . The results showed that

the minimum number of steps were required to reach
the target when α = 0.4. This simulation does not take
account the step time, therefore it may not necessarily
reflect the time efficiency. However, experimental re-
sults measuring the total time for reaching the target
were highly correlated with the computed number of
steps (r=0.948, p<0.05).

Algorithm 2 Target Tracking
1: if D(RSS) < Da then Break
2: else
3: for i = 1 to 8 do
4: Rotate 45◦

5: RSS[i]← Get RSS
6: end for
7: RSSmax = max(RSS)
8: for i = 1 to 8 do
9: Rotate 45 ◦

10: if Get RSS ≥ RSSmax then
11: Move Forward with D(RSS)
12: Break
13: end if
14: end for
15: end if

5 Preliminary Evaluation
The developed algorithms were implemented in four
mobile robots (Fig. 4) and tested for the following ex-
perimental scenarios: 1) three robots tracking a sin-
gle mobile target, and 2) a single robot localizing
three stationary targets for mapping. Performance of
the proposed online statistical filter was evaluated by
comparing the task completion time with the Kalman
and particle filters as they are well-known leading fil-
ters in wireless sensor networks [29]. We also tested
the effectiveness of the corner reflector for localizing
the target by evaluating moving directions towards the
target at each step.

5.1 Evaluation of the online statistical filter
We have conducted experiments to validate the statis-
tical online filtering algorithm by analyzing the track-
ing time for different distances and comparing the re-
sults with the Kalman and particle filters. 10 to 60
inches of distance between the robot to the target were
considered and, for every 10 inches, tracking times
were repeatedly measured for 10 times and averaged.
As shown in Fig. 7, the proposed online statisti-
cal filter shows the shortest time to locate the target
among the three filters. The particle filter was some-
what better than the Kalman filter, but both of them
took significantly more time than the new statistical
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Figure 7: Tracking time [sec] vs. distance [in]: 10 ex-
periments are conducted at each distance for Kalman
filter, particle filter, and proposed statistical online fil-
ter.

filter. For the Kalman filter, process noise and ob-
servation noise models were tuned at wk ∼ N(0,Qk)
and vk ∼ N(0,Rk), where covariance Qk = 0.01 and
Rk = 0.08. In general, a particle filter requires a large
set of particles, but when the number of particles in-
creases, the system showed low-speed as we use low-
speed microprocessor. In our test, 16 particles showed
successful tracking with minimal particles. Fig. 7
shows trajectories of mobile robot moved from the left
to the right repeatedly for 20 times and its orientation
histogram toward the agent. The mean orientation er-
ror was about −4.01◦ while the interim trajectories
were also limited by < |±45|◦ as anticipated by the
properties of the corner reflector.

5.2 Fixed and mobile target localization
The presented algorithms were embedded in four
identical (but with different roles assigned) mobile
robots. First, three robots communicate with and track
a single mobile target. Second, a single mobile robot
locates three stationary targets by visiting one after
one. Fig. 8 (a) and (b) show experimental snapshots.
Among 10 trials in total, it showed a 80% success
ratio for the first scenario. Two trials were stopped
due to collision among the robots. The second sce-
nario demonstrated sequentially visiting the three tar-
gets successfully for all 10 trials. During the experi-
ments, signal obstruction was observed when the mo-
bile robots are lined up toward the target. Although
the robot eventually tracked the target, it took addi-
tional time for reaching the target.

6 Conclusion
This paper presented a directional RSS-based tech-
nique for multiple mobile robot localization. Adding

Figure 8: (a) Three mobile robots track the moving
agent; (b) Single tracker reaches each agent sequen-
tially.

a simple corner reflector to the antenna realized reli-
able detection of relative target orientation. Our ex-
periments conducted for selecting the design param-
eters of the corner reflector can be easily replicated
by others who wish to design their own corner re-
flector for a specific application to achieve the de-
sired sensing range and directivity. The developed
data processing algorithms, including RANSAC com-
bined with the least square regression method and
the online statistical filter, ensure the quality of the
data by effectively eliminating outliers and selecting
well-conditioned data for online processing. The pre-
sented path planning for the mobile robots utilizes a
dynamic step size determined by the RSS values in
which the robot makes a longer movement when it is
far from the target and make smaller steps when it is
near the target. Different strategies may replace the
current path planning scheme once fully investigated
and compared across different techniques. In addi-
tion, obstacle avoidance and collision-free trajectory
generation are important areas of exploration to fully
realize the effective multirobot localization and path
planning.
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