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Abstract: - To solve the problem of great number of test cases, and to force the configuration testing to be 

effective, combinatorial testing is proposed, using an Orthogonal Array Testing Strategy (OATS) as a 

systematic, statistical way of testing pair-wise interactions. This combinatorial approach to software testing 

uses models to generate a minimal number of test inputs so that selected combinations of input values are 

covered. The OAT method can simultaneously reduce testing costs, product introduction delays, and faults 

going to the field by generating test cases that are more efficient and thorough in finding faults. Often the result 

is a 50% reduction in the number of tests and detection of more faults. An advantage of the Taguchi method 

application in Software Testing is that it emphasizes a mean performance characteristic (Defect fixing time and 

cost of software Quality) value close to the target value rather than a value within certain specification limits, 

thus improving the product quality. Additionally, Taguchi's method for experimental design is straightforward 

and easy to apply as we did for defect Cost to fix  [$] and Total Resolution time [Days] minimisation versus 

controlled factors: Severity, Complexity and engineers Experience to many engineering situations, making it a 

powerful yet simple tool. 

 

Key-Words: - Software testing, Bug fixing, Resources allocation, Orthogonal Array, DOE, Taguchi method 

 

1 Introduction 

Our research [1]1 concluded that software 

development project employs some Quality Control 

(QC) process to detect and remove defects. The final 

quality of the delivered software depends on the 

effort spent on all the QC stages. Given a quality 

goal, different combinations of efforts for the 

different QC stages may lead to the same goal. For 

the quality of the final software we use the 

commonly used measure of delivered defect density 

- the number of defects present in the final product 

normalized by the size of the product. One of the 

main objectives of a project is to achieve the desired 

quality goal with least amount of resources. Using 

defects as the defining metric for quality, we can 

view the process of a project as comprising of defect 

injection and removal stages. There are some stages 

like the requirements, design and coding, in which 

defects are injected. These defects are removed in 

                                                 
1 This work was supported in part by the Ministry of 

Education and Science of  the Republic of Serbia under 

Grant No. TR-35026 entitled as:“Software Development 

Environment for optimal software quality design“.  

various QC stages. A QC stage can be characterized 

by the defect removal rate of that stage. There can 

be many possible combinations of defect removal 

rates for the different QC stages that can achieve the 

same overall quality goal. The different 

combinations will have different implications on the 

total QC effort. Clearly, for a process designer or a 

project manager, a key problem is to select the 

amount of effort to be spent in each QC stage such 

that the desired quality goal is met with the 

minimum cost. We propose a model i.e. 

OptimalSQM for the cost of QC process and then 

view the resource allocation among different QC 

stages as an optimization problem. Software testing 

consumes 30-70% of the development resources; 

however, shipped products may still have many 

residual faults resulting in low reliability, high usage 

cost, and high maintenance cost. For software 

testing process optimization we apply Orthogonal 

Array-Based Testing Strategy (OATS) and Design 

of Experiments via Taguchi method. 

 Different types of testing aims for identifying 

different types of errors and faults. For example, 

mutation testing modifies the source code in a 

meager way that helps the tester to develop effective 

test cases. Similarly, combinatorial testing is 
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focused on identifying errors and faults, occurs due 

to the interaction of different parameters of 

software. Combinatorial testing is performed by 

covering all the possible combination of parameter 

values. Testing of a network gaming application 

running on the internet can be influenced by the 

number of parameters. These parameters are 

operating system, audio, graphics, number of 

players, internet access type, browser type, etc. Each 

parameter may have any number of possible values. 

The interaction of these parameters causes faults and 

errors in the application. Exhaustive testing is 

virtually impractical due to several possible 

combinations of parameters. Combinatorial Testing 

provides a better way to cover all the possible 

combinations with a better tradeoff between cost 

and time.  

Combinatorial testing is based on the following 

concepts:  

Interaction Rule: Most failures occur due to a 

single factor or by the joint combinatorial effect 

(interaction) of two factors, with progressively 

fewer failures induced by interactions between three 

or more factors [2].  

T-way Testing/Pairwise Testing: Pair-wise 

testing [3] requires a given numbers of input 

parameters to the system, each possible combination 

of values for any pair of parameters covered with at 

least one test case.  

Covering Array: Covering array represents the 

test case selected under pairwise testing [5].  

Combinatorial testing is a vital approach to 

detect interaction errors occurs because of 

interaction of several parameters. There are two 

approaches for combinatorial testing:  

 Testing of configuration parameter values, or  

 Testing of input parameter values. 

To solve the problem of great number of test 

cases, and to force the configuration testing to be 

effective, combinatorial testing is proposed, using an 

OAT Strategy as a systematic, statistical way of 

testing pair-wise interactions. This combinatorial 

approach to software testing uses models to generate 

a minimal number of test inputs so that selected 

combinations of input values are covered. The OAT 

method can simultaneously reduce testing costs, 

product introduction delays, and faults going to the 

field by generating test cases that are more efficient 

and thorough in finding faults. Often the result is a 

50% reduction in the number of tests and detection 

of more faults. 

An advantage of the Taguchi method 

application in Software Testing is that it emphasizes 

a mean performance characteristic (Defect fixing 

time and cost of software Quality) value close to the 

target value rather than a value within certain 

specification limits, thus improving the product 

quality. Additionally, Taguchi's method for 

experimental design is straightforward and easy to 

apply to many engineering situations, making it a 

powerful yet simple tool. It can be used to quickly 

narrow down the scope of a research project or to 

identify problems in a manufacturing process from 

data already in existence. Also, the Taguchi method 

allows for the analysis of many different parameters 

without a prohibitively high amount of 

experimentation. For example, a process with 8 

variables, each with 3 states, would require 6561 

(38) experiments to test all variables. However using 

Taguchi's orthogonal arrays, only 18 experiments 

are necessary, or less than 0.3% of the original 

number of experiments. In this way, it allows for the 

identification of key parameters that have the most 

effect on the Defect fixing time and cost value so 

that further experimentation on these parameters can 

be performed and the parameters that have little 

effect can be ignored, as we explained in this paper. 

2. Orthogonal Array Testing Strategy 

(OATS) 
 

In order to overcome the challenges mentioned 

above, Orthogonal Array Testing Strategy (OATS) 

gives a systematic, statistical way of testing pair-

wise interactions providing representative 

(uniformly distributed) coverage of all variable pair 

combinations. This makes the technique particularly 

useful for integration testing of software 

components. 

It provides a representative (uniformly distributed) 

coverage of all variable pair combinations. 

Pairwise (a.k.a. all-pairs) testing is an effective test 

case generation technique that is based on the  

observation that most faults are caused by 

interactions of at most two factors. 

Pairwise-generated test suites cover all 

combinations of two and therefore are much smaller 

than exhaustive ones yet very effective in finding 

defects. 

Dr. Genichi Taguchi was one of the first proponents 

of orthogonal arrays in test design. His techniques, 

known as Taguchi Methods, have been a mainstay 

in experimental design in manufacturing fields for 

decades. 

The method of orthogonal arrays is an experimental 

design construction technique from the literature of 
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statistics. In turn, construction of such arrays 

depends on the theory of combinations. An 

orthogonal array is a balanced two-way 

classification scheme used to construct balanced 

experiments when it is not practical to test all 

possible combinations. The size and shape of the 

array depends on the number of parameters (factors) 

and values (levels) in the experiment. Orthogonal 

arrays are related to combinatorial designs. 

 

Testing a software system requires the creation 

of test cases, which contain values for input 

parameters and the expected results. Exhaustive 

testing for all of the possible combinations of 

parameters, in most cases it is not possible, it is not 

feasible, or the cost is out of the available budget 

[4]. The main goal of using different methods and 

techniques of testing is to create a smaller number of 

combinations of parameters and their values, which 

will be tested. 

According to inputting different combination of 

conditions so as to produce different impacts, 

software testing designs a large number of test 

cases. If the implementation of an overall test, due 

to the limit of the combination of conditions, it is 

difficult to carry out. In order to generate high 

quality test cases as early as possible to improve the 

efficiency of software testing, it is designed a 

generation tool of the automatic software testing 

case on orthogonal experimental design [5]. For the 

test data, the use of that tool design test cases. The 

practice shows that a small number of test cases are 

generated, the error detection ability is strong, and it 

greatly improves the efficiency of software testing. 

In software testing process, it provides a natural 

mechanism for testing systems to be deployed on a 

variety of hardware & software configurations or 

with multiple interfaces. The combinatorial 

approach to software testing uses models to generate 

a minimal number of test inputs so that selected 

combinations of input values are covered. The most 

common coverage criteria are two-way or pair-wise 

coverage of value combinations, though for higher 

confidence three-way or higher coverage may be 

required. 

The basic fault model that lies beneath existing 

techniques: 

o Interactions and integrations are a major source 

of defects. 

Most of these defects are a result of simple 

interactions such as in next example: 

"When the background is blue and the font is Arial 

and the layout has menus on the right and the 

images are large and it's a Thursday then the tables 

don't line up properly." 

o Most of these defects arise from simple pair-

wise interactions such as in this error case: 

"When the font is Arial and the menus are on the 

right, the tables don't line up properly.” 

o With so many possible combinations of 

components or settings, it is easy to miss one. 

o Randomly selecting values to create all of the 

pair-wise combinations is bound to create 

inefficient test sets and test sets with random, 

less meaningful distribution of values. 

OATS can be used to reduce the number of 

combinations and provide maximum coverage with 

a minimum number of test cases. OATS is an array 

of values in which each column represents a variable 

- factor that can take a certain set of values called 

levels. 

 Orthogonal arrays are two dimensional arrays of 

numbers which possess the interesting quality 

that by choosing any two columns in the array 

you receive an even distribution of all the pair-

wise combinations of values in the array.  

 The size and shape of the array depend on the 

number of parameters and values in the 

experiment. 

 Each row represents a test case/combination. 

 In OATS, the factors are combined pair-wise 

rather than representing all possible 

combinations of factors and levels. 

2.1 Orthogonal Array Testing Strategy 

applications 

The OATS provides representative (uniformly 

distributed) coverage of all variable pair 

combinations. This makes the technique particularly 

useful for integration testing of software 

components (especially in OO systems where 

multiple subclasses can be substituted as the server 

for a client). It is also quite useful for testing 

combinations of configurable options (such as a web 

page that lets the user choose the font style, 

background color, and page layout). The size and 

shape of the array depend on the number of 

parameters and values in the experiment. 

Definition 1: Orthogonal array O(ρ, k, n, d)  

An orthogonal array is denoted by O(ρ, k, n, d), 

where:  

• ρ is the number of rows in the array. The k-

tuple forming each row represents a single test 

configuration, and thus ρ represents the 

number of test configurations.  

• k is the number of columns, representing the 

number of parameters.  
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• The entries in the array are the values 0, …, n 

– 1, where n = f(n0, …, nk-1).  Typically, this 

means that each parameter would have (up to) 

n values.  

• d is the strength of the array (see below).  

An orthogonal array has strength d if in any ρ × d 

sub-matrix (that is, select any d columns), each of 

the n*d possible d-tuples (rows) appears the same 

number of times (>0). In other words, all d-

interaction elements occur the same number of 

times. 

Here is some terminology for working with 

orthogonal arrays followed by an example array in 

Table 1 [6,7]:  

• Runs - ρ: the number of rows in the array. This 

directly translates to the number of test cases 

that will be generated by the OATS technique.  

• Factors - k: the number of columns in an 

array. This directly translates to the maximum 

number of variables that can be handled by this 

array.  

• Levels - n: the maximum number of values 

that can be taken on by any single factor. An 

orthogonal array will contain values from 0 to 

Levels-1.  

• Strength - d: the number of columns it takes 

to see each of the Levels
Stength

 possibilities 

equally often.  

• Orthogonal arrays are most often named 

following the pattern LRuns(Levels
Factors

).  

Along with the more powerful software function and 

the improvement of software complexity, software 

development process is not easy to be controlled. 

Software testing is a critical element of software 

quality assurance and represents the ultimate review 

of specification, design, and code generation. The 

design of tests for software and other engineered 

products can be as challenging as the initial design 

of the product itself. A rich variety of test case 

design methods have evolved for software. 

 

The OATS makes the technique particularly 

useful for integration testing of software 

components. It is also quite useful for testing 

combinations of configurable options (such as a web 

page that lets the user choose the font style, 

background colour, and page layout). As an example 

of the benefit of using the OATS technique over a 

test set that exhaustively tests every combination of 

all variables, consider a system that has four options, 

each of which can have three values (see Table 1).  

The exhaustive test set would require 81 test cases 

(3 x 3 x 3 x 3 or the Cartesian product of the 

options).  The test set created by OATS has only 

nine test cases, yet tests all of the pair-wise 

combinations.  The OATS test set is only 11% as 

large at the exhaustive set and will uncover most of 

the interaction bugs.  It covers 100% (9 of 9) of the 

pair-wise combinations, 33% (9 of 27) of the three-

way combinations, and 11% (9 of 81) of the four-

way combinations. What degree of interaction 

occurs in real system failures? Within the NASA 

database application, for example, 67 percent of the 

failures were triggered by only a single parameter 

value, 93 percent by two-way combinations, and 98 

percent by three-way combinations. The detection-

rate curves for the other applications studied are 

similar, reaching 100 percent detection with four- to 

six-way interactions. An orthogonal array is a 

balanced two-way classification scheme used to 

construct balanced experiments when it is not 

practical to test all possible combinations. 

 

Table 1. An L9(3
4
) orthogonal array with 9 runs, 4 

factors, 3 levels, and strength of 2 

Test 

Number 

Factors 

A B C D 

1 1 1 1 1 

2 1 2 2 3 

3 1 3 3 2 

4 2 1 2 2 

5 2 2 3 1 

6 2 3 1 3 

7 3 1 3 3 

8 3 2 1 2 

9 3 3 2 1 

EXAMPLE 1: The above approach was used for a 

project where Compatibility testing had to be 

performed for various Browser-OS-Database 

combinations. 

The factors and various levels for each of the factors 

are listed below in Table 2. The test set could easily 

be augmented if there were particularly suspicious 

three- and four-way combinations that should be 

tested. Interaction testing can offer significant 

savings. 
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Table 2. Factors and Levels listed for the Compatibility 

Testing Scenario 

 

Table 3. Orthogonal Array constructed for the 

Compatibility Testing Scenario 

 

Indeed a system with 20 factors and 5 levels each 

would require 5
20

 = 95 367 431 640 625 i.e. almost 

10
14 exhaustive test configurations. Pair-wise 

interaction testing for 5
20 can be achieved in 45 

tests. But what if some failure is triggered only by a 

very unusual combination of three, four, or more 

values? It’s unlikely that our 45 tests would detect 

this unusual case. We would need to test at least 

three- and four-way value combinations. 

Combinatorial testing beyond pairwise is rare, 

however, because good algorithms for higher 

strength combinations haven’t been available or 

were too slow for practical use. In the past few 

years, advances in covering-array algorithms, 

integrated with model checking or other testing 

approaches, have made it practical to extend 

combinatorial testing beyond pairwise tests [8]. If 

some failure is triggered only by an unusual 

combination of more than two factor interactions, 

how many testing combinations are enough to detect 

all errors? What degree of interaction occurs in real 

system failures? Surprisingly, researchers hadn’t 

studied these questions when the US National 

Institute of Standards and Technology (NIST) began 

investigating causes of software failures in 1996 [8]. 

Study results showed that, across various domains, 

all failures could be triggered by a maximum of 

four- to six-way interactions.  As Figure 1 shows, 

the detection rate increased rapidly with interaction 

strength. Within the NASA database application, for 

example, 67 percent of the failures were triggered 

by only a single parameter value, 93 percent by two-

way combinations, and 98 percent by three-way 

combinations. The detection-rate curves for the 

other applications studied are similar, reaching 100 

percent detection with four- to six-way interactions. 

These results are not conclusive, but they suggest 

that the degree of interaction involved in faults is 

relatively low, even though pairwise testing is 

insufficient. Testing all four- to six way 

combinations might therefore provide reasonably 

high assurance. 

The OATS provides representative (uniformly 

distributed) coverage of all variable pair 

combinations. This makes the technique particularly 

useful for: 

 integration testing of software components,  

 testing combinations of configurable options 

(such as a web page that lets the user choose 

the font style, background colour, and page 

layout).  

 

Figure 1. Error-detection rates for four- to six-way 

interactions in four application domains: medical 

devices, a Web browser, an HTTP server, and a 

NASA distributed database [8]. 

 

EXAMPLE 2: For n variables with v values, k-

way combinations, Number of combinations for all 

combibnations is: 

  kn

kComb v                  (1) 

The OATS method provides much lower number 

of combinations for k=2 way interaction, ie. pair-

wise interaction of maximum No. of tests as:     

max

2

max

2 log vvnOATS      (2) 
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In a specific example of a 12 variables: 7 

Boolean, two 3-value, one 4-value, two 10-value in 

a typical test configuration for k-way interaction 

requires corresponding number of test combinations 

as shown in next  Table: 

k  # test cases 

2-way 100 

3-way 405 

4-way 1,375 

5-way 4,220 

6-way 10,902 

 

2.2 How to use this technique 

The OATS technique is simple and 

straightforward.  The steps are outlined below.  The 

OATS technique is simple and straightforward.  The 

steps are outlined below.   

1. Decide how many independent variables will 

be tested for interaction.  This will map to the 

Factors of the array.   

2. Decide the maximum number of values that 

each independent variable will take on.  This 

will map to the Levels of the array.   

3. Find a suitable orthogonal array with the 

smallest number of Runs. A suitable array is 

one that has at least as many Factors as 

needed from Step 1 and has at least as many 

levels for each of those factors as decided in 

Step 2.   

4. Map the Factors and values onto the array.   

5. Choose values for any "left over" Levels.   

6. Transcribe the Runs into test cases, adding any 

particularly suspicious combinations that aren't 

generated.   

In a process of the combinatorial testing, tester 

generates tests that cover all double, triple or n-pairs 

combination of test parameters defined in the formal 

requirements for testing. Coverage of the pairs 

combination means that for any two parameters P1 

and P2, and any valid values for the V1 for 

parameter P1 and V2 for parameter P2, there is a 

test in which the P1 has the value V1 and P2 has the 

value V2 [2,3 ]. Case studies [4,5,7,8] give evidence 

that the approach compared to conventional 

approaches is:   

• more than twice as efficient (measured in 

terms of detected faults per testing effort) as 

traditional testing,  

• about 20% more effective (measured in terms 

of detected faults per number of test cases) as 

traditional testing. 

It is appropriate that the combinatorial testing 

uses orthogonal arrays and all-pairs algorithm for 

providing the following advantages [6]:  

• Significantly reducing the cost and raises the 

quality of testing is achieved by intelligent 

generating test cases,  

• Dramatically reduced overall number of test 

cases compared to exhaustive testing, 

• Detects all faults due to a single parameter 

input domain,  

• Detects all faults due to interaction of two 

parameter input domains, 

• Detects many faults due to interaction of 

multiple parameter input domains  

At this time, combinatorial testing is a very 

mature technique of testing, supported by a large 

number of tools to generate test cases [5]. 

3. The Software Defects Fixing 

Problem Optimization Using Taguchi 

Method - Case study 

For over a century, Design of Experiments (DOE) 

methods have applied to testing in many areas such 

as medicine, chemistry, agriculture and 

manufacturing industry. Recently, the application of 

DOE has appeared in software testing. Exhaustive 

testing is not possible in most systems including 

software industry. Lot of time and effort in testing a 

product is put in covering all the different possible 

combinations. As the number of factors that decide 

the output of the system increase, the level of 

complexity involved in testing it also increases. 

Concepts like Orthogonal Arrays and ideas from the 

Design of Experiments can immensely improve 

software product testing even when the number of 

factors is large. DOE will help in reducing test cases 

and yet cover the input space efficiently. 

Methods from the field of DOE have been applied to 

quality control problems in many engineering fields, 

including limited use for software [1,2,8,9,11], DOE 

seeks to maximize the amount of information gained 

in an experiment with an economical number of 

tests. Even a well-performed software process 

introduces defects that impact both development and 

customer systems. No matter how well we plan and 

shape software development, defects are generated 

and can escape to the customers. Failure to quickly 

resolve software problems leads to negative 

consequences for our customers and increases 

internal business costs. A quick deterministic 
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method to prioritize problems and implement their 

solution helps to reduce cycle time and costs [9]. 

Defects found in the later stages of the software life 

cycle tend to be harder to repair than those found in 

earlier stages [12]. Errors encountered by users are 

sometimes difficult to reproduce. To make matter 

worse, repairing one problem may introduce other 

problems into the system. The ability to predict 

defect repair time would be useful for creating 

testing plans and schedules, allocating resources and 

avoiding project overruns [3,4]. Estimated repair 

times can improve testing management and 

consequently, the reliability and time-to market of 

software. 

Achieving this goal requires several steps [9]. The 

first is to determine a model that links problem 

resolution performance to institutional variables and 

problem characteristics. Statistical Design of 

Experiments (DOE) is a tool that provides data 

requirements for estimating the impacts of these 

variables on problem resolution. Once data has been 

gathered the results of statistical analysis can be 

input into a mathematical optimization model to 

guide the organization [11]. 

Our goal was to describe such an analysis. We used 

defect data published in [9] from previous software 

development efforts to describe the when-who-how 

approach for analyzing defect data to gain a better 

understanding of the quality control process and 

identify defect fixing problem improvement 

opportunities using Taguchi’s Design of 

Experiments method. We  used Analysis of 

Variance (ANOVA) to correlate problem resolution 

cycle time with three predictors, problem severity, 

problem complexity and engineer experience to find 

parametric equation for total software defect 

resolution time. 

There were several benefits to the project: 

 Optimal allocation of problems to the 

engineering staff resulted in savings of time and 

money. 

 A closer relationship between experienced and 

novice engineers. 

 Knowledge of the necessary problem resolution 

effort provided a baseline for further problem 

process improvement.  
 

3.1 Statistically Designed Experiment 
 

We needed to estimate the impact of the problem 

characteristics and engineer experience on problem 

resolution cycle time. Historical data was available, 

but inadequate. For example, the most complex 

problems had consistently been assigned to the most 

skilled engineers. Therefore we did not know how 

less experienced engineers would perform on 

difficult problems. This did not permit a full 

evaluation of our model. Statistical Design of 

Experiments is a set of techniques that help the 

analyst determine data requirements to estimate the 

parameters of any given model. There are several 

steps required to generate a statistically designed 

experiment: 

1. Identify the response variable (or variables) to be 

modeled. 

2. Determine the factors that influence that variable. 

3. Determine the mathematical model by which the 

factors affect the response. 

4. Determine appropriate factor settings. 

5. Determine the number of "runs" required to 

estimate the model parameters. If possible, 

replicates are beneficial. 

Step 1: Response Variables: Our goal was to 

understand problem resolution time. Two major 

components of cycle time were considered: 

1. Problem assessment time. 

2. Problem resolution (implementation) time. 

These two sub-processes employ distinct procedures 

and are typically performed by different individuals. 

Until a problem has been properly assessed its true 

severity and complexity are poorly understood. 

Problem resolution cost was a second response and 

employed the same model as cycle time. 

Step 2: Factors: The three predictor variables, 

problem severity, complexity and engineer 

experience were described above. 

Step 3: Model: This required more thought. Some of 

the considerations are: 

1. Do significant interactions occur? Gurus 

obviously have an advantage over novices for any 

type of problem. But perhaps that advantage is not 

constant. They may have an even greater 

advantage for some problems. This is an 

interaction effect. 

2. Are there higher interactions? In this case a 3-

factor interaction is the only higher order 

interaction available, given by Severity x 

Complexity x Experience. It was decided that such 

an interaction was highly unlikely. 

The model that was selected included all possible 2-

factor interactions. It is given by: 

),*()*()*( ECESCSECST           (3) 

where 
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T = Problem resolution time. 

S = Problem Severity 

C = Problem Complexity 

E = Engineer Skill 

Step 4: Factor Levels: The assigned factor values 

were: 

• Problem Severity: Level 1 or High, Level 2 or 

Low 

• Problem Complexity: Level 1 or Simple, Level 2 

or Involved (Average) and  Level 3 or 

Complex 

• Engineer skill: Level 1 or Novice, Level 2 or 

Experienced and Level 3 or Guru 

Step 5: Number of Runs: The product of the 

numbers of factor levels determines the total 

number of candidate experiments. With 2 x 3 x 

3 = 18 runs one can estimate the model. In this 

paper we used sample of 18 data points from 

work [9]. The data are given in Table 1. Note 

that all possible combinations of factor levels 

are represented. 

3.2 Statistical Method for Data Analysis 

Analysis of Variance (ANOVA) was used to analyze 

closure time components. This is the standard method 

to correlate a numerical response with qualitative 

predictors. The full 2-factor interaction model 

discussed above was fit first. Any terms that failed 

statistical tests for significance were eliminated to 

avoid over-fitting the model. For both the assessment 

and implementation cycle time analyses the main 

effects of Complexity, Severity and Experience are 

significant at a very high confidence level (95%). We 

concluded that the variables to predict cycle time were 

chosen well. 

Table 4.  Estimated Average Resolution Times and cost to fix 

 

Severity 

Level 

Complexity 

Level 

Engineer 

Experience 

Assessment 

Mean [Days] 

Implementation 

Mean [Days] 

Total Resolution 

[Days] 

Cost to 

Fix [$] 

High 

Simple 

Novice 5.2 10.5 15.7 1177.5 

Experienced 3.9 9.0 12.9 1290 

Guru 3.4 6.4 9.8 1225 

Involved 

 

Novice 5.3 11.3 16.6 1245 

Experienced 4.9 10.1 15.0 1500 

Guru 4.9 9.7 14.6 1825 

Complex 

Novice 7.7 14.7 22.4 1680 

Experienced 6.9 14.3 21.2 2120 

Guru 5.2 10.5 15.7 1962.5 

Low 

Simple 

Novice 2.4 6.3 8.7 652.5 

Experienced 2.1 2.5 4.6 460 

Guru 0.6 1.3 1.9 237.5 

Involved 

 

Novice 5.2 10.4 15.6 1170 

Experienced 4.5 8.5 13.0 1300 

Guru 3.3 8.5 11.8 1475 

Complex 

Novice 6.8 13.4 20.2 1515 

Experienced 5.1 11.1 16.2 1620 

Guru 4.6 8.9 13.5 1687.5 

  

3.3 Mathematical Optimization Model 

The optimization problem is to minimize total 

resolution cycle time by assigning a given set of 

 

 

problems, defined by severity and complexity, to 

engineers of three skill levels. 
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The linear programming method was used in work [9] 

to solve the optimization problem. There are 2x3x3 

=18 decision variables that represent each possible 

type of assignment. Each represents a number of 

problems of given severity and complexity assigned to 

engineers with one of the three skill levels. 

To make the notation more manageable the six classes 

of problems are indexed with numbers for problem 

complexity and engineer experience. The problems are 

labeled as follows: 

H1 = High Severity, Complexity 1 (simple) problems. 

H2 = High Severity, Complexity 2 (involved or 

average) problems. 

H3 = High Severity, Complexity 3 (complex) 

problems. 

L1 = Low Severity, Complexity 1 problems. 

L2 = Low Severity, Complexity 2 problems. 

L3 = Low Severity, Complexity 3 problems. 

We also have the following resources. 

E
1
 = Number of Engineers of skill Level 1 (Novice), 

E
2
 = Number of Engineers of skill Level 2 

(Experienced), E
3
 = Number of Engineers of skill 

Level 3 (Guru). 

We denote the resource availability (in work days) by: 

T
1
 = Time availability of novice engineers, T

2
 = Time 

availability of experienced engineers, T
3
 = Time 

availability of guru engineers. 

Now we tie these definitions together. Let problems be 

indexed by severity i = H, L, complexity j=1,2,3, and 

engineer skill level k=1,2,3. Also identify the problem 

resolution average cycle times (estimated in the 

ANOVA) as: 

ti j
k 

 = time required to resolve a problem of severity i 

and complexity j by an engineer of skill level k. 

And the number of problems be identified as: 

PRi j
k
 = Total number of problems of severity i and 

complexity j assigned to engineers of skill level k. 

The formal statement of the optimization problem 

given in problem report (PR) is then to Minimize total 

problem resolution time: 

T    = ( tH1
1
 x PRH1

1
) + (tH1

2
 x PRH1

2
) + ( tH1

3
 x 

PRH1
3
) + (tH21 x PRH2

1
) + (tH2

2
 x PRH2

2
) + ( tH2

3
 x 

PRH2
3
)  + (tH3

1
 x PRH3

1
) + (tH3

2
 x PRH3

2
) + ( tH3

3
 x 

PRH3
3
)  + (tL1

1
 x PRL1

1
) + (tL1

2
 x PRL1

2
) + (tL1

3
 x PRL1

3
)     

+ (tL2
1
 x PRL2

1
) + (tL2

2
 x PRL2

2
) + (tL2

3
 x PRL2

3
) + (tL3

1 

x PRL3
1
) + (tL3

2
 x PRL3

2
) + (tL3

3
 x PRL3

3
 )             (4) 

Subject to the following constraints. 

1. The total number of problems of each severity / 

complexity class to be resolved. 

2. The endowment of engineers of each skill level. 

3. Each of the 18 decision variables must be non-

negative. 

These sets of constraints are given algebraically as 

follows. 

1. There are six equality constraints for the total 

number of problems: 

PRH1
1
 + PRH1

2
 + PRH1

3
 = PRH1 

PRH2
1
 + PRH2

2
 + PRH2

3
 = PRH2 

PRH3
1
 + PRH3

2
 + PRH3

3
 = PRH3                        (5) 

PRL1
1
 + PRL1

2
 + PRL1

3
 = PRL1 

PRL2
1
 + PRL2

2
 + PRL2

3
 = PRL2 

PRL3
1
 + PRL3

2
 + PRL3

3
 = PRL3 

2. There are three constraints for the total number of 

engineer staff-days: 

(TH1
1
 x PRH1

1
) + (TH2

1
 x PRH2

1
) + (TH3

1
 x PRH3

1
) + 

(TL1
1
 x PRL1

1
) + (TL2

1
 x PRL2

1
) + (TL3

1
 x PRL3

1
) ≤ T

1
 

 

(TH1
2
 x PRH1

2
) + (TH2

2
 x PRH2

2
) + (TH3

2
 x PRH3

2
) + (TL1

2
 x 

PRL1
2
) + (TL2

2
 x PRL2

2
) + (TL3

2
 x PRL3

2
) ≤ T

2 
           (6) 

 

(TH1
3
 x PRH1

2
) + (TH2

3
 x PRH2

3
) + (TH3

3
 x PRH3

3
) + 

(TL1
3
 x PRL1

3
) + (TL2

3
 x PRL2

3
) + (TL3

3
 x PRL3

3
) ≤ T

3
 

3. There are 18 non-negativity constraints: 

PRij
k
 ≥ 0; i = L, H; j = 1, 2, 3; k = 1, 2, 3 

3.4 Time Resolution Minimization Model 

In the work [9] optimization was performed using an 

Excel add-in program to apply linear programming 

method  that can be used to work out "what-if" 

scenarios, allowing project managers to see the 

consequences of choosing cost over schedule or vice-

versa. The results appear in the following figure 2. 

Figure 2 shows the initial endowments of 900 novice, 

450 experienced, and 250 guru staff-days [9]. There 

were 53 high severity problems, 16 of complexity level 

1, 19 of level 2 and 18 of level 3. There were 22, 17, 

and 24 low severity problems of levels 1, 2, and 3, 

respectively. Assuming costs of $75, $100 and $125 

per work day for the novice, experienced and guru skill 

levels, total problem resolution cost equals $139,145. 

The program indicates some slack resources i.e.  45 

staff-days, 249.4 of the total allocation of 250 guru 

days were used. There were 9.2 days of experienced 
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engineer resources left and 35.1 days of novice 

resources. The optimal solution, for author in [9] is 

interesting because, contrary to expectations, the gurus 

are mostly assigned to low complexity problems, with 

some preference for low severity. The novices tended 

to be assigned to high severity, high complexity 

problems. This surprising result is due to the strong 

comparative advantage the gurus had in the less 

complex problems, requiring only two staff-days for 

the low severity ones! 

 

Figure 2. Output from the Time resolution and Cost Optimization Algorithm in [9] 

3.5 Cost Minimization Model 

The algorithm was run again to determine the cost 

minimizing solution [9]. The output from this exercise 

is found in figure 2. The total cost falls to $138,293 

from the previous $139,145 for a savings of $852. The 

cycle time increases to 1,554.1 total days from 1,539.9 

days for an increase of 14.2 days. This was 

accomplished by substituting some of the novice 

resources that had previously been slack (using 899 of 

their days compared to the previous 843.2 days). Guru 

days fell from 249.4 to 214.3, freeing up 35.1 days for 

them to work on other projects. 6.5 days of 

experienced engineers were also freed. 

3.6 Optimizing Time resolution and cost to 

fix defects using Taguchi method 

In our research we applied Taguchi screening designs 

for three controlled factors and levels of factors of 

each influence factors presented in Table 4. From 18 

experiment runs for full-fractional design plan we used 

only total number of 9 treatments presented on Figure 

3 (Excel sheet form). To analyze Time resolution and 

Cost to fix defects for MOTOROLA project data  [9]  

we used MINITAB ver.16 statistical software tool. 

Some results are given in Fig. 3. The main effects plot  

and the intersection plot are useful tools for visualizing 

and analyzing the effects for factors. In this paper, we 

only use the main effects plot because we conclude 

from MINITAB 16 Taguchi experiment results, 

because factors interactions are not significant at 95% 

confidence level. The main effects plots for outputs: 

Resolution time and Cost are shown in Fig. 3.  

High slope of line means that the factor gives more 

impact on the experimental results than other factors. 

Referring to the Ranking table of Taguchi analysis for 

Cost to fix  [$] and Total Resolution time [Days] 

versus controlled factors Severity, Complexity and 

engineers Experience, the slope and graphs on figure 3, 

we observe that the most influential factor is the 

Complexity factor, then Severity, and Experience 

factor in our experiments for Cost to fix output. Also,  

we observe that the most influential factor for Total 

Resolution time output, again is the Complexity factor, 

then Experience, and Severity factor in our 

experiments. Taguchi optimization for cost to fix 

design explain author’s [9]  surprise that “The optimal 

solution is interesting because, contrary to 

expectations, the gurus are mostly assigned to low 

complexity problems, with some preference for low 

severity.”. 
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Figure 3. Output from the Time resolution and Cost Optimization using Taguchi method 
 

According to Taguchi method for PR allocation we 

developed ranking procedure:  

Step 1 - Assign PR of Simple complexity and Low 

severity (most influential factors first) to the Guru 

engineers, then  

Step 2 - Simple complexity and High severity PR 

assign, again to Guru if there exists available time 

(days), then 

Step 3 - Average complexity and Low severity PR, 

again assign to Guru if there exists available time 

(days) and to Experienced skill engineers, OR if there 

does not Guru available time (days) exists, then assign 

PR to Experienced skill engineers, then 

Step 4 - Average complexity and High severity PR 

assign, again to Experienced skill engineers if there 

exists available time (days) and to Novice skill 

engineers, OR if there does not exists Experienced 

skill engineers available time (days), then assign PR to 

Novice skill engineers, and 

Step 5 – Complex and Low, then Complex and High 

severity PR assign to the Novice until available time 

(days) exists. 

Similar ranking procedure should be applied to 

optimize Total Resolution time taking into account that 

the most influential factor for Total Resolution time 

output, again is the Complexity factor, then 

Experience, and Severity factor in our experiments. 

Taghuchi approach optimization PR assignment tables 

for Total Resolution time and Cost to fix output are  

presented on Tables 5. Advantages of our Taguchi 

method application to minimize Total Resolution time  

output  is that Total Res. Time=1550, %Delta= 0.7%, 

Delta=5 Days i.e. Total Resolution time is higher only 

0.7%, compared to author’s [9]  linear programming 

approach, but in Taguchi case staff resource reserve is 

50 days instead 45 days in author’s [9] case.  

Table 5. Taguchi Problem Counts for Time   

resolution     

PR_Eng1 PR_Eng2 PR_Eng3 Sev * Compl. 

0 16 0 Hi Sev 1 

19 0 0 Hi Sev 2 

18 0 0 Hi Sev 3 

0 0 22 Lo Sev 1 

0 13 4 Lo Sev 2 

7 17 0 Lo Sev 3 

    

Grand Total = $139665, %Delta= 0.4%, Instead of $138,293 

Reserve 50 instead 45 Days 

Total Resolution Time 1550, %Delta= 0.7%, Delta=5 Days 

This means that Taguchi approach can be used for 

accurate staff effort maintenance planning and, of 

course, for PR assignment effort for maintenance task 
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of delivered software product. Also, advantage of our 

Taguchi method application to minimize Cost to fix 

output  is for Grand Total = $139,665 which is 

higher only 0.4%, compared to author’s [9] linear 

programming approach equal to $138,293. Again, 

Taguchi approach can be used for more accurate 

staff effort maintenance planning and, of course, for 

PR assignment effort for maintenance task of 

delivered software product, allowing project 

managers to see the consequences of choosing cost 

over schedule or vice-versa. 

 

4. Conclusion 

 Software testing need analysis and design test cases 

from different angles, and thus test the system 

effectively and scientifically. However, due to the 

limitation of the testing time and resources, it is 

impossible to test the system completely that is 

limited to test. That how to distribute limited 

resources to the system scientifically is an important 

topic in software testing. The Orthogonal 

experimental design is a good solution to such 

problems as we demonstrated in this paper using 

few examples from our research. 

To select the right and strong representative 

points from a large number of test cases, which are 

more comprehensive and more objective 

understanding comprehensive tests, and to select the 

most optimal level combinations. This method can 

avoid one-sidedness and blindness testing, thereby 

can improve the efficiency of the software testing 

and can reduce the cost of it. Practice has proved 

that such orthogonal experimental design which is 

“equilibrium dispersion and neat comparable” is a 

kind of multi-factor testing and effective method. If 

it will put together a number of test cases designing 

techniques, the effect would be better. 

Software defect repair time is an important factor 

in software development, and estimates of repair 

times are essential in planning, scheduling, and 

resource allocation in software projects. Repair time 

also depends on the experience and skills of the 

fixer, his or her workload, and other factors. 

Predicting defect repair time is a difficult problem 

that has not been researched as intensively as 

reliability modelling. The main goal is to gain a 

better understanding of the quality control process 

and identify defect fixing problem improvement 

opportunities using Taguchi’s Design of 

Experiments method. We  used Analysis of 

Variance (ANOVA) to correlate problem resolution 

cycle time with three predictors, problem severity, 

problem complexity and engineer experience to find 

parametric equation for total software defect cost 

and  resolution time. 
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