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Abstract: In this paper we propose a model for multiresolution time series database management systems. This
model stores compactly a time series and manages consistently its temporal dimension. This is achieved by
extracting different resolutions and attributes summaries from the original time series. Our work is concerned in
putting together two areas of study: time series analysis and database management systems. Time series analysis
offers a great deal of methodologies and algorithms to process time series data. Database systems field provides
software expertise in managing data. Therefore, for many applications it is of primary relevance that database
systems support time series.

Key–Words: time series, data model, database systems, monitoring systems.

1 Introduction
The emergence of embedded systems and sensor
networks has made possible the collection of large
amounts of data for monitoring and control of complex
systems. Nevertheless, before using the collected sig-
nals, it is of primary importance to detect the eventual
sensor failures or malfunctions and to reconstruct the
incorrect signals. This avoids to process misleading
information which may lead to unsafe or inefficient
actions. Acquired data is associated with a time stamp,
which implies that the correctness of those data de-
pends not only on the measured value but also on the
time as it is collected. When observations are collected
at specific time intervals, large data sets in the form of
time series are generated, [2].

Time series are defined as a collection of observa-
tions made chronologically, [7], accordingly they are
also called time sequences, [8]. Time series are usually
stored in a database. Usually the managing software
to store this data are relational database management
systems (RDBMS). However, using a RDBMS as a time
series back-end suffers of some drawbacks, [6, 14, 15,
17]. Time series come from a continuous nature phe-
nomenon. They are recorded at regular intervals, say
hourly, or at irregular intervals, such as recording when
a pump starts running.

There are two main problems when managing time
series. The first results from these data being volumi-
nous, [7]. Because of this, storing and accessing them
can be difficult. Moreover, this is critical when de-
veloping small embedded systems, whose resources
(capacity, energy, processing, and communications)
suffer a genuine restriction, [16]. The second problem

concerns the procedure of processing and synthesising
information from the time series data, that becomes
challenging when data is not equi-time spaced.

This paper focuses on Data Base Management Sys-
tems (DBMS) that store and treat data as time series.
These are usually known as Time Series Data Base
Management Systems (TSMS), [6]. We introduce a
new data model named multiresolution TSMS (MTSMS).
This model organises data in an aggregated way and
it allows to store time series using different resolu-
tions. It is designed to cope well with bounded storage
computers such as sensor systems.

This manuscript is organised as follows. In Sec-
tion 2 some related work concerning TSMS are pre-
sented and a summary of its features is shown in Sec-
tion 3. The MTSMS model is formalised as follows:
the nomenclature preliminaries are introduced in Sec-
tion 4, the data structure is formulated in Section 5, and
attribute aggregation is summarised in Section 6. Sec-
tion 7 is devoted to a real data multiresolution database
example. Finally, Section 8 offers some conclusions.

2 Related work
There are some prior works concerning TSMS. RRD-
tool from Oetiker, [13], is a free software database
management system. It is designed to be used for
monitoring systems. Because of this, it is focused to
a particular kind of data, gauges and counters, and
it lacks general time series operations. RRDtool can
store multiple time resolution data. The work in this
paper is partially inspired in RRDtool.

Cougar, [3], is a sensor database system. It has two
main structures: one for sensor properties stored into
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relational tables and another for time series stored into
data sequences from sensors. Time series have specific
operations and can combine relations and sequences.
Cougar target field is sensor networks, where data is
stored distributed in sensors. Queries are resolved
combining sensor data using a data stream abstraction
that improves processing performance.

SciDB, [15], and SciQL, [17], are array database
systems. These systems are intended for science appli-
cations, in which time series play a principal role. They
structure time series into arrays in order to achieve mul-
tidimensional analysis and allow tables to store other
data. SciDB is based on arrays which, according to
the authors, allow to represent time series. However,
it does not consider time series special needs: it does
not care for managing continuously voluminous data
neither for achieving temporal coherence. In contrast,
SciQL exhibits some time series managing characteris-
tics that include time series regularities, interpolation
or correlation queries. However, difference between
tables and arrays seems too physical and leads to am-
biguity when representing time series.

Bitemporal DBMS is another database field related
with time. Bitemporal data target is to keep histori-
cal events in the database by associating time inter-
vals to data. Bitemporal data and time series data are
not exactly the same and so can not be treated inter-
changeably, [14]. However, there are some similarities
that can be considered. First, extending a relational
model to manage bitemporal data illustrate the exten-
sion of RDMBS with new types and how to model them.
Second, bitemporal data modelling settles some time-
related concepts that can be extended to time series.

The recent bitemporal data research in relational
DBMS model terms, [5], marks a promising founda-
tion. It models bitemporal data as relations extended
with time intervals attributes and extends relational
operations in order to deal with related time aspects.

3 TSMS features
A TSMS is a special purpose DBMS devoted to store
and manage time series. The main objective of TSMS is
to put together two areas of study: time series analysis
and DBMS. Time series analysis formalises a great
amount of algorithms and methodologies that apply to
time series, with a main focus on improving efficiency.
DBMS theory formalises systems that store and operate
with data. Currently the relational model, [4], is the
referent.

In time series analysis there are some common
generic operations. Most of these operations deal with
the time given the nature of data. Usual operations
include the query of time intervals, to find time cor-
relations, or to calculate distances between two time

series. In all these operations TSMS must consider the
temporal coherence of the time series. In the context of
statistics, aggregation of time series is also a common
operation. Aggregate means to summarise a time series
subset by a smaller set of measures. Statistic indicators
like the mean, the maximum, or the mode, for instance,
summarise time series into a only measure.

A time series is defined discrete as a set of value
and time pairs. Furthermore, a time series has a contin-
uous nature as it comes from a phenomena evolution
along time. As a result, TSMS operations may deal
with this time series nature by methods of interpolation
or approximation.

A MTSMS is a TSMS with multiresolution capabili-
ties. A MTSMS schema represents a time series using a
set of table like structures each of them representing
the series at a different resolution.

4 Preliminaries
In this section we introduce some background concepts
and the nomenclature which we will use later. First
we define the main objects of a MTSMS which are
measures and time series.

A measure is a value measured in a time instant.
More formally it is a tuple (v, t) where v is the value of
the measure and t ∈ R is the time instant of measure-
ment. The values of a time series can be of any type.
For simplicity examples are presented with integers or
real numbers but can also be strings or vectors. Let
m = (v, t) be a measure, v is written as V (m) and t is
written as T (m).

The time value defines the canonical order be-
tween measures. Let m = (vm, tm) and n = (vn, tn) be
two measures, then m≥ n if and only if tm ≥ tn.

A time series is sequence of measures of the same
phenomena that are ordered in time.

Definition 1 (Time series) A time series S is a a set
of measures of the same phenomena S = {m0, . . . ,mk}
without repeated time values ∀i, j : i≤ k, j ≤ k, i 6= j :
T (mi) 6= T (m j). Given a time series |S|, we note its
size by |S|= k+1. Observe that, because measures in
S are of the same phenomena, the type of S values is
homogeneous.

The order defined by measures implies a total or-
der in a time series. As a time series is a finite set,
if it is not empty it has a maximum and a minimum.
Let S = {m0, . . . ,mk} be a time series and n ∈ S be a
measure. The time series’ maximum is n = max(S) if
and only if ∀m ∈ S : n≥ m. Similarly, the time series’
minimum is n = min(S) if and only if ∀m ∈ S : n≤ m.

Given the order defined by time, in a time series
we define the sequence interval following [8, 10]. Let
S = {m0, . . . ,mk} be a time series. We define the sub-
set S(r, t] ⊆ S as the time series S(r, t] = {m ∈ S|r <
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Figure 1: Architecture of MTSMS model

T (m)≤ t}, where r and t are two instants in time. We
also define the subset S(r,+∞)⊆ S as the time series
S(r,+∞) = {m ∈ S|r < T (m) ≤ T (max(S))} and the
subset S(−∞, t)⊆ S as the time series S(−∞, t) = {m∈
S|T (min(S))≤ T (m)< t}.

The time order in time series also implies the se-
quence concept of next and previous measure. Let
S = {m0, . . . ,mk} be a time series and l ∈ S and n be
two measures. We define the next measure of n in S as
l = nextS(n) where l = min(S(T (n),+∞)). We define
the previous measure of n in S as l = prevS(n) where
l = max(S(−∞,T (n))).

Let S be a time series, t be a time instant and δ

be a time duration, then the time series’ measures can
be located in the time interval i0 = [t, t + δ ] and its
multiples i j = [t + jδ , t +( j+1)δ ] for j = 0,1,2, . . ..
When time series’ measures are equally spaced we say
it to be regular.

Definition 2 (Regular time series) Let S = {m0,
ldots, mk} be a time series and δ a time duration.
S is regular if and only if ∀m ∈ S(T (min(S),+∞) :
T (m)−T (prevS(m)) = δ .

5 The proposed data model
The MTSMS model is an storage solution for a time
series where, in short, the information is spread in
different time resolutions. The objects of MTSMS are
measures and time series as defined in Section 4 and
each MTSMS database contains only one time series.

The general schema of the MTSMS model can be
seen in the Figure 1. A multiresolution database is a
collection of resolution discs, which temporarily ac-
cumulate the measures in a buffer where they are pro-
cessed and finally stored in a disc. The data process is
mainly intended to change the time intervals between
measures in order to compact the time series informa-
tion. In this way, the time series gets stored in different
time resolutions spread in the discs.

Discs are size bounded so they only contain a fixed
amount of measures. When a disc becomes full it
discards a measure. Thus, multiresolution database
is bounded in size and the time series gets stored in
pieces, that is time subseries.

Regarding to operations, MTSMS structure needs
operators to change the time intervals between mea-
sures. Most of these operators are attribute aggregate
functions and consolidation actions.

In what follows we describe the basic MTSMS
model centered in: (i) the four basic data model el-
ements —buffer, disc, resolution disc, and multireso-
lution database—, and (ii) the operations to create a
multiresolution database, to add measures, and to con-
solidate time series. Attribute aggregate functions are
required but not linked to the model. They are defined
in the Section 6.

A buffer is a container for a regular or a no-regular
time series. The buffer objective is to regularise the
time series using a predetermined step and an attribute
function. We name consolidation to this action.

Definition 3 (Buffer) A buffer is defined as the tuple
(S,τ,δ , f ) where S is a time series, τ is the last con-
solidation time, δ is the duration of the consolidation
step and f is an attribute aggregate function.

An empty buffer B /0 = ( /0, t0,δ , f ) has an empty
time series, an initial consolidation time t0 and prede-
termined δ and f . From the B /0 all the consolidation
time instants can be calculated as t0 + iδ , i ∈ N.

Operator addBuffer adds a measure to its time
series: addBuffer : B = (S,τ,δ , f )×m 7→ (S′,τ,δ , f )
where S′ = S∪{m}.

A buffer is ready to consolidate when the time
of some measure is bigger than the buffer’s next con-
solidation time. Let B = (S,τ,δ , f ) be a buffer and
m = max(S) the maximum measure, B is ready to con-
solidate if and only if T (m) ≥ τ + δ . The consolida-
tion of B in the time interval i = [τ,τ + δ ] results in
a measure m′ = (v,τ +δ ) where m′ = f (S, i) and f is
an attribute aggregate function f . Operator consoli-
dateBuffer consolidates a set of measures and removes
the consolidated part of the time series from the buffer.
Usually consolidateBuffer is only applied to the present
consolidation interval and it is defined as follows:
consolidateBuffer : B = (S,τ,δ , f ) 7→ B′×m′ where
B′ = (S′,τ +δ ,δ , f ), S′ = S and m′ = f (S, [τ,τ +δ ]).
When historic data is not needed anymore the con-
solidated buffer measures can be removed applying
S′ = S(τ +δ ,∞).

A disc is a finite capacity measures container. A
time series stored in a disc has its cardinal bounded.
When the cardinal of the time series is to overcome the
limit, some measures need to be discarded.
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Definition 4 (Disc) A disc is a tuple (S,k) where S
is a time series and k ∈ N is the maximum allowed
cardinal of S. An empty disc D /0 = ( /0,k) has an empty
time series and the k maximum cardinal allowed.

The cardinal of the times series is kept under con-
trol by the add operator, addDisc : D = (S,k)×m 7→
(S′,k) where

S′ =

{
S∪{m} if |S|< k
(S−{min(S)})∪{m} otherwise

A resolution disc is a disc which stores a regular
time series. It is composed of a buffer, that contains
the partial time series to be regularised, and a disc, that
contains the regularised time series.

Definition 5 (Resolution disc) A resolution disc is a
tuple (B,D) where B is a buffer and D is a disc. An
empty buffer and empty disc imply an empty resolution
disc R /0 = (B /0,D /0).

The operators of a resolution disc extend the buffer
and disc ones: (i) The addition of a measure to the
buffer of the resolution disc, addRD : R = (B,D)×
m 7→ R′ where R′ = (B′,D), and B′ = addBuffer(B,m);
(ii) The consolidation of the resolution disc by consoli-
dating its buffer and adding the consolidation measure
to its disc, consolidateRD : R = (B,D) 7→ R′ where
R′ = (B′,D′) and (B′,m′) = consolidateBuffer(B) and
D′ = addDisc(B,m′).

A multiresolution database is a set of resolution
discs which share the input of measures, that is they
store the same time series. A time series is stored
regularised and distributed with different resolutions
in the various resolution discs, as it was shown in the
Figure 1.

Definition 6 (Multiresolution Database) A Multire-
solution Database is a set of resolution discs M =
{R0, . . . ,Rd}. An empty multiresolution database has
empty resolution discs M/0 = {R0 /0 , . . . ,Rd /0}.

We define the addition of a measure to every
resolution disc as addMD : M = {R0, . . . ,Rd}×m 7→
{R′0, . . . ,R′d} where R′i = addRD(Ri,m).

The consolidation of all resolution discs can
be defined as follows: consolidateMD : M =
{R0, . . . ,Rd} 7→ {R′0, . . . ,R′d} where

R′i =

{
consolidateRD(Ri) if Ri ready to consolidate
Ri otherwise

.

6 Attribute aggregate function
When a buffer is consolidated we summarise the time
series information using an attribute aggregate function.
Let S be a time series and t0 and t f two time instants,
an attribute aggregate function f calculates a measure
that summarises the measures of S included in the time
interval i = [T0,Tf ]:

f : S = {m0, . . . ,mk}× [T0,Tf ] 7→ m′

To summarise a time series we can use different
attribute aggregate functions. For instance, we can
calculate an statistic indicator of the time series such
as the average or we can apply a more complex digital
signal processing operation, [17].

Below there are some examples. Let S′= S(T0,Tf ].
Then:
– maximumd: S × i 7→ m′ where V (m′) =

max∀m∈S′(V (m)). It summarises S′ with the
maximum of the measure values.

– lastd: S× i 7→ m′ where V (m′) = max(S′). It sum-
marises S′ with the maximum measure.

– arithmetic meand: S × i 7→ m′ where V (m′) =
1
|S′| ∑
∀m∈S′

V (m). It summarises S′ with the mean of

the measure values.
In the design of the attribute aggregate function

we can interpret a time series in different ways, that is
what we call the representation of a time series. Keogh
et al., [10], cite some possible representations for time
series such as Fourier transforms, wavelets, symbolic
mappings or piecewise linear representation. The last
one is very usual due to its simplicity, [9].

Time series representations can be taken into ac-
count when computing with the measures of the time
series. For example, a maximum attribute aggregate
function may give different values if we consider a
linear or a constant piecewise representation.

Following we show a possible family of attribute
aggregate functions for time series represented by a
staircase function, that is with a piecewise constant
representation. We define a new representation for
time series named zero-order hold backwards (zohe).
This representation holds back each value until the pre-
ceding value. RRDtool, [12], has a similar aggregate
function.

Let S = {m0, . . . ,mk} be a time series, we define
S(t)zohe as its continuous representation along time t:
∀t ∈ R,∀m ∈ S :

S(t)zohe =

{
∞ if t > T (maxS)
V (m) if t ∈ (T (prevS m),T (m)]

(1)

In conclusion, we can define many attribute ag-
gregate functions and thus no global assumptions can
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Figure 2: Example of a temperature time series data
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Figure 3: Schema of resolutions in a MTSDB

be made about them. Each user has to decide which
combination of aggregation and representation fits bet-
ter with the measured phenomena. Therefore, MTSMS
must allow to define user aggregate functions.

7 Example
Next we show a real example database for a time series
data. Actual data comes from a temperature distributed
sensor monitoring system, [1]. We focus on one sensor
data.

The Figure 2 shows the original data for one year
and a half. The plot interpolates linearly the measures.
In this plot we can see that there is missing data and
some outlying observations. There are 146709 stored
values.

Schema. We design a multiresolution time series
database that stores a time series with high resolution
at recent times and with low resolution at older times.
The schema is illustrated in the Figure 3. At the top
there are four discs with different number of measures
and at the bottom there is a timeline showing the time
series chopped along time. Going from most to least
granularity disks are configures as follows: (i) a mea-
sure every 5 h in the fourth disc which has a capacity
of 24 measures and thus it spans 5 days; (ii) a measure
every 2 days in the third disc, with a capacity of 20
thus spanning 40 days; (iii) a measure every 15 days
in the second disc, with a capacity of 12 thus spanning
180 days and; (iv) a measure every 50 days in the first
disc that, with a capacity of 12 results in a span of 600
days.

Attribute aggregate functions. In order to illustrate
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Figure 4: Resolution discs’ time series in a MTSDB

this example we consolidate all the resolution discs
using the zohe arithmetic mean aggregate function and
the highest resolution disc using the zohe maximum
aggregate function. Next, we show the process in de-
signing both aggregate functions.

In accordance to the zohe Equation 1 defined us-
ing left-continuous step functions, we define the zohe
attribute aggregate function family as the one inter-
preting the consolidation time interval left-continuous
i = (T0,Tf ] and the one aggregating on the subset
S′ = S(T0,Tf ]∪{min(S−S(−∞,Tf ))}:

– maximumzohe: S × i 7→ m′ where V (m′) =
max∀m∈S′(V (m)) and T (m′) = Tf .

– arithmetic meanzohe: S× i 7→ m′ where V (m′) =
1
|S′| ∑
∀m∈S′

V (m) and T (m′) = Tf .

The time series after consolidating the MTSDB
are shown in the Figure 4, where each graphic cor-
responds to a resolution disc time series. Each title
shows the disc resolution and its cardinal, and each
attribute aggregate function has different colour. Each
time series is plotted with zohe continuous represen-
tation. Time axis has UTC units rounded to nearest
time points and temperature axis has Kelvin units. Out-
layers are marked as discontinuities, for instance see
fourth plot’s 2938 K maximum.

In all the four plots, we can see that mean ag-
gregate function has filled missing data and filtered
outlayer observations. This is due to the aggregate
function coming from a zohe interpretation.

Data can be queried. For example, one query
would be the union of the four time subseries choosing
the one with the highest resolution as shown in the Fig-
ure 5. Each time series is plotted interpolating linearly
its measures, note that this linearly visualisation seems
right time displaced as time series comes from a zohe
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Figure 5: All time series united from the MTSDB

aggregation. Comparing this figure with the original
series, see Figure 2, we observe that it resembles an
incremental low-pass filter because we applied mean
aggregation while the maximum aggregation resem-
bles an envelope function.

Note that this MTSDB example schema does not
store the complete original data but an approximation
to the original function which contains more informa-
tion for recent times.

8 Conclusion
In this paper we have shown a MTSMS model, including
the requirements for these special systems and how
they can be applied to an example time series. The
main objective is to store compactly a time series and
manage consistently its temporal dimension.

Our MTSMS model proposes to store a time series
split into time subseries, which we call resolution discs.
Each resolution disc has a different resolution and is
compacted with an attribute aggregate function. There-
fore, in a multiresolution database the configuration
parameters are the quantity of resolution discs and each
of their three parameters: the consolidation step, the
attribute aggregate function and the capacity.

The data model shown is the first step to develop
a complete model for a MTSMS. In the future the
operations will be defined. In this context, there is a
need for a model collecting generic properties for the
TSMS, as it can be the time series union operation or
the time interval operations. Then, the multiresolution
model would be build upon the generic TSMS model.

Concluding, in this paper we show that using TSMS
facilitates substantially time series management. The
current field interest makes us optimistic to expect soon
an adequate management in DBMS.
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