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Abstract: This paper presents design and implements the state-PI feedback controller for controlling the 
magnetic levitation system. First, a linear model that represents the nonlinear dynamics of the magnetic 
levitation system is derived by the feedback linearization technique. Then, the state-PI feedback control 
developed from the linear model is proposed. Results are compared between the conventional state feedback 
technique and the proposed method. The proposed control scheme introducing an integral element to work with 
the gain can effectively eliminate the state errors. In addition, we practically implemented the controller in an 
experimental magnetic levitation system and investigated its regulating performance. The experimental results 
show the effectiveness of the proposed method for disturbance dampening and stabilizing the system. 
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1 Introduction 
Magnetic levitation technology eliminates 

mechanical contact between moving and stationary 
parts. This implies that this technique also 
eliminates the friction problem. Therefore, they  are  
widely  used  in various  fields,  such  as  high-speed  
trains, magnetic bearings, vibration  isolation 
systems and so on. Magnetic levitation systems are 
inherently unstable and uncertain nonlinear 
dynamical systems. Therefore, it is always a 
challenging task to construct a high performance 
feedback controller to fix the position of the 
magnetic levitation system rapidly and exactly. In 
recent years, many proposals have been presented in 
literatures based on linear and nonlinear system 
models for controlling this system [1-3]. The 
standard linear techniques are usually based upon an 
approximation linear model by which a linear 
control law can be constructed to meet the design 
specification. A wide variety of control methods are 
proposed ranging from PID and classical state 
feedback controls to complex nonlinear and 
adaptive controls. Several advanced control 
algorithms are applied for controlling magnetic 
levitation system, such as model reference control 
[4], robust control [5], sliding mode control [6], 
feedback linearization method [7] etc. Recently, 
state-PI feedback [8,9] has been proposed for 
regulation problem of an LTI system. The concept is 

extended to stabilization control of a magnetic 
levitation system as reported by this paper is shown 
on Fig. 1.  

In this paper we consider stabilization control of 
a magnetic levitation system. First, the state-PI 
feedback control is applied to achieve stabilization 
and disturbance rejection via pole-placement. 
Second, a linear model representing the nonlinear 
dynamics of the magnetic levitation system is 
derived by the feedback linearization. The achieved 
results are compared with those obtained from the 
conventional state feedback approach. Section 2 
presents the designing of state-PI feedback 
controller. Section 3 gives a brief on model 
representation of a magnetic levitation system. 
Experimental results for stabilization of the 
magnetic levitation system follow in Section 4. 
Section 5 provides the conclusion.  
 

 
Fig. 1 Magnetic levitation system 
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2. Pole placement by state-PI feedback 
 Let’s consider a delay-free completely 
controllable LTI system described by 
 

u= +x Ax B& , 0( )t = 0x x    (1) 

 

where n∈x R  is the state vector, and u R∈  is the 
control input. ( )n n×A  and ( 1)n×B  are the system  
matrix and the control gain vector, respectively. 
From A, the characteristic polynomial can be 
written as 
 

1
1 1 0det( ) 0n n

n ns a s a s a s a−
−− = + + + + =I A L (2) 

 
Where 0 1[ ]na a a=a L , 0 det( )a = − =A  

( 1) det( )n− A  and 1 ( )na trace− = − −A . The control 

u of the state-PI feedback is 
 

( )u dτ τ= + ∫p IK x K x ,  (3) 

 

where , n∈p IK K R  are the designed gain matrices 

to achieve a desired closed-loop characteristic 
polynomial. The closed-loop system can be 
represented by Eq. (4). 
 

0

( ) ( )
t

dτ τ= + + ∫p Ix' A BK x BK x  (4) 

 
Eq. (5) represents the closed-loop characteristic 
equation, while Eq. (6) represents the prescribed 
characteristic polynomial. 
 

det[ ( ) ] 0s
s

− + − =I
p

BK
I A BK  (5) 

1 1
0 1 1 1( ) n n n

d n n ns s s s sα α α α α− +
− +∆ = + + + +L (6) 

 
It is noticed that the n-order of the open-loop 

system is increased by 1 due to the integral term. 
 
2.1 Frobenius canonical form 
The pole placement problem herein considers the 
Frobenius canonical form of a delay-free LTI 
system. Eq. (7) represents the state transformation 

-1,= =ξ Tx x T ξ ,   (7) 
 
where ( 1)n×ξ(t)  is the transformed state variable 

vector, and ( )n n×T  is the transformation matrix. 

The matrices ( )n n×cA  and ( 1)n×cB are the 

transformed system matrix and the control gain 
vector, respectively. Both matrices can be calculated 
as follows: 

-1,c cA = TAT B = TB ,    (8) 

where 
 

-1 Tn =  1 1 1T q q A q AM .  (9) 

 
The vector (1 )n×1q  in (9) is 

 

   
-1T

n c1q = e w ,    (10) 

 
in which cw  is the controllability matrix of the 

system (1) 
 

2 -1[ ]n=cw B AB A B A BL , (11) 

 

and the unit vector [0 0 1]Tn =e L . The 

Frobenius canonical form can be expressed as 
 

u= +c cξ A ξ B&
    (12) 

 
2.2 Pole placement for state-PI Feedback 
 The single-input LTI system (1) is assumed to 
be completely controllable, and B is of full column 
rank. State feedback through a PI controller can be 
achieved via the gain matrices K P and K I 
respectively. Note that due to the integral element, 
one additional closed-loop pole is needed. This 
imposes a condition for derivation of the gain 
matrices, and results in an increase in the order of 
the system by one. The system (1) with its 
Frobenius form of (12) is subject to the control input 

u = +pK x ( )dτ τ∫IK x  or
0

( )
t

u dτ τ= + ∫FFK ξ K ξ%  

in which [ , ] [ , , ]= Fp I FK K K K T% . There exist the 

following gain matrices to achieve a desired 
characteristic polynomial 0 1( )d s sα α∆ = + +L   

1 1
1 1

n n n
n n ns s sα α α− +
− ++ + +  

 
[ ]0 1 2 1n na a a a α−= −pK TM M M L M  

[ ]0 1 2 1nα α α α −= − − − −IK TM M M L M (13) 

 

See [8], Proposition 2.1, for proof of Eq. (13). The 
design procedures are as follows: 
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1.Calculate the transformation matrix for an n-order 

LTI plant using -1 Tn =  1 1 1T q q A q AL  

where -1T
n c1q = e w  , [0 0 1]Tn =e L  and 

2 -1[ ]n
c =w B AB A B A BL . 

2. Calculate the matrices cA  and cB  using 
-1

cA = TAT  and cB = TB  for the Frobenius form 

of (12). 
3. Assign the closed-loop pole locations of an n-
order for state-PI feedback, add one negative real 
pole having a fast time-constant (i.e. a negative real 
pole with a large magnitude) 
4. Determine the prescribed characteristic 
polynomial ( )d s∆ having the order of n  or 1n +  

corresponding to step 3. 
5. Calculate the gain matrices for state-PI feedback 
use (13). 
 
 

3. Magnetic levitation system 
 The magnetic levitation system is a magnetic ball 
suspension system which is used to levitate a steel 
ball on air by the electromagnetic force generated by 
an electromagnet. Consider a steel ball of mass M 
placed under an electromagnet at distance y as 
shown in Fig. 2. The objective of the control system 
is to keep the steel ball in a dynamic balance around 
its equilibrium point. The design of the suspension 
system presented here uses the electromagnetic 
attraction force. 

Mg

3

k i

y

 
Fig. 2 Ball suspension system. 

 

The magnetic ball suspension system can be 
categorized into two systems: a mechanical system 
and an electrical system. The ball position in the 
mechanical system can be controlled by adjusting 
the current through the electromagnet where the 
current through the electromagnet in the electrical 
system can be controlled by applying controlled 
voltage across the electromagnet terminals, thus the 

ball will levitate in an equilibrium state. But it is a 
nonlinear, open loop, unstable system that demands 
a good dynamic model and a stabilized controller. 
Electromagnetic force produced by current is given 
by the Kirchoff’s voltage law. The voltage equation 
of the electromagnetic coil is given by 
 

( )v Ri L y i= + &     (14) 
 
where  v  : input voltage, 
  i   : winding current, 
  R  : winding resistance and 
  L : winding inductance. 
 
The total inductance L is a function of the distance 
and given by 
 

0 0( )
L y

L y L
y

= +    (15) 

 
Where L is the inductance of the electromagnetic 
(coil) in the absence of the levitated object, L0 is the 
additional inductance contributed by its presence, 
and y0 is the equilibrium position. Assuming the 
suspended object remains close to its equilibrium 
position, y=y0, and therefore 
 

0( )L y L L= +     (16) 

 
Also assuming that L>>L0, Eq. (14) can be 
simplified as 
 

v Ri Li= + &    (17) 
 
The principal equation for the suspended object 
comes by applying Newton’s second law of motion. 
For this one degree of freedom system, a force 
balance taken at the centre of gravity of the object 
yields 
 

3

ki
My Mg

y
= −&&    (18) 

 
where  M  : ball mass, 
  y   : ball position, 
  g : gravitational constant and 
  k : magnetic force constant. 
 
The state variables are defined as 1 2,x y x y= = &  
and 3x i= . The state equations of the system are 

1 2x x=& ,
1

3
2 3

xk
x g

M x
= −& , 3 3

R v
x x

L L
= − +&     (19) 
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Let us linearize the system about the equilibrium 
point 0 01y x= = constant, which results in state 

vector as [ ]01 02 03

T
x x x=0x . At equilibrium, 

time rate derivative of x must be equal to zero i.e. 

02 01 0x x= =&  and 0 0y =&& . The equilibrium point of 

the system is at 
 

[ ]
1/3

0

T

e eku u

gmR R

  
=   
   

0x   (20) 

 
Thus we can write the linearized model in state 
space form as under; 
 

( )
( )

1/3

1/3

0 1 0

3
0

0 0

ee

g gMR gR

uku

R

L

 
 
 
 

= − 
 
 
 −
 

A , 
0

0

1

L

 
 
 

=  
 
 
 

B
      (21) 

 
The numerical values of the experimental system 
parameters are shown in Table 1. 
 
Table.1Parameters of the magnetic levitation system 
Parameters Description Values 
y0 ball position at 

operating point (m) 
2×10-2 

M mass of steel ball (kg) 41.30×10-3 
R coil resistance (Ω ) 1.71 
L coil inductance (H) 15.10×10-3 
i0 coil current at 

operating point (A) 
1.05 

K constant (kgm5/s2/A) 3.10×10-6 
ue coil applied voltage at 

operating point (V) 
1.79 

G gravitational constant 
(m/s2) 

9.81 

 
 
4 Real time implementation 
 The magnetic levitation system is present with 
focusing on stabilization and disturbance rejection 
issues. Results are compared with those designed by 
the pervious method including Ackermann’s 
formula [10]. 
 
4.1 State-PI feedback controller 
 The state-PI feedback controller is applied to the 
stabilization and disturbance rejection problems of 

the magnetic levitation system. The block diagram 
in Fig.3 represents a magnetic levitation system with 
state-PI feedback. For comparison purposes, the 
method based on Ackermann’s formula is also used. 
 

1

s

PK

IK

DK

x y

1

s

u x&

 
Fig. 3 Block diagram representation of a magnetic 

levitation system with state-PI feedback. 

The magnetic system is described by the following 
state-variable models: 

3

0 1 0 0

1.4709 10 0 9.3716 0

4000 0 113.2450 66.2252

u

   
   = × − +   
   −   

x x&

 
 The system is inherently unstable since it has 
open-loop poles at ± 38.3523 and -113.2450. To 
stabilize this system, the system poles are to be 
placed at -10 and 50± 50j. To achieve the 
prescribed pole locations, an additional pole is 
chosen at -100. Using the proposed method, the 
following gain matrices are obtained: KP=[497.6975 
2.3700 -1.4610] and KI=[48346.0449 1047.3126      
-256.6999]. For a comparison, using the 
Ackermann’s formula one can obtain the gain 
matrix KP=[341.2612 12.0375 0.0490]. 
 
4.2 Experimental setup 
 We practically implement the proposed state-PI 
feedback controller in an experimental setup. An 
image of the experimental apparatus system can be 
seen in Fig. 4a. The coin cell batteries acting as 
disturbance to the ball can be controlled as shown in 
Fig. 4b. These experiments point out that the 
proposed controller is robust. In order to test the 
state-PI feedback controller on a real plant, the 
regulator was designed in Simulink of Matlab (Fig. 
5). It was then implemented with the RTW of 
Matlab via a digital board on the real system. The 
digital board is a Rapcon, 12-bit input/output card 
[11], used with an Intel coreTM2 duo computer. The 
analog input and output blocks in the simulink 
scheme of Fig. 5 are input/output blocks compatible 
with the Rapcon digital board with sampling time 
0.001s. The magnetic levitation unit is composed of 
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an electromagnet, of a steel ball, and of a linear hall 
effect sensor set that measures the position of the 
ball. 
 

 
Fig. 4 Proposed magnetic levitation system:  
(a) without disturbance, (b) with disturbance 

 
 

 
Fig. 5 Implementation of the state-PI feedback 

controller on Simulink. 
 
4.3 Experimental results 
 The experimental results shown below were very 
satisfactory and demonstrated the robustness and the 
effectiveness of the state-PI controller. Fig. 6 shows 
the responses and the control input according to the 
proposed method, and the states are disturbed by 
changes in the mass at the time t=21.5s. It can be 
observed that using the proposed method the states 
possess very good responses, the disturbances are 
completely dampened out, and the control input is 
reasonable. With the conventional pole placement 
method, some states contain a large amount of 
steady-state errors due to disturbance as depicted in 
Fig. 7. 
 

   
(a) 

 
(b) 

 
(c) 

Fig. 6 Response of system states for 6% variation of 
the mass with the proposed state-PI feedback: (a) x1, 
(b) x3, (c) control signal. 
 

  
(a) 

 
(b) 

 
(c) 

Fig. 7 Response of system states for 6% variation of 
the mass with the conventional state feedback: (a) 
x1, (b) x3, (c) control signal. 
 
In Fig. 8, the large effect of a high step disturbance 
on the equilibrium position exceeds the linear range 
of the sensor, deteriorating the system performance. 
However, this effect does not occur with the state-PI 
feedback, as illustrated in Fig. 9, which indicates 
that this controller produced an appropriate action 
fast enough to avoid large deviations on the steel 
ball position. The state feedback controller could not 
stabilize the plant for large variations on the mass. 
From Figs. 8-9, one sees that the robust controllers 
achieve better disturbance rejection than the 
conventional state feedback controller and that the 
robust controllers perform very well in bringing the 
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ball back to the adopted operating position even 
when the system is subjected to change in the mass. 
 

 
(a) 

    
(b) 

Fig. 8 Response of system states for 12% variation 
of the mass with the conventional state feedback: (a) 
x1, (b) control signal. 
 

 
(a) 

    
(b) 

Fig. 9 Response of system states for 12% variation 
of the mass with the proposed state-PI feedback: (a) 
x1, (b) control signal. 
 
 
5 Conclusion 
 We have demonstrated that the proposed state-PI 
feedback control is efficient when used in motion 
control in which the displacement, velocity and 
current are usually needed as feedback signals. By 
comparison with the conventional state feedback 
control, its simple structure means less effort to be 
made in the implementation of the controller. This is 
very attractive for a practical design of a feedback 

control system. The magnetic levitation system has 
been used in this paper to practically demonstrate 
the effectiveness of the proposed control scheme. 
Experimental results indicate the state-PI feedback 
control scheme can result in a closed-loop system 
with good regulating performance as well as good 
robust property against high step disturbances. 
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