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Abstract: - The acceleration and deceleration periods during each race of a vertical transport installation may 
be considered as periods of transitional processes where kinematics and dynamic measures variations take 
place (acceleration, speed and forces) as well as some electric measures (actuating motor’s current). 
Considering T as the duration of the process, for the minimisation of the installed power, the minimisation of 

the energy dissipated in the system is imposed during the transitional period: ( )( ) ( )
T 2

1 0
W D i t dt min != →∫  

where i(t) is the intensity of the current absorbed by the actuating motor. According to the same considerations 

this integral is equivalent to: ( )( ) ( )
T 2

2 0
W D a t dt min != →∫  where a(t) is the acceleration of the system, 

considered here as a command value. Mainly, in order to minimise the above integrals, values as small as 
possible need to be adopted for current i(t) as well as for acceleration a(t). On the other hand, if the 
acceleration drops drastically it may lead to exceeding the imposed value of process T, implying as well a 
compromising solution. 
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1  Kinematics parameters optimisation      
Two constant acceleration phase tachograms are 
used in the case of reduced transport systems and are 
characterised by the lack of a constant speed period. 
 
 
1.1   Constant acceleration tachograms 
Therefore, the process is composed of only two 
periods of time: the acceleration phase t1 and the 
deceleration phase t2 (figure 1). 
 

 
 

Fig.1 Speed variation trajectories for the two phase 
tachogram 

     The discovery of a law of variations is imposed 
either for i(t) or for a(t), for which the transition of 
the system from the point of balance A to the point 
of balance B to be realised in the shortest period of 
time possible. According to figure 1, for the 
transition in time of the system from point A to B, 
trajectory 1 needs to be followed. The speed of 
movement needs to be maximum: 

 mV T H=     (1) 
where, H is the distance undergone. If H is constant 
and T = min, then: m m maxV V= . 

     In order for the average speed to have a 
maximum value, the acceleration is imposed to be 
maximum amax. It is also valid for the deceleration 
period t2. If on one part of the trajectory (for 
instance CD), the acceleration is smaller than the 
maximum admitted one, the average speed decreases 
therefore increasing the period of the transitional 
process T′ (line 2). In this case, for the optimum 
process, the acceleration is a staircase function: 

( )

( )

m

m

T
a t a ; 0 t

2
T

a t a ; t T
2

= < < 

= − < <


  (2) 
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     The law variation of speed and space is obtained 
by integrating the equations of movement variation 
considering the equations (2): 

( ) ( )
T

0
v t a t dt= ∫   (3) 

( ) ( )
T

0
h t v t dt= ∫   (4) 

     Therefore: 

( )

( )

m

2
m

v t a t
T

0 t1 2h t a t
2

= 


< <
= 

     (5) 

( ) ( )

( )

m

2 2

m

v t a T t
T

t TT T
2h t a Tt

2 4

= − 


< <  
= − −  

  

  (6) 

     For the determination of the period of time T, the 
limit condition is used ( )h T H= . In this way 

( )
2 2 2

2
m m

T T T
h T a T a

2 4 4

 
= − − = 

 
 and: 

 

m

H
T 2

a
=    (7) 

For 
T

t
2

= , speed v reaches the maximum value: 

max m m
m

T H
V a a

2 a
= =        (8) 

 
1.2 Variable acceleration tachograms 
The continuous variation of the acceleration will be 
replaced with a variation in steps within the same 
phase of the trajectory for a period of time T of the 
process (figure 2), in a finite number of equal 
intervals with a duration of: 

T

n
τ =     (9) 

     It is supposed that acceleration a (as a command 
value) is constant within each sub-interval, with 
values comprised between a1, a2, ... ,an. By divide 
the acceleration, the following may be written: 

n
2
i

i 1

W a∗

=

= τ∑    (10) 

depending on n variables. 
     Out of all the staircase functions a(t) the chosen 
one is that for which the minimum of the W* sum is 
obtained and simultaneously ensuring the 
compliance with the limit conditions: 
 

( ) ( )
( ) ( )

k

k

v 0 0; v T v 0

h 0 0; h T h H

= = = 


= = = 
        (11) 

 

 
 

Fig.2 Variation in steps of the acceleration within 
the same phase 

 
     Permanently decreasing the duration of intervals 
τ, as a result of a limit transition, a continuous 
dependence a(t) will be obtained which minimises 
the integral W. Therefore, this is the optimum 
command condition. 
     The speed v given by relation (3), considering the 
initial condition ( )v 0 0= , varies according to a 

dotted line (figure 2), consisting of parts of lines the 
coordinates of which t = 0, t = τ, t = 2τ, ..., t = T are: 

( )
( )
( ) ( )

( )

0

1 1

2 1 2

n

n i
i 1

v v 0 0;

v v a ;

v v 2 a a ;

v v n a 0
=


= =


= τ = τ 


= τ = + τ 




= τ = τ = 


∑

⋯⋯⋯⋯⋯⋯⋯⋯⋯

 (12) 

     The movement h will be composed of sections of 
parabola. Considering the initial condition ( )h 0 0= , 

based on relation (12) hi ordinates in points t = 0, t = 
τ, t = 2τ, ..., t = T are obtained. 
 
 

( )

( )

( )

( ) ( )

( ) ( )
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2
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2
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−
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 (13) 
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     In order to determine the conditioned extreme of 
sum W* considering the relations (12) and (13), it is 
sufficient enough to determine the unconditioned extreme 
of the auxiliary function V: 

( ) ( )1 k i 2 k iV W v a h a∗= + λ + λ   (14) 

where λ1 and λ2 undetermined Lagrange multipliers, 
determining the limit conditions. 
     Therefore, 

( )

2n n n
2
i 1 i 2 i

i 1 i 1 i 1

n-1
2

2 i
i 1

V a a a
2

n i a

= = =

=

τ
= τ + λ τ + λ +

+λ τ −

∑ ∑ ∑

∑
 (15) 

     The conditions needed for the extremes, is 

expressed by the system 
i

 V
0; i 1, ,n

 a

∂
= =

∂
… . 

     Considering the expression (15), the following 
are obtained: 

( )2 22
i 1 2

i

 V
2 a n i 0

 a 2

λ∂
= τ + λ τ + τ + λ τ − =

∂
   (16) 

     From where: 

( )1 2 2
ia n i

2 4 2

λ λ λ
= − − τ − τ −       (17) 

     If for T = ct, the duration of the interval τ 
decreases unlimited, and the number of intervals n 
tends towards infinity, then ai passes into a(t), and τi 
in t. Considering n T⋅ τ = , it results: 

( ) ( )1 2a t T t
2 2

λ λ
= − − −   (18) 

     In order to determine the Lagrange multipliers 
the following limit conditions are applied: 
For ( ) at 0; a 0 a= = ; and ( )a at t ; a t 0= = , 

where: 
aa - is the initial value and the largest of the 
command measure (acceleration); considering an 
optimum process it varies linearly from +aa to -aa; 
ta - is the moment the acceleration passes through 
the neutral. 
     The following equation system results applying 
these conditions for expression (18): 

( )

1 2
a

1 2
a

a T
2 2

0 T t
2 2

λ λ = − − 


λ λ = − − −


 

     Solving the system according the unknown λ1 

and λ2, it results: a
1 a 2

a

2a
2a ;

t
λ = λ = − . 

     Considering that aT 2t=  and ( ) aa T a= − , 

equation (18) becomes ( ) ( )a
a a

a

a
a t a 2t t

t
= − + − . 

     Therefore, expression (18) may be written: 

( ) a
a

t
a t a 1

t

 
= − 

 
  (19) 

     It is observed that the optimum law of variation 
of acceleration both during acceleration as well as 
during deceleration is limited, imposing a parabola 
variation of speed during these periods. 
     Integrating equation (19), speed, space and 
energy dissipated during transitional starting and 
breaking periods, laws of variations are obtained: 

( ) ( )
t

0

t

a a0
a a

v t a t dt

t t
a 1 dt a t 1

t t

= =

    
= − = −    

     

∫

∫
     (20) 

 

 

( ) ( )
t

0

t
2

a a a0
a a

h t v t dt

tt t
a t 1 dt a 1

t 2 3t

= =

    
= − = −    

     

∫

∫
   (21) 

 

( ) ( )
t 2

0

2
2t 2

a a a0
a a a

W t a t dt

t t t
a 1 dt a t 1

t t 3t

= =

    
= − = − +    

     

∫

∫
 (22) 

     The ta and aa constancies are determined from the 
limit conditions: 

( ) a
a

T
v T a T 1 0

t

 
= − = 

 
  (23) 

 

( )
2

a
a

T T
h T a 1 H

2 3t

 
= − = 

 
 (24) 

 
     From the above equation it results: 

a a 2

T H
t ; a 6

2 T
= =          (25) 

     The above case presents the starting and breaking 
transitional processes considering a two phase 
tachogram. Introducing the speed limit imposed by 
the operational norms of vertical transport 
installations, ( ) max admv t v≤  then the tachogram 

transforms into a three phase one where '
a at t<  

(figure 3). 
     It is observed that the duration of the transitional 
periods t1 (acceleration) and t3 (deceleration) depend 
on the level of the maximum adopted speed, namely 
on the ordinate intersected by the optimum variation 
curve of the speed (parabola) with a horizontal line 
corresponding to the maximum speed. 
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Fig.3 Speed limit tachogram 
 
     In the same time, it results that the acceleration 
needn’t be kept at a constant level, imposing a 
smooth linear variation. 
 
 

2   Dynamic parameters optimisation 
A method for the optimisation of the electric operation 
is constituted by adopting a trapezoidal tachogram and 
considering a constant static torque according to the 
criteria of equivalent power. The objective was the 
development of an optimum trapezoidal tachogram for 
the minimisation of the equivalent power (figure4). 
The mathematical model used is based on relative 
coordinates with the purpose of generalising the 
results. 
 

 
 

Fig.4 Analysed tachogram 

 
     The following have been considered for the time 
reference: 

t

T
τ =    (26) 

where: 
T represents the mechanical time constancy: 

N N

N N

I m v
T

M F

⋅ω ⋅
= =   (27) 

where: 
- I is the inertia moment of moving elements; 
- m the weight of the moving elements; 
- MN and FN the peripheral momentum and force; 
- ωN and vN  the angular and peripheral speed of 

the operating mechanism. 
     For the speed, torque and power, their nominal 
values have been considered as reference values: 

N N N N N

v M F P
v ; ;

v M F P

ω
= = µ = = ρ =
ω

 (28) 

     The following relations result for the movement and 
acceleration: 

' '
'

N N N N

H T v T
t ; v

T Tv v

θ ω
= = = =

ω ω
 (29) 

     Therefore the movement equation in absolute 

measures s

d
M M

dt

ω
= +  may be written in relative 

measures as: 

s

dv

d
µ = µ +

τ
   (30) 

     The expressions of speed and space are: 
'v v dt; h vdt= =∫ ∫   (31) 

     The power in relative measures is: 

( )'v s v vρ = µ = µ +   (32) 

     The total movement of a trapezoidal tachogram, 
after making the integrals (31) is: 

0 1 2 3

1 1
x v v v

2 2
= τ + τ + τ   (33) 

     Introducing a dimensional variables: 

31

2 1

; ; 0 ; 1
ττ

α = β = < α β <
τ τ

          (34) 

     The periods of the tachogram become: 

( )1 2 3 1 2 1; ; 1τ = ατ τ = βτ τ =  − α −β  τ       (35) 

     And the regime movement and speed will be: 

( )0 1

1
x 1 v

2
 = − α +β τ  

  (36) 

( )
0

1

x 1
v

1
1

2

= ⋅
τ − α +β

  (37) 
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     The corresponding accelerations for the two ends of 
the tachogram are: 

( )

( )

' 0
1 2

1 l

' 0
3 2

3 l

xv 1
v

1
1 -   

2

xv 1
v

1
1 -    

2

= = ⋅
τ τ α α + β  

= = ⋅
τ τ β α + β  

 (38) 

     
     Equivalent torque: 

c l2 2 , 2
ech s0 0

c l

1
d  (   v ) d

τ τε
µ = µ τ = µ + τ

τ τ∫ ∫    (39) 

     Where ε is the connection period: 

l

c

τ
ε =

τ
   (40) 

     For a trapezoidal tachogram, it results the following 
equivalent torque: 

2
2 2 0
ech 0 2 4

l

1 1
  

x
   

1
1 - ( )

2

 
+ 

α β µ = ε µ ⋅
 τ α +β    

 (41) 

     Equivalent power depending on the torque and 

speed: 
c 2

N 0
c

1
p v  d

τ
= µ τ

τ ∫ . 

 

( )

2
0

2 4
N 0 4

4 2
l 0

1 1

p x
1

1-
2

  µ ⋅ +  α β  = ε ⋅ ⋅
  τ ⋅ τ ⋅ α + β    

           (42) 

     The extreme of the equivalent power is obtained for 
α = β: 

( ) ( )

2 2
2 2 0 0
N 0 2 4 4 2

l l

x x1 2
p

1 1-

 
= ε µ + ⋅ 

τ τ− α α α  
    (43) 

 
     The minimum condition of the equivalent power 
results from cancelling the derivative of the power 
with the restrictions: v ≤ 1; µ ≤ µmax; µech ≤ 1: 

( ) ( )
2 2

24 2N 0
12

0

 p
1 1 5 0

 x

∂ µ
= τ α −α − − α =

∂ α
 (44) 

     For the particular case of no-load operation (µ0 = 0), 
it results the optimum value of the power: 

0,2α = β =    (45) 
     The regime speed: 

0

l

x
v 1,25=

τ
   (46) 

     Minimum power: 

2
0

N min 3
l

x
P 4,94= ε

τ
  (47) 

          In case of load operation (µ0 ≠ 0) it results: 

opt0 0,2< α ≤  

     Analysing the above presented method, the main 
conclusion is that it is a practical, operative method but 
it is valid only for a linear variation of speed. There is 
no certainty that this type of variation is optimum for 
ensuring the minimum value of speed. Moreover, 
choosing the trapezoidal tachogram is not scientifically 
justified, being made only empirically based on 
experience. Therefore, there may be another form of 
the operational diagram to ensure the minimum value 
of the actuating power. 
 
 

3   Conclusions 
Vertical transport installations are a machinery, 
equipment and mechanism complex ensuring the 
connection between different levels of materials and 
personnel imposing therefore special operational 
requirements which eliminate break-downs causing 
increased material and human damages. From the 
analysis of this study, the following important 
conclusions are emphasised: 
• Due to increased actuating powers, the vertical 

transport installations represent one of the most 
important energy consumer as the power 
requirements increase together with the height of 
transport; 

• The two phase tachograms are used for small 
heights; 

• Three phase tachograms with constant 
acceleration and linear speed variation during 
transitional periods are used for installations 
powered by asynchronous motors, while for the 
same installations but powered by a continuous 
current, tachograms with linear acceleration 
variation during start-up (parabola speed 
variation) and with constant deceleration (linear 
speed variation) during breaking, are used; 

• Five phase tachograms are also used for 
installations powered asynchronously, 
asymmetric, with constant acceleration, while for 
the installations powered by continuous current, 
second phase linear acceleration variation 
tachograms are generally used, leading to a 
parabola variation of speed in the same phase; 

• Three phase parabola tachograms, with speed 
limit, although advantageous, are not widely 
spread due to the imperfections of the speed 
regulator; 
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• In order to avoid shock in the mechanical system 
during transportation, the elimination of sudden 
acceleration variations is imposed; 

• The momentum equation of constant ray reeling 
installations coincides in form to the equation of 
the peripheral forces; 

• In order to avoid large limit variations of 
peripheral forces and powers, dynamic balanced 
installations use is recommended; 

• The transitional periods (acceleration and 
deceleration) highly influence the actuating 
power and energy consumption; 

• During the transitional periods, the variation in 
time of the current absorbed by the actuating 
motor of the installation is equivalent to the 
variation of the acceleration during the same 
periods. The high decrease, therefore, of the 
acceleration leads to the increase of the period of 
the movement imposing the adoption of a 
compromising solution; 

• The actuating power and consequently the 
energy consumption are mainly influenced by 
the speed variation and the acceleration of 
extraction containers law. In order to minimise 
the energy consumption during transitional 
periods the variation determination is used, 
proving that the optimum acceleration variation 
law is the linear one, while of the speed is the 
parabola one, both during acceleration as well as 
during deceleration. 
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