
Use of Orthogonal Arrays and Design of Experiments via Taguchi

methods in Software Testing

LJUBOMIR LAZIĆ

State University of Novi Pazar

Vuka Karadžića bb, 36 300 Novi Pazar, SERBIA

llazic@np.ac.rs , http://www.np.ac.rs

Abstract: - To solve the problem of great number of test cases, and to force the configuration testing to be

effective, combinatorial testing is proposed, using an Orthogonal Array Testing Strategy (OATS) as a

systematic, statistical way of testing pair-wise interactions. This combinatorial approach to software testing

uses models to generate a minimal number of test inputs so that selected combinations of input values are

covered. The OAT method can simultaneously reduce testing costs, product introduction delays, and faults

going to the field by generating test cases that are more efficient and thorough in finding faults. Often the result

is a 50% reduction in the number of tests and detection of more faults. An advantage of the Taguchi method

application in Software Testing is that it emphasizes a mean performance characteristic (Defect fixing time and

cost of software Quality) value close to the target value rather than a value within certain specification limits,

thus improving the product quality. Additionally, Taguchi's method for experimental design is straightforward

and easy to apply as we did for defect Cost to fix [$] and Total Resolution time [Days] minimisation versus

controlled factors: Severity, Complexity and engineers Experience to many engineering situations, making it a

powerful yet simple tool.

Key-Words: - Software testing, Bug fixing, Resources allocation, Orthogonal Array, DOE, Taguchi method

1 Introduction

Our research [1]1 concluded that software

development project employs some Quality Control

(QC) process to detect and remove defects. The final

quality of the delivered software depends on the

effort spent on all the QC stages. Given a quality

goal, different combinations of efforts for the

different QC stages may lead to the same goal. For

the quality of the final software we use the

commonly used measure of delivered defect density

- the number of defects present in the final product

normalized by the size of the product. One of the

main objectives of a project is to achieve the desired

quality goal with least amount of resources. Using

defects as the defining metric for quality, we can

view the process of a project as comprising of defect

injection and removal stages. There are some stages

like the requirements, design and coding, in which

defects are injected. These defects are removed in

1 This work was supported in part by the Ministry of

Education and Science of the Republic of Serbia under

Grant No. TR-35026 entitled as:“Software Development

Environment for optimal software quality design“.

various QC stages. A QC stage can be characterized

by the defect removal rate of that stage. There can

be many possible combinations of defect removal

rates for the different QC stages that can achieve the

same overall quality goal. The different

combinations will have different implications on the

total QC effort. Clearly, for a process designer or a

project manager, a key problem is to select the

amount of effort to be spent in each QC stage such

that the desired quality goal is met with the

minimum cost. We propose a model i.e.

OptimalSQM for the cost of QC process and then

view the resource allocation among different QC

stages as an optimization problem. Software testing

consumes 30-70% of the development resources;

however, shipped products may still have many

residual faults resulting in low reliability, high usage

cost, and high maintenance cost. For software

testing process optimization we apply Orthogonal

Array-Based Testing Strategy (OATS) and Design

of Experiments via Taguchi method.

 Different types of testing aims for identifying

different types of errors and faults. For example,

mutation testing modifies the source code in a

meager way that helps the tester to develop effective

test cases. Similarly, combinatorial testing is

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 256

mailto:llazic@np.ac.rs

focused on identifying errors and faults, occurs due

to the interaction of different parameters of

software. Combinatorial testing is performed by

covering all the possible combination of parameter

values. Testing of a network gaming application

running on the internet can be influenced by the

number of parameters. These parameters are

operating system, audio, graphics, number of

players, internet access type, browser type, etc. Each

parameter may have any number of possible values.

The interaction of these parameters causes faults and

errors in the application. Exhaustive testing is

virtually impractical due to several possible

combinations of parameters. Combinatorial Testing

provides a better way to cover all the possible

combinations with a better tradeoff between cost

and time.

Combinatorial testing is based on the following

concepts:

Interaction Rule: Most failures occur due to a

single factor or by the joint combinatorial effect

(interaction) of two factors, with progressively

fewer failures induced by interactions between three

or more factors [2].

T-way Testing/Pairwise Testing: Pair-wise

testing [3] requires a given numbers of input

parameters to the system, each possible combination

of values for any pair of parameters covered with at

least one test case.

Covering Array: Covering array represents the

test case selected under pairwise testing [5].

Combinatorial testing is a vital approach to

detect interaction errors occurs because of

interaction of several parameters. There are two

approaches for combinatorial testing:

 Testing of configuration parameter values, or

 Testing of input parameter values.

To solve the problem of great number of test

cases, and to force the configuration testing to be

effective, combinatorial testing is proposed, using an

OAT Strategy as a systematic, statistical way of

testing pair-wise interactions. This combinatorial

approach to software testing uses models to generate

a minimal number of test inputs so that selected

combinations of input values are covered. The OAT

method can simultaneously reduce testing costs,

product introduction delays, and faults going to the

field by generating test cases that are more efficient

and thorough in finding faults. Often the result is a

50% reduction in the number of tests and detection

of more faults.

An advantage of the Taguchi method

application in Software Testing is that it emphasizes

a mean performance characteristic (Defect fixing

time and cost of software Quality) value close to the

target value rather than a value within certain

specification limits, thus improving the product

quality. Additionally, Taguchi's method for

experimental design is straightforward and easy to

apply to many engineering situations, making it a

powerful yet simple tool. It can be used to quickly

narrow down the scope of a research project or to

identify problems in a manufacturing process from

data already in existence. Also, the Taguchi method

allows for the analysis of many different parameters

without a prohibitively high amount of

experimentation. For example, a process with 8

variables, each with 3 states, would require 6561

(38) experiments to test all variables. However using

Taguchi's orthogonal arrays, only 18 experiments

are necessary, or less than 0.3% of the original

number of experiments. In this way, it allows for the

identification of key parameters that have the most

effect on the Defect fixing time and cost value so

that further experimentation on these parameters can

be performed and the parameters that have little

effect can be ignored, as we explained in this paper.

2. Orthogonal Array Testing Strategy

(OATS)

In order to overcome the challenges mentioned

above, Orthogonal Array Testing Strategy (OATS)

gives a systematic, statistical way of testing pair-

wise interactions providing representative

(uniformly distributed) coverage of all variable pair

combinations. This makes the technique particularly

useful for integration testing of software

components.

It provides a representative (uniformly distributed)

coverage of all variable pair combinations.

Pairwise (a.k.a. all-pairs) testing is an effective test

case generation technique that is based on the

observation that most faults are caused by

interactions of at most two factors.

Pairwise-generated test suites cover all

combinations of two and therefore are much smaller

than exhaustive ones yet very effective in finding

defects.

Dr. Genichi Taguchi was one of the first proponents

of orthogonal arrays in test design. His techniques,

known as Taguchi Methods, have been a mainstay

in experimental design in manufacturing fields for

decades.

The method of orthogonal arrays is an experimental

design construction technique from the literature of

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 257

statistics. In turn, construction of such arrays

depends on the theory of combinations. An

orthogonal array is a balanced two-way

classification scheme used to construct balanced

experiments when it is not practical to test all

possible combinations. The size and shape of the

array depends on the number of parameters (factors)

and values (levels) in the experiment. Orthogonal

arrays are related to combinatorial designs.

Testing a software system requires the creation

of test cases, which contain values for input

parameters and the expected results. Exhaustive

testing for all of the possible combinations of

parameters, in most cases it is not possible, it is not

feasible, or the cost is out of the available budget

[4]. The main goal of using different methods and

techniques of testing is to create a smaller number of

combinations of parameters and their values, which

will be tested.

According to inputting different combination of

conditions so as to produce different impacts,

software testing designs a large number of test

cases. If the implementation of an overall test, due

to the limit of the combination of conditions, it is

difficult to carry out. In order to generate high

quality test cases as early as possible to improve the

efficiency of software testing, it is designed a

generation tool of the automatic software testing

case on orthogonal experimental design [5]. For the

test data, the use of that tool design test cases. The

practice shows that a small number of test cases are

generated, the error detection ability is strong, and it

greatly improves the efficiency of software testing.

In software testing process, it provides a natural

mechanism for testing systems to be deployed on a

variety of hardware & software configurations or

with multiple interfaces. The combinatorial

approach to software testing uses models to generate

a minimal number of test inputs so that selected

combinations of input values are covered. The most

common coverage criteria are two-way or pair-wise

coverage of value combinations, though for higher

confidence three-way or higher coverage may be

required.

The basic fault model that lies beneath existing

techniques:

o Interactions and integrations are a major source

of defects.

Most of these defects are a result of simple

interactions such as in next example:

"When the background is blue and the font is Arial

and the layout has menus on the right and the

images are large and it's a Thursday then the tables

don't line up properly."

o Most of these defects arise from simple pair-

wise interactions such as in this error case:

"When the font is Arial and the menus are on the

right, the tables don't line up properly.”

o With so many possible combinations of

components or settings, it is easy to miss one.

o Randomly selecting values to create all of the

pair-wise combinations is bound to create

inefficient test sets and test sets with random,

less meaningful distribution of values.

OATS can be used to reduce the number of

combinations and provide maximum coverage with

a minimum number of test cases. OATS is an array

of values in which each column represents a variable

- factor that can take a certain set of values called

levels.

 Orthogonal arrays are two dimensional arrays of

numbers which possess the interesting quality

that by choosing any two columns in the array

you receive an even distribution of all the pair-

wise combinations of values in the array.

 The size and shape of the array depend on the

number of parameters and values in the

experiment.

 Each row represents a test case/combination.

 In OATS, the factors are combined pair-wise

rather than representing all possible

combinations of factors and levels.

2.1 Orthogonal Array Testing Strategy

applications

The OATS provides representative (uniformly

distributed) coverage of all variable pair

combinations. This makes the technique particularly

useful for integration testing of software

components (especially in OO systems where

multiple subclasses can be substituted as the server

for a client). It is also quite useful for testing

combinations of configurable options (such as a web

page that lets the user choose the font style,

background color, and page layout). The size and

shape of the array depend on the number of

parameters and values in the experiment.

Definition 1: Orthogonal array O(ρ, k, n, d)

An orthogonal array is denoted by O(ρ, k, n, d),

where:

• ρ is the number of rows in the array. The k-

tuple forming each row represents a single test

configuration, and thus ρ represents the

number of test configurations.

• k is the number of columns, representing the

number of parameters.

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 258

• The entries in the array are the values 0, …, n

– 1, where n = f(n0, …, nk-1). Typically, this

means that each parameter would have (up to)

n values.

• d is the strength of the array (see below).

An orthogonal array has strength d if in any ρ × d

sub-matrix (that is, select any d columns), each of

the n*d possible d-tuples (rows) appears the same

number of times (>0). In other words, all d-

interaction elements occur the same number of

times.

Here is some terminology for working with

orthogonal arrays followed by an example array in

Table 1 [6,7]:

• Runs - ρ: the number of rows in the array. This

directly translates to the number of test cases

that will be generated by the OATS technique.

• Factors - k: the number of columns in an

array. This directly translates to the maximum

number of variables that can be handled by this

array.

• Levels - n: the maximum number of values

that can be taken on by any single factor. An

orthogonal array will contain values from 0 to

Levels-1.

• Strength - d: the number of columns it takes

to see each of the Levels
Stength

 possibilities

equally often.

• Orthogonal arrays are most often named

following the pattern LRuns(Levels
Factors

).

Along with the more powerful software function and

the improvement of software complexity, software

development process is not easy to be controlled.

Software testing is a critical element of software

quality assurance and represents the ultimate review

of specification, design, and code generation. The

design of tests for software and other engineered

products can be as challenging as the initial design

of the product itself. A rich variety of test case

design methods have evolved for software.

The OATS makes the technique particularly

useful for integration testing of software

components. It is also quite useful for testing

combinations of configurable options (such as a web

page that lets the user choose the font style,

background colour, and page layout). As an example

of the benefit of using the OATS technique over a

test set that exhaustively tests every combination of

all variables, consider a system that has four options,

each of which can have three values (see Table 1).

The exhaustive test set would require 81 test cases

(3 x 3 x 3 x 3 or the Cartesian product of the

options). The test set created by OATS has only

nine test cases, yet tests all of the pair-wise

combinations. The OATS test set is only 11% as

large at the exhaustive set and will uncover most of

the interaction bugs. It covers 100% (9 of 9) of the

pair-wise combinations, 33% (9 of 27) of the three-

way combinations, and 11% (9 of 81) of the four-

way combinations. What degree of interaction

occurs in real system failures? Within the NASA

database application, for example, 67 percent of the

failures were triggered by only a single parameter

value, 93 percent by two-way combinations, and 98

percent by three-way combinations. The detection-

rate curves for the other applications studied are

similar, reaching 100 percent detection with four- to

six-way interactions. An orthogonal array is a

balanced two-way classification scheme used to

construct balanced experiments when it is not

practical to test all possible combinations.

Table 1. An L9(3
4
) orthogonal array with 9 runs, 4

factors, 3 levels, and strength of 2

Test

Number

Factors

A B C D

1 1 1 1 1

2 1 2 2 3

3 1 3 3 2

4 2 1 2 2

5 2 2 3 1

6 2 3 1 3

7 3 1 3 3

8 3 2 1 2

9 3 3 2 1

EXAMPLE 1: The above approach was used for a

project where Compatibility testing had to be

performed for various Browser-OS-Database

combinations.

The factors and various levels for each of the factors

are listed below in Table 2. The test set could easily

be augmented if there were particularly suspicious

three- and four-way combinations that should be

tested. Interaction testing can offer significant

savings.

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 259

Table 2. Factors and Levels listed for the Compatibility

Testing Scenario

Table 3. Orthogonal Array constructed for the

Compatibility Testing Scenario

Indeed a system with 20 factors and 5 levels each

would require 5
20

 = 95 367 431 640 625 i.e. almost

10
14 exhaustive test configurations. Pair-wise

interaction testing for 5
20 can be achieved in 45

tests. But what if some failure is triggered only by a

very unusual combination of three, four, or more

values? It’s unlikely that our 45 tests would detect

this unusual case. We would need to test at least

three- and four-way value combinations.

Combinatorial testing beyond pairwise is rare,

however, because good algorithms for higher

strength combinations haven’t been available or

were too slow for practical use. In the past few

years, advances in covering-array algorithms,

integrated with model checking or other testing

approaches, have made it practical to extend

combinatorial testing beyond pairwise tests [8]. If

some failure is triggered only by an unusual

combination of more than two factor interactions,

how many testing combinations are enough to detect

all errors? What degree of interaction occurs in real

system failures? Surprisingly, researchers hadn’t

studied these questions when the US National

Institute of Standards and Technology (NIST) began

investigating causes of software failures in 1996 [8].

Study results showed that, across various domains,

all failures could be triggered by a maximum of

four- to six-way interactions. As Figure 1 shows,

the detection rate increased rapidly with interaction

strength. Within the NASA database application, for

example, 67 percent of the failures were triggered

by only a single parameter value, 93 percent by two-

way combinations, and 98 percent by three-way

combinations. The detection-rate curves for the

other applications studied are similar, reaching 100

percent detection with four- to six-way interactions.

These results are not conclusive, but they suggest

that the degree of interaction involved in faults is

relatively low, even though pairwise testing is

insufficient. Testing all four- to six way

combinations might therefore provide reasonably

high assurance.

The OATS provides representative (uniformly

distributed) coverage of all variable pair

combinations. This makes the technique particularly

useful for:

 integration testing of software components,

 testing combinations of configurable options

(such as a web page that lets the user choose

the font style, background colour, and page

layout).

Figure 1. Error-detection rates for four- to six-way

interactions in four application domains: medical

devices, a Web browser, an HTTP server, and a

NASA distributed database [8].

EXAMPLE 2: For n variables with v values, k-

way combinations, Number of combinations for all

combibnations is:

 kn

kComb v (1)

The OATS method provides much lower number

of combinations for k=2 way interaction, ie. pair-

wise interaction of maximum No. of tests as:

max

2

max

2 log vvnOATS (2)

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 260

In a specific example of a 12 variables: 7

Boolean, two 3-value, one 4-value, two 10-value in

a typical test configuration for k-way interaction

requires corresponding number of test combinations

as shown in next Table:

k # test cases

2-way 100

3-way 405

4-way 1,375

5-way 4,220

6-way 10,902

2.2 How to use this technique

The OATS technique is simple and

straightforward. The steps are outlined below. The

OATS technique is simple and straightforward. The

steps are outlined below.

1. Decide how many independent variables will

be tested for interaction. This will map to the

Factors of the array.

2. Decide the maximum number of values that

each independent variable will take on. This

will map to the Levels of the array.

3. Find a suitable orthogonal array with the

smallest number of Runs. A suitable array is

one that has at least as many Factors as

needed from Step 1 and has at least as many

levels for each of those factors as decided in

Step 2.

4. Map the Factors and values onto the array.

5. Choose values for any "left over" Levels.

6. Transcribe the Runs into test cases, adding any

particularly suspicious combinations that aren't

generated.

In a process of the combinatorial testing, tester

generates tests that cover all double, triple or n-pairs

combination of test parameters defined in the formal

requirements for testing. Coverage of the pairs

combination means that for any two parameters P1

and P2, and any valid values for the V1 for

parameter P1 and V2 for parameter P2, there is a

test in which the P1 has the value V1 and P2 has the

value V2 [2,3]. Case studies [4,5,7,8] give evidence

that the approach compared to conventional

approaches is:

• more than twice as efficient (measured in

terms of detected faults per testing effort) as

traditional testing,

• about 20% more effective (measured in terms

of detected faults per number of test cases) as

traditional testing.

It is appropriate that the combinatorial testing

uses orthogonal arrays and all-pairs algorithm for

providing the following advantages [6]:

• Significantly reducing the cost and raises the

quality of testing is achieved by intelligent

generating test cases,

• Dramatically reduced overall number of test

cases compared to exhaustive testing,

• Detects all faults due to a single parameter

input domain,

• Detects all faults due to interaction of two

parameter input domains,

• Detects many faults due to interaction of

multiple parameter input domains

At this time, combinatorial testing is a very

mature technique of testing, supported by a large

number of tools to generate test cases [5].

3. The Software Defects Fixing

Problem Optimization Using Taguchi

Method - Case study

For over a century, Design of Experiments (DOE)

methods have applied to testing in many areas such

as medicine, chemistry, agriculture and

manufacturing industry. Recently, the application of

DOE has appeared in software testing. Exhaustive

testing is not possible in most systems including

software industry. Lot of time and effort in testing a

product is put in covering all the different possible

combinations. As the number of factors that decide

the output of the system increase, the level of

complexity involved in testing it also increases.

Concepts like Orthogonal Arrays and ideas from the

Design of Experiments can immensely improve

software product testing even when the number of

factors is large. DOE will help in reducing test cases

and yet cover the input space efficiently.

Methods from the field of DOE have been applied to

quality control problems in many engineering fields,

including limited use for software [1,2,8,9,11], DOE

seeks to maximize the amount of information gained

in an experiment with an economical number of

tests. Even a well-performed software process

introduces defects that impact both development and

customer systems. No matter how well we plan and

shape software development, defects are generated

and can escape to the customers. Failure to quickly

resolve software problems leads to negative

consequences for our customers and increases

internal business costs. A quick deterministic

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 261

method to prioritize problems and implement their

solution helps to reduce cycle time and costs [9].

Defects found in the later stages of the software life

cycle tend to be harder to repair than those found in

earlier stages [12]. Errors encountered by users are

sometimes difficult to reproduce. To make matter

worse, repairing one problem may introduce other

problems into the system. The ability to predict

defect repair time would be useful for creating

testing plans and schedules, allocating resources and

avoiding project overruns [3,4]. Estimated repair

times can improve testing management and

consequently, the reliability and time-to market of

software.

Achieving this goal requires several steps [9]. The

first is to determine a model that links problem

resolution performance to institutional variables and

problem characteristics. Statistical Design of

Experiments (DOE) is a tool that provides data

requirements for estimating the impacts of these

variables on problem resolution. Once data has been

gathered the results of statistical analysis can be

input into a mathematical optimization model to

guide the organization [11].

Our goal was to describe such an analysis. We used

defect data published in [9] from previous software

development efforts to describe the when-who-how

approach for analyzing defect data to gain a better

understanding of the quality control process and

identify defect fixing problem improvement

opportunities using Taguchi’s Design of

Experiments method. We used Analysis of

Variance (ANOVA) to correlate problem resolution

cycle time with three predictors, problem severity,

problem complexity and engineer experience to find

parametric equation for total software defect

resolution time.

There were several benefits to the project:

 Optimal allocation of problems to the

engineering staff resulted in savings of time and

money.

 A closer relationship between experienced and

novice engineers.

 Knowledge of the necessary problem resolution

effort provided a baseline for further problem

process improvement.

3.1 Statistically Designed Experiment

We needed to estimate the impact of the problem

characteristics and engineer experience on problem

resolution cycle time. Historical data was available,

but inadequate. For example, the most complex

problems had consistently been assigned to the most

skilled engineers. Therefore we did not know how

less experienced engineers would perform on

difficult problems. This did not permit a full

evaluation of our model. Statistical Design of

Experiments is a set of techniques that help the

analyst determine data requirements to estimate the

parameters of any given model. There are several

steps required to generate a statistically designed

experiment:

1. Identify the response variable (or variables) to be

modeled.

2. Determine the factors that influence that variable.

3. Determine the mathematical model by which the

factors affect the response.

4. Determine appropriate factor settings.

5. Determine the number of "runs" required to

estimate the model parameters. If possible,

replicates are beneficial.

Step 1: Response Variables: Our goal was to

understand problem resolution time. Two major

components of cycle time were considered:

1. Problem assessment time.

2. Problem resolution (implementation) time.

These two sub-processes employ distinct procedures

and are typically performed by different individuals.

Until a problem has been properly assessed its true

severity and complexity are poorly understood.

Problem resolution cost was a second response and

employed the same model as cycle time.

Step 2: Factors: The three predictor variables,

problem severity, complexity and engineer

experience were described above.

Step 3: Model: This required more thought. Some of

the considerations are:

1. Do significant interactions occur? Gurus

obviously have an advantage over novices for any

type of problem. But perhaps that advantage is not

constant. They may have an even greater

advantage for some problems. This is an

interaction effect.

2. Are there higher interactions? In this case a 3-

factor interaction is the only higher order

interaction available, given by Severity x

Complexity x Experience. It was decided that such

an interaction was highly unlikely.

The model that was selected included all possible 2-

factor interactions. It is given by:

),*()*()*(ECESCSECST (3)

where

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 262

T = Problem resolution time.

S = Problem Severity

C = Problem Complexity

E = Engineer Skill

Step 4: Factor Levels: The assigned factor values

were:

• Problem Severity: Level 1 or High, Level 2 or

Low

• Problem Complexity: Level 1 or Simple, Level 2

or Involved (Average) and Level 3 or

Complex

• Engineer skill: Level 1 or Novice, Level 2 or

Experienced and Level 3 or Guru

Step 5: Number of Runs: The product of the

numbers of factor levels determines the total

number of candidate experiments. With 2 x 3 x

3 = 18 runs one can estimate the model. In this

paper we used sample of 18 data points from

work [9]. The data are given in Table 1. Note

that all possible combinations of factor levels

are represented.

3.2 Statistical Method for Data Analysis

Analysis of Variance (ANOVA) was used to analyze

closure time components. This is the standard method

to correlate a numerical response with qualitative

predictors. The full 2-factor interaction model

discussed above was fit first. Any terms that failed

statistical tests for significance were eliminated to

avoid over-fitting the model. For both the assessment

and implementation cycle time analyses the main

effects of Complexity, Severity and Experience are

significant at a very high confidence level (95%). We

concluded that the variables to predict cycle time were

chosen well.

Table 4. Estimated Average Resolution Times and cost to fix

Severity

Level

Complexity

Level

Engineer

Experience

Assessment

Mean [Days]

Implementation

Mean [Days]

Total Resolution

[Days]

Cost to

Fix [$]

High

Simple

Novice 5.2 10.5 15.7 1177.5

Experienced 3.9 9.0 12.9 1290

Guru 3.4 6.4 9.8 1225

Involved

Novice 5.3 11.3 16.6 1245

Experienced 4.9 10.1 15.0 1500

Guru 4.9 9.7 14.6 1825

Complex

Novice 7.7 14.7 22.4 1680

Experienced 6.9 14.3 21.2 2120

Guru 5.2 10.5 15.7 1962.5

Low

Simple

Novice 2.4 6.3 8.7 652.5

Experienced 2.1 2.5 4.6 460

Guru 0.6 1.3 1.9 237.5

Involved

Novice 5.2 10.4 15.6 1170

Experienced 4.5 8.5 13.0 1300

Guru 3.3 8.5 11.8 1475

Complex

Novice 6.8 13.4 20.2 1515

Experienced 5.1 11.1 16.2 1620

Guru 4.6 8.9 13.5 1687.5

3.3 Mathematical Optimization Model

The optimization problem is to minimize total

resolution cycle time by assigning a given set of

problems, defined by severity and complexity, to

engineers of three skill levels.

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 263

The linear programming method was used in work [9]

to solve the optimization problem. There are 2x3x3

=18 decision variables that represent each possible

type of assignment. Each represents a number of

problems of given severity and complexity assigned to

engineers with one of the three skill levels.

To make the notation more manageable the six classes

of problems are indexed with numbers for problem

complexity and engineer experience. The problems are

labeled as follows:

H1 = High Severity, Complexity 1 (simple) problems.

H2 = High Severity, Complexity 2 (involved or

average) problems.

H3 = High Severity, Complexity 3 (complex)

problems.

L1 = Low Severity, Complexity 1 problems.

L2 = Low Severity, Complexity 2 problems.

L3 = Low Severity, Complexity 3 problems.

We also have the following resources.

E
1
 = Number of Engineers of skill Level 1 (Novice),

E
2
 = Number of Engineers of skill Level 2

(Experienced), E
3
 = Number of Engineers of skill

Level 3 (Guru).

We denote the resource availability (in work days) by:

T
1
 = Time availability of novice engineers, T

2
 = Time

availability of experienced engineers, T
3
 = Time

availability of guru engineers.

Now we tie these definitions together. Let problems be

indexed by severity i = H, L, complexity j=1,2,3, and

engineer skill level k=1,2,3. Also identify the problem

resolution average cycle times (estimated in the

ANOVA) as:

ti j
k

 = time required to resolve a problem of severity i

and complexity j by an engineer of skill level k.

And the number of problems be identified as:

PRi j
k
 = Total number of problems of severity i and

complexity j assigned to engineers of skill level k.

The formal statement of the optimization problem

given in problem report (PR) is then to Minimize total

problem resolution time:

T = (tH1
1
 x PRH1

1
) + (tH1

2
 x PRH1

2
) + (tH1

3
 x

PRH1
3
) + (tH21 x PRH2

1
) + (tH2

2
 x PRH2

2
) + (tH2

3
 x

PRH2
3
) + (tH3

1
 x PRH3

1
) + (tH3

2
 x PRH3

2
) + (tH3

3
 x

PRH3
3
) + (tL1

1
 x PRL1

1
) + (tL1

2
 x PRL1

2
) + (tL1

3
 x PRL1

3
)

+ (tL2
1
 x PRL2

1
) + (tL2

2
 x PRL2

2
) + (tL2

3
 x PRL2

3
) + (tL3

1

x PRL3
1
) + (tL3

2
 x PRL3

2
) + (tL3

3
 x PRL3

3
) (4)

Subject to the following constraints.

1. The total number of problems of each severity /

complexity class to be resolved.

2. The endowment of engineers of each skill level.

3. Each of the 18 decision variables must be non-

negative.

These sets of constraints are given algebraically as

follows.

1. There are six equality constraints for the total

number of problems:

PRH1
1
 + PRH1

2
 + PRH1

3
 = PRH1

PRH2
1
 + PRH2

2
 + PRH2

3
 = PRH2

PRH3
1
 + PRH3

2
 + PRH3

3
 = PRH3 (5)

PRL1
1
 + PRL1

2
 + PRL1

3
 = PRL1

PRL2
1
 + PRL2

2
 + PRL2

3
 = PRL2

PRL3
1
 + PRL3

2
 + PRL3

3
 = PRL3

2. There are three constraints for the total number of

engineer staff-days:

(TH1
1
 x PRH1

1
) + (TH2

1
 x PRH2

1
) + (TH3

1
 x PRH3

1
) +

(TL1
1
 x PRL1

1
) + (TL2

1
 x PRL2

1
) + (TL3

1
 x PRL3

1
) ≤ T

1

(TH1
2
 x PRH1

2
) + (TH2

2
 x PRH2

2
) + (TH3

2
 x PRH3

2
) + (TL1

2
 x

PRL1
2
) + (TL2

2
 x PRL2

2
) + (TL3

2
 x PRL3

2
) ≤ T

2
 (6)

(TH1
3
 x PRH1

2
) + (TH2

3
 x PRH2

3
) + (TH3

3
 x PRH3

3
) +

(TL1
3
 x PRL1

3
) + (TL2

3
 x PRL2

3
) + (TL3

3
 x PRL3

3
) ≤ T

3

3. There are 18 non-negativity constraints:

PRij
k
 ≥ 0; i = L, H; j = 1, 2, 3; k = 1, 2, 3

3.4 Time Resolution Minimization Model

In the work [9] optimization was performed using an

Excel add-in program to apply linear programming

method that can be used to work out "what-if"

scenarios, allowing project managers to see the

consequences of choosing cost over schedule or vice-

versa. The results appear in the following figure 2.

Figure 2 shows the initial endowments of 900 novice,

450 experienced, and 250 guru staff-days [9]. There

were 53 high severity problems, 16 of complexity level

1, 19 of level 2 and 18 of level 3. There were 22, 17,

and 24 low severity problems of levels 1, 2, and 3,

respectively. Assuming costs of $75, $100 and $125

per work day for the novice, experienced and guru skill

levels, total problem resolution cost equals $139,145.

The program indicates some slack resources i.e. 45

staff-days, 249.4 of the total allocation of 250 guru

days were used. There were 9.2 days of experienced

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 264

engineer resources left and 35.1 days of novice

resources. The optimal solution, for author in [9] is

interesting because, contrary to expectations, the gurus

are mostly assigned to low complexity problems, with

some preference for low severity. The novices tended

to be assigned to high severity, high complexity

problems. This surprising result is due to the strong

comparative advantage the gurus had in the less

complex problems, requiring only two staff-days for

the low severity ones!

Figure 2. Output from the Time resolution and Cost Optimization Algorithm in [9]

3.5 Cost Minimization Model

The algorithm was run again to determine the cost

minimizing solution [9]. The output from this exercise

is found in figure 2. The total cost falls to $138,293

from the previous $139,145 for a savings of $852. The

cycle time increases to 1,554.1 total days from 1,539.9

days for an increase of 14.2 days. This was

accomplished by substituting some of the novice

resources that had previously been slack (using 899 of

their days compared to the previous 843.2 days). Guru

days fell from 249.4 to 214.3, freeing up 35.1 days for

them to work on other projects. 6.5 days of

experienced engineers were also freed.

3.6 Optimizing Time resolution and cost to

fix defects using Taguchi method

In our research we applied Taguchi screening designs

for three controlled factors and levels of factors of

each influence factors presented in Table 4. From 18

experiment runs for full-fractional design plan we used

only total number of 9 treatments presented on Figure

3 (Excel sheet form). To analyze Time resolution and

Cost to fix defects for MOTOROLA project data [9]

we used MINITAB ver.16 statistical software tool.

Some results are given in Fig. 3. The main effects plot

and the intersection plot are useful tools for visualizing

and analyzing the effects for factors. In this paper, we

only use the main effects plot because we conclude

from MINITAB 16 Taguchi experiment results,

because factors interactions are not significant at 95%

confidence level. The main effects plots for outputs:

Resolution time and Cost are shown in Fig. 3.

High slope of line means that the factor gives more

impact on the experimental results than other factors.

Referring to the Ranking table of Taguchi analysis for

Cost to fix [$] and Total Resolution time [Days]

versus controlled factors Severity, Complexity and

engineers Experience, the slope and graphs on figure 3,

we observe that the most influential factor is the

Complexity factor, then Severity, and Experience

factor in our experiments for Cost to fix output. Also,

we observe that the most influential factor for Total

Resolution time output, again is the Complexity factor,

then Experience, and Severity factor in our

experiments. Taguchi optimization for cost to fix

design explain author’s [9] surprise that “The optimal

solution is interesting because, contrary to

expectations, the gurus are mostly assigned to low

complexity problems, with some preference for low

severity.”.

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 265

Figure 3. Output from the Time resolution and Cost Optimization using Taguchi method

According to Taguchi method for PR allocation we

developed ranking procedure:

Step 1 - Assign PR of Simple complexity and Low

severity (most influential factors first) to the Guru

engineers, then

Step 2 - Simple complexity and High severity PR

assign, again to Guru if there exists available time

(days), then

Step 3 - Average complexity and Low severity PR,

again assign to Guru if there exists available time

(days) and to Experienced skill engineers, OR if there

does not Guru available time (days) exists, then assign

PR to Experienced skill engineers, then

Step 4 - Average complexity and High severity PR

assign, again to Experienced skill engineers if there

exists available time (days) and to Novice skill

engineers, OR if there does not exists Experienced

skill engineers available time (days), then assign PR to

Novice skill engineers, and

Step 5 – Complex and Low, then Complex and High

severity PR assign to the Novice until available time

(days) exists.

Similar ranking procedure should be applied to

optimize Total Resolution time taking into account that

the most influential factor for Total Resolution time

output, again is the Complexity factor, then

Experience, and Severity factor in our experiments.

Taghuchi approach optimization PR assignment tables

for Total Resolution time and Cost to fix output are

presented on Tables 5. Advantages of our Taguchi

method application to minimize Total Resolution time

output is that Total Res. Time=1550, %Delta= 0.7%,

Delta=5 Days i.e. Total Resolution time is higher only

0.7%, compared to author’s [9] linear programming

approach, but in Taguchi case staff resource reserve is

50 days instead 45 days in author’s [9] case.

Table 5. Taguchi Problem Counts for Time

resolution

PR_Eng1 PR_Eng2 PR_Eng3 Sev * Compl.

0 16 0 Hi Sev 1

19 0 0 Hi Sev 2

18 0 0 Hi Sev 3

0 0 22 Lo Sev 1

0 13 4 Lo Sev 2

7 17 0 Lo Sev 3

Grand Total = $139665, %Delta= 0.4%, Instead of $138,293

Reserve 50 instead 45 Days

Total Resolution Time 1550, %Delta= 0.7%, Delta=5 Days

This means that Taguchi approach can be used for

accurate staff effort maintenance planning and, of

course, for PR assignment effort for maintenance task

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 266

of delivered software product. Also, advantage of our

Taguchi method application to minimize Cost to fix

output is for Grand Total = $139,665 which is

higher only 0.4%, compared to author’s [9] linear

programming approach equal to $138,293. Again,

Taguchi approach can be used for more accurate

staff effort maintenance planning and, of course, for

PR assignment effort for maintenance task of

delivered software product, allowing project

managers to see the consequences of choosing cost

over schedule or vice-versa.

4. Conclusion

 Software testing need analysis and design test cases

from different angles, and thus test the system

effectively and scientifically. However, due to the

limitation of the testing time and resources, it is

impossible to test the system completely that is

limited to test. That how to distribute limited

resources to the system scientifically is an important

topic in software testing. The Orthogonal

experimental design is a good solution to such

problems as we demonstrated in this paper using

few examples from our research.

To select the right and strong representative

points from a large number of test cases, which are

more comprehensive and more objective

understanding comprehensive tests, and to select the

most optimal level combinations. This method can

avoid one-sidedness and blindness testing, thereby

can improve the efficiency of the software testing

and can reduce the cost of it. Practice has proved

that such orthogonal experimental design which is

“equilibrium dispersion and neat comparable” is a

kind of multi-factor testing and effective method. If

it will put together a number of test cases designing

techniques, the effect would be better.

Software defect repair time is an important factor

in software development, and estimates of repair

times are essential in planning, scheduling, and

resource allocation in software projects. Repair time

also depends on the experience and skills of the

fixer, his or her workload, and other factors.

Predicting defect repair time is a difficult problem

that has not been researched as intensively as

reliability modelling. The main goal is to gain a

better understanding of the quality control process

and identify defect fixing problem improvement

opportunities using Taguchi’s Design of

Experiments method. We used Analysis of

Variance (ANOVA) to correlate problem resolution

cycle time with three predictors, problem severity,

problem complexity and engineer experience to find

parametric equation for total software defect cost

and resolution time.

References

[1] Lj. Lazić S. Milinković, S. Ilić " OptimalSQM:

Optimal Software Quality Management Repository

is a Software Testing Center of Excellence", Proc.

of 6th WSEAS European Computing Conference

(ECC '12), Prague, Czech Republic, September 24-

26, 2012, pp. 197- 209.

[2] D. R. Kuhn, N. Kacker, Yu Lei, “Practical

Combinatorial Testing,” NIST Special Publication

Oct.2010.

[3] P. Flores and Y. Cheon, “Generating Test Cases for

Pairwise Testing Using Genetic Algorithms,” 18th

IEEE International Symposium on Software

Reliability Engineering (ISSRE’07), Dec.2007.

[4] Lj. Lazic and D. Velasevic, “Applying Simulation

and Design of Experiments to the Embedded

Software Testing Process,” Journal of Software

Testing, Verification and Reliability, Vol. 14, 2004,

p.257–282

[5] http://www.pairwise.org/tools.asp

[6] Lj. Lazic, N. Mastorakis, "Orthogonal Array

application for optimal combination of software

defect detection techniques choices", WSEAS

TRANSACTIONS on COMPUTERS, pp. 1319-

1336, August 2008.

[7] J. Czerwonka, "Pairwise Testing in the Real World:

Practical Extensions to Test-Case Scenarios",

Microsoft Corporation, Software Testing Technical

Articles, February 2008.

[8] D.R. Kuhn, Y.Lei, R. Kacker, "Practical

Combinatorial Testing - Beyond Pairwise", IEEE

IT Professional, June 2008.

[9] Porter D. Problem Resolution Optimization, Senior

Statistician, Motorola, on web site

www.stickyminds.com, visited 2013.

[10] Gopalakrishnan Nair, T R. Suma V., Nithya G. N.

Estimation of the Characteristics of a Software

Team for Implementing. Software Quality

Professional; Mar 2011; 13, 2; ProQuest Central,

pg. 14

[11] Lj. Lazić, I. Đokić, S. Milinković, „Estimating

Cost and Defect Removal Effectiveness in SDLC

Testing activities“, INFOTEH-JAHORINA 2013,

Jahorina, Proceedings Vol. 12,, ISBN 978-99955-

763-1-8, March 2013. pp.572-577.

[12] Jones, Capers, Applied Software Measurement,

Global Analysis of Productivity and Quality,Third

Edition, New York: McGraw Hill, 2008.

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 267

http://www.pairwise.org/tools.asp

