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Abstract: The present article deals with a performance comparison of the Rapidly-exploring Random Tree 
(RRT) and Dijkstra’s algorithm for the path planning of omnidirectional holonomic robots in known 
environments with static obstacles. The surveyed problem is applicable for a number of general 2D 
applications. It presents a unique implementation of the given problem by a novel grid approach to the 
Dijkstra’s algorithm and custom optimized RRT solver. This article shows the analysis of performance 
comparison and graphic results of the given algorithms on open-space and maze-type maps of continuous. The 
conclusion of this article discusses benefits and disadvantages of both methods and suggests the choice for 
different configurations of the explored space. 
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1 Introduction 
In these days, robots are able to solve complicated 
problems in many complex environments. Science 
of robotics is growing more important. One of the 
core problems in robotics is the path planning, 
(informally also known as the “navigation 
problem” or “piano mover's problem”). Generally, 
robot path planning is concerned with generating a 
suitable path for the robotic device, avoiding any 
possible collisions with known or unknown 
obstacles in the real space (Fig.1b).  

There are two main groups of path planning 
algorithms based on the awareness of the robot 
about its surroundings – informed and uninformed 
methods. We speak about informed path planning 
when the robot has a complete knowledge of the 
environment around – both the information about 
the obstacles and the information about the position 
of the starting and finishing configuration. 

This article approaches to the robot path 
planning by finding sub-optimal path for the robot, 
avoiding possible collisions with known obstacles in 
the given continuous space based on reality. It 
displays informed methods, which can be handled as 
a simple processing task before the start of the robot 
movement. In order to make the designed path more 
effective, the inclusion of corrective post-processing 
optimization algorithms is advisable. 

 

Approaches to the path planning can be roughly 
divided based on the objective function that they 
optimize. The most common objective function is 
minimization of the path length, which leads to the 
shortest possible path between two points in space. 
The overall length of the path is equal to the sum of 
the lengths of the all sub-parts of the path (Fig.1c), 
thus the dynamic programming approaches are 
efficient for solving this kind of problems [1]. 
 

 
 
Fig.1: 2D Path planning a) invalid path example, b) 

valid path example, c) road map with valid path 
 

Path planning is applicable in many sectors such 
as industrial robotics, autonomy, automation, 
robotic surgery, automated space exploration, 
computer graphics, video games artificial 
intelligence (AI), architectural design or animation. 
Modern aplications include not only gadgets like 
autonomous vacuum cleaners, loan mowers or pool 
cleaners, but also nobler examples of usage like land 
mine detectors or security robots. 
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1.1 Background 
History of path planning algorithms is quite recent – 
first works appeared in this field in the late 1960s, 
started by Nils J. Nilsson – he introduced to the 
world the visibility graph method, co-invented the 
A* heuristic search and have described the mobile 
robotic system motion planning in its very basics. 
Path planning and motion planning became subject 
of research in 1970s, but rapid development of path 
planning methods started with progress of 
computers in 1980s. During these decades, number 
of techniques have been invented. The ultimate 
survey of algorithms and progress of path planning 
until the early 1990s brings Jean-Claude Latombe 
[2], followed by Steven M. LaValle [3] in 2000s. 

In the current state of art, the research literature 
is adressing extensively path planning problem for 
one or more robots, most of the works are assuming 
that the environment is completely known before 
the robotic device begins to traverse. Algorithms 
presented so far are using the distance transform [4] 
or heuristic methods [5] in order to find the lowest 
cost path from the initial to the goal state of the 
robot (where the cost can be defined as a distance, 
energy or time spent). The trend of 1990s planners 
was using the randomization for best dealing with 
the high dimensionality of configuration space (they 
are probabilistically complete, if they are able to 
find solution in a given time). Nowadays, modern 
methods are aiming the disposal of randomness for 
the benefits of sampling-based approaches. [6] 

The methods for 2D mobile robot path planning 
generally consist of two sub-tasks: first part, which 
describes the space with the graph or function, is 
called pre-processing. It is usually followed by a 
query phase, which is itself finding more or less 
optimal way between two points. Stationary robots 
usually require 3D planning (positioning of the 
arm). Next paragraph presents a brief classification 
and short description of the basic varieties of the 
informative path planning methods. 
 
 
1.2 Informative Path Planning Algorithms 
 
1.2.1 Grid-based and Decomposition Methods 
Planning on the grid involves approximate methods, 
which are transforming space into the discrete form. 
The accuracy and computational complexity are 
depending on the size of the discrete cell of the 
space model. These methods often result into sub-
optimal paths. There is a variety of algorithms that 
can be applied to the problems of grid-based 
planning like: 

 
• Classic graph search methods (Breadth-first 

Search, Depth-first Search, Iterative 
Deepening Depth-fisrt Search) 

• Potential Fields 
• Dijkstra’s algorithm 
• Trapezoidal Decomposition 

 
 
1.2.2 Roadmap Methods 
These methods are creating a map of roads from 
continuous representation of the environment – a 
graph representig the free space. Graph edges are 
thus feasible paths, which robot can move freely 
along. For finding resulting paths searching graph 
algorithms are used. Among roadmap methods, we 
can arrange for example: 
 

• Visibility Graphs 
• Voronoi Diagram 

 
 
1.2.3 Probabilistic Sampling-based planning 
The position of the robot in the space is described 
by its configuration. Configuration space 𝐶𝑠𝑝𝑎𝑐𝑒 is 
the set of all possible configuration. The sub-set of 
configurations, that avoids collisions with obstacles, 
is called the free space 𝐶𝑓𝑟𝑒𝑒, which makes the 
complement of 𝐶𝑓𝑟𝑒𝑒 in 𝐶 the obstacle region. 

If the robot is a 2D shaped device capable of 
translation and rotation movements in 2D 
workspace, 𝐶 is the Euclidean group: 

 
 𝑆𝐸(3) = ℝ2 ∙ 𝑆𝑂(2,ℝ) (1) 

 
𝑆𝑂(2,ℝ) represents the orthogonal group of 2D 

rotations. Configuration of the robot can be 
represented using three parameters (𝑥,𝑦,𝜃). For 
succesful planning there is a strong requirement that 
the initial configuration 𝑞𝑖𝑛𝑖𝑡 and goal configuration 
𝑞𝑔𝑜𝑎𝑙 must belong to the 𝐶𝑓𝑟𝑒𝑒. 

In its simplest form, probabilistic planner 
operates in two stages: first, it generates a graph of 
path (road map) and then searches the path in this 
graph. Graph of roads is probabilistic, because it is 
created from randomly selected configurations from 
𝐶𝑓𝑟𝑒𝑒 (which can be connected to each other only by 
paths also belonging to 𝐶𝑓𝑟𝑒𝑒). This addition of 
edges is repeated until the goal configuration is 
reached. It is advisable to try to connect directly to 
the goal configuration after a certain number of 
iterations in order to accelerate the convergence to 
the goal. 
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Storing only the random samples significantly 
decreases the amount of primary storage (memory) 
needed for computation. The problem of 
probabilistic planners is the large number of short 
edges – hence, the result path is often complicated 
and contains lot of possibly redundant moves. It is 
appropriate to apply further optimization algorithms 
for smoothing the path. Description of 𝐶𝑓𝑟𝑒𝑒 as one 
tree is convenient, but has a consequence that even 
relatively close configurations may appear like they 
are far from each other (if we use e.g. probabilistic 
map routes). This problem solves Rapidly-exploring 
Random Tree approach, which generates a new tree 
based on the positions of start and goal 
configurations 𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙. This algorithm will 
be more discussed further. 
 
 
2 Used Algorithms 
In this section, we first describe the original 
versions of Rapidly-exploring Random Tree and 
Dijkstra’s algorithm. Then we discuss the need for 
customization and optimization for RRT planner. 
Finally, we present a novel way to the grid approach 
for Dijkstra’s algorithm solver. 
 
 
2.1 Rapidly-exploring Random Tree 
“A Rapidly-exploring Random Tree (RRT) is a data 
structure and algorithm that is designed for 
efficiently searching non-convex high-dimensional 
spaces. RRTs are constructed incrementally in a 
way that quickly reduces the expected distance of a 
randomly-chosen point to the tree. RRTs are 
particularly suited for path planning problems that 
involve obstacles and differential constraints 
(nonholonomic or kinodynamic). RRTs can be 
considered as a technique for generating open-loop 
trajectories for nonlinear systems with state 
constraints. An RRT can be intuitively considered as 
a Monte-Carlo way of biasing search into largest 
Voronoi regions. Some variations can be considered 
as stochastic fractals. Usually, an RRT alone is 
insufficient to solve a planning problem. Thus, it 
can be considered as a component that can be 
incorporated into the development of a variety of 
different planning algorithms.” [3] RRT was 
developed by Steven M. LaValle and James 
Kuffner. 
 

 
 

Fig.2: RRT algorithm after a) 100, b) 1000 and c) 
3000 iterations 

 
 
2.1.1 Single-tree Search 
RRT with obstacle collision checking needs on its 
input the dense set of configuration space and the 
obstacle set. The goal is to get as close as possible to 
each configuration in free space, starting with initial 
configuration. Algortihm iteratively connects 
samples 𝛼(𝑖) by new edges of the graph, which are 
the connection of random sample 𝛼(𝑖) and the 
nearest point 𝑞𝑛 on the tree graph 𝐺. RRT is a 
topological graph 𝐺(𝑉,𝐸) of vertices 𝑉 and edges 
𝐸. The set of points reached by G indicates the 
 set 𝑆 ⊂ 𝐶𝑓𝑟𝑒𝑒. 

In the cases where nearest configuration (closest 
point on tree) is located on the edge of the tree (it is 
not its node), the edge is split into two pieces and 
two new nodes are added: 𝑞𝑛𝑒𝑎𝑟 and 𝛼(𝑖), together 
with the edge between 𝑞𝑛𝑒𝑎𝑟 and 𝛼(𝑖) configuration 
nodes (Fig.4a). 

The STOPPING_CONFIGURATION method 
returns point 𝑞𝑠𝑡𝑜𝑝, which is constructed by 
trimming the connection line between random 
sample 𝛼(𝑖) and nearest sample 𝑞𝑛𝑒𝑎𝑟 accordingly 
to the obstacle boundary (Fig.4b). 
 

 
 

Fig.3: RRT algorithm considering obstacles 
(pseudocode) 

 
To be trully effective, the search algorithm is 

forced after certain number of iterations to use 
instead of random configuration 𝛼(𝑖) directly the 
goal configuration 𝑞𝑔𝑜𝑎𝑙 for connecting new edge. 
 

RRT_SINGLE(q0) 
1.  G.init(q0); 
2.  for i = 1 to k do 
3.  qn ← NEAREST(S, α(i)); 
4.  qs ← STOPPING_CONFIGURATION(qn, α(i)); 
5.  if qs ≠ qn then 
6.   G.add_vertex(qs); 
7.   G.add_edge(qn, qs); 
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Fig.4: Connection of nearest sample a) splitting of 
edge in the case that nearest configuration is not a 

node, b) in the case of the obstacle the random 
sample is moved to the boundary point by collision 

detection algorithm 
 
 
2.1.2 Balanced Bidirectional Search 
Much better performance of the algorithm is 
achieved by using two trees – one exploring from 
the initial configuration 𝑞𝑖𝑛𝑖𝑡, and second that is 
going from the opposite direction, from the goal 
configuration 𝑞𝑔𝑜𝑎𝑙. It must be ensured that both of 
the trees met each other while retaining their 
rapidly-exploring nature. This is acomplished best 
by balancing both searches. 
 

 
 

Fig.5: Balanced bidirectional RRT search 
(pseudocode) 

 
The graph 𝐺 is decomposed into two trees 𝑇𝑎 and 

𝑇𝑏 (one starting from 𝑞𝑖𝑛𝑖𝑡, another from 𝑞𝑔𝑜𝑎𝑙. 
After given number of iterations, both trees are 
mutually exchanged. Therefore, the 𝑇𝑎 may not 
always be the one that started from 𝑞𝑖 configuration.  

In every iteration, 𝑇𝑎 grows as 𝐺 in the example 
in Fig.3 pseudocode. If the new vertex 𝑞𝑠 is added 
to 𝑇𝑎, the requirement to extend tree 𝑇𝑏 is called. 
Rather than a new random configuration 𝛼(𝑖) the 
same new vertex 𝑞𝑠 which was already added to the 
𝑇𝑎 is used. This ensures that both trees are growing 
towards each other. Balancing is represented at the 
line 14 in Fig.5 – a new sample is always for a 

smaller tree (with fewer edges or the one with 
shortest length of all segments). 

Usually, RRT algorithm is not powerful enough 
to find an optimal solution. It is very often included 
as a sub-component of path planning algorithms 
designed for specific tasks and environments.  

It is very suitable for applying further algorithms 
for smoothing the result trajectory or other 
enhancements in order to improve the convergence 
of the solver to the goal configuration (e.g. generate 
random biased samples while taking into account 
position of the goal or another meaningful 
heuristics). 
 
 
2.1 Dijkstra’s Algorithm 
Dijkstra’s algorithm was published by Dutch 
computer scientist Edgser Wybe Dijkstra in 1959 
[7]. It is a graph search algorithm that solves the 
single-source shortest path problem for a graph with 
positive edge path costs – it produces a shortest path 
tree. For a given initial node in the graph, the 
algorithm finds the path with lowest cost (shortest 
path) from that node to every other node. It can be 
used for finding shortest path from one node to 
another by stopping the algorithm once the shortest 
path to the destination node has been determined. 
The original variant of Dijkstra’s algorithm does not 
use a priority queue and runs in 𝑂(|𝑁|2) time [8], 
usually implemented as the adjacency matrix. The 
implementation based on adjacency lists or 
Fibonacci heap with priority queue runs in 𝑂(|𝐸| +
|𝑁| log|𝑁|) time, which is often denominated by 
𝑂(|𝐸| log |𝑁|), assuming the graph is fully 
connected [9]. It is asymptotically the fastest single-
source shortest-path algorithm for graphs with 
unbounded non-negative costs. 
 

 
 
Fig.6: Dijkstra’s algorithm – example of the graph 

evaluation 
 
In the beginning, a distance value is set for each 
node: zero for the initial node 𝑞𝑖𝑛𝑖𝑡 and infinity for 
all the others. All nodes are marked as unvisited and 
initial node set as a current. Then, a set of the 
unvisited nodes called the unvisited set is created, 

RRT_BIDIRECTIONAL(qi, qg) 
1.  Ta.init(qi); Tb.init(qg); 
2.  for i = 1 to k do 
3.  qn ← NEAREST(Sa, α(i)); 
4.  qs ← STOPPING_CONFIGURATION(qn, α(i)); 
5.  if qs ≠ qn then 
6.   Ta.add_vertex(qs); 
7.   Ta.add_edge(qn, qs); 
8.   q’n ← NEAREST(Sb, qs); 
9.   q’s ← STOPPING_CONFIGURATION(q’n, qs); 
10.    if q’s ≠ q’n then 
11.    Tb.add_vertex(q’n); 
12.     Tb.add_edge(q’n, q’s); 
13.   if q’s = qs then return SOLUTION; 
14.  if |Tb| > |Ta| then SWAP(Ta, Tb); 
15. return FAILURE; 
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containing all of the nodes except the initial one. For 
the current node, tentative distances to all its 
unvisited neigbors are calculated. If this distance is 
less than previously recorded tentative distance in 
node, it is overwritten. When considering all of the 
neighbors of the current node is done, current node 
is marked as visited and removed from the unvisited 
set – it will not be checked any more. If the 
destination node has been marked visited (path 
planning between two specific nodes), then stop. 
Generally, stop if the smallest tentative distance 
among the nodes in the unvisited set is infinity (path 
planning for the complete traversal). In the case that 
solution is not finished yet, the current node 
becames the node marked with smallest tentative 
distance among the nodes in unvisited set and 
algorithm goes to the next iteration. Procedure is 
shown in Fig.6. 
 

 
 

Fig.7: Dijkstra’s algorithm for path planning 
(pseudocode) 

 
When the smallest tentative distance in node-to is 
overwritten, also the pointer to the node-from is 
stored in the node-to. Thus we can read the shortest 
path from goal to initial node by reverse iteration 
(while u.previous is defined u = u.previous). 
 
 
3 Problem Approach 
 
3.1 Informative Path Planning 
In this article, informative path planning of the 
nonholonomic robot is formulated as a discrete 
problem. First, there is a graph 𝐺 representing the 
mobility of the robot. Each node 𝑣 ∈ 𝑉 is represents 
a waypoint, which can be visited by the robot. Each 
edge 𝑒 ∈ 𝐸 stands for a movement of a robot 
between two waypoints – vertices. There is a cost 

𝐶(𝑒) associated to every edge representing the 
difficulty of the robot traversal along the edge. Edge 
lengths are representing the distance, which in our 
case equals to the edge cost (in general cases, 
depending on the graph construction, lengths/costs 
can represent traversal times, amount of energy 
needed to travel between nodes etc.). 

A robot path 𝑃 = [𝑒0, 𝑒1, … , 𝑒𝑘] consist of a 
sequence of edges needed for traversal, total length 
of the path is a sum costs of all the edges: 
 
 ‖𝑃‖ = ∑ 𝐶(𝑒)𝑖∈𝑃  (2) 
 

It is clearer to represent a path as a sequence of 
edges to traverse rather than a sequence of nodes to 
visit, because there might be multiple edges suitable 
for the traversal between two nodes. For solving the 
general informative path planning problem, we need 
to find a path 𝑃∗such that: 
 
 𝑃∗ = arg min𝑃 𝑓(𝑃) (3) 
 

It is obvious, that ‖𝑃‖ < 𝐵 where 𝐵 is the 
maximum allowed path length. Objective function 
𝑓(𝑃) captures the cost of the samples of the robot 
that will be taken as the robot traverses the path. 
 
 
3.2 Implementation of the Algorithms 
The following chapter is devoted to the description 
of the implementation and functionality of algorithm 
solvers measured and compared in this article. 
 
 
3.2.1 RRT Single and Bidirectional 
RRT Single: is a single-searching RRT with 
collision detection routines (Fig.8), which is 
described in chapter 2.1.1 Single-tree Search. 
The data structure is a hierarchical tree with a set of 
linked edges. It is defined recursively as a collection 
of edges (starting at a root edge), where each edge is 
a data structure with a pointer to the parent edge, 
with the constraints that no edge is duplicated. The 
tree structure is a connected graph without cycles in 
which any two vertices are connected by exactly one 
simple path, but it is not full equivalent to the trees 
in graph theory – it is more a rooted tree with 
additional ordering of branches. The goal path is 
read from the goal edge to the source edge by 
periodically asking current edge for the parent edge 
(while current.parent is defined current = 
current.parent) – basically a reverse iteration 
process. 
 

DIJKSTRA(G, nstart, ngoal) 
1.  foreach node n in G 
2.   n.dist = infinity; 
3.  n.previous = undefined; 
4. nstart.dist = 0; 
5. Q = set of all nodes in G; 
6. while Q is not empty 
7.  u = node from Q with smallest distance; 
8.  remove u from Q; 
9.  if u = ngoal then 
10.    break;  
11.  foreach neigbor v of u 
12.    alt = u.dist + distanceBetween(u, v); 
13.   if alt < v.dist then 
14.    v.dist = alt; 
15.    v.previous = u; 
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Fig.8: RRT Single on an open-space type map 
 

RRT Bidirectional: represents balanced 
bidirectional search as it is described in chapter 
2.1.2 Balanced Bidirectional Search and shown in 
Fig.9. Two single-search RRTs are periodically 
switched when one of them has more edges – new 
connection is always made on a smaller tree. Each 
time when one of the trees is extended, the random 
configuration tries to connect also to the other tree, 
which forces RRT Bidirectional to connect and find 
the solution faster than the previous single searching 
algorithm RRT Single. The goal path is obtained in 
the same way as in the single-searching tree, but 
final path edges from one tree need to be re-
parented. 
 

 
 

Fig.9: RRT Bidirectional on a maze-type map 
 
 
3.2.2 Dijkstra Grid 
As the representative of the Dijkstra’s algorithm we 
present an unique novel implementation of the path 
planning solver: Dijkstra’s Grid (Fig.10 and 
Fig.11). The algorithm consist of two steps: first, the 
grid is constructed in the explored space, removing 
all the edges and nodes colliding with obstacles. In 
the second step, the grid is evaluated by the 
Dijkstra’s algorithm going from start node. When 
the goal node is reached, shortest path is obtained 
going from goal node to initial node in reverse loop. 
Grid size and inclusion of diagonals is optional. 
 

 
 
Fig.10: Dijkstra Grid (10 px size) on a open-space 

type map 
 

The graph structure of the grid is a simple 
undirected graph weighted by length of the edges. It 
is defined as a adjacency list data structure – 
collection of unordered lists, one for each node in 
the graph. Each list desribes the set of neigbors of 
its node. The overall complexity of the prompting 
for edges adjacent to the current vertex is reduced to 
𝑂(|𝑁| + |𝐸|) in comparison with adjacency matrix, 
where drawing out such a information from the data 
structure results in overall complexity 𝑂(𝑁2). 
 

 
 

Fig.11: Dijkstra Grid (25 px with diagonals) on a 
maze-type map 

 
 
4 Comparisons and conclusion 

In this section, we present a performance 
comparison of Rapidly-exploring Random tree and 
Dijkstra’s algorithm on two types of the map of the 
environment: 

• open-space type map (Fig.8 and Fig.10) 
• maze-type map (Fig.9 and Fig.11) 

 
Based on the measurements of the performance 
comparison, following results arised: 

• Dijkstra Grid finds solution on maze-type 
maps in significantly better total times, 
where both RRT Single and RRT 
Bidirectional are more or less busy with 
exploring the space while the grid is 
constructed in exact time. 
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• RRTs perform better on open-space type 
maps, where the construction of the grid 
over the whole map can be redundant – 
RRT connects to the goal node in few 
iterations. 

• RRT Bidirectional is always better than a 
single-search RRT in the time spent to 
finding goal, while the length of the result 
path does not vary much. 

• RRTs need to be optimized – there are 
substantially different results between the 
instances of the algorithm (which is obvious 
from the huge amount of flier points in 
boxplots). In a nutshell, 100 different 
instances of RRT results in a 100 different 
result paths. 

• Dijkstra grid is exact, for the 100 instances 
of the algorithm there is always the same 
result path (only the total times vary 
because of the PC computational overhead. 
But, there is a need to find the optimal size 
of the grid cell. 

• Dijkstra Grid usually ends up with a shorter 
path with fewer edges than RRTs (even 
without post-optimization of the path). 

• It is necessary to polish the path given by 
RRT and decrease the number of result 
edges. 

 
 
4.1 Result Measurements 
Following figures displays statistical results from 
measurements on given maps – graphs with various 
parameters and box plots with whisker plots 
extending from lower to upper quartile values of the 
data, with a line at the median. The whiskers extend 
from each box to show the range of the data. Flier 
points are those past the end of the whiskers 
(outliers). 

 
 

Fig.12: RRT Single – Open-space Type Map  

 
 

Fig.13: RRT Single – Maze-type Map 
 
 

 
 

Fig.14: RRT Bidirectional – Open-space Type Map 
 

 

 
 

Fig.15: RRT Bidirectional – Maze-type Map 
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10 px No Diagonals: 

 
 
10 px Including Diagonals: 

 
 

Fig.16: Dijkstra Grid – Open-space Type Map 
 
4.2 Comparison 
In this section, open-space type map and maze-type 
measurements are compared for all algorithms. 
There is one more comparison of the Dijkstra Grid – 
different grid sizes on a maze-type map. 
 
Table 1: Open-space Type Map 

 
 
Table 2: Maze-type Map 

 
 
Table 3: Various Sizes of Dijkstra Grid on Maze-
type Map 

 

10 px No Diagonals: 

 
 
10 px Including Diagonals: 

 
 

Fig.17: Dijkstra Grid – Maze-type Map 
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Appendix: Note on Implementation 
Measurements and algorithms presented by this 
article are based on the unique custom application 
RRTExplorer 2.0 [10] written in C++ programming 
language in essentially multiplatform framework Qt. 
Measurements and post-processing routines are 
written in Python scripting language, where the 
graph plotting is provided by the matplotlib library 
with statistical computations in SciPy and 
NumPy libraries. 
 
 
 
 
 
 
 

RRT Single RRT Bidirectional Dijkstra Grid Dijkstra Grid Diag.
Time [ms] 92.84 ± 131.99 10.84 ± 6.99 657.22 ± 51.15 1322.97 ± 211.42
Edges 147.78 ± 179.16 7.22 ± 2.83 1145.00 ± 0.00 2199.0 ± 0.00
Path length [m] 7.28 ± 0.96 7.03 ± 0.79 7.05 ± 0.00 5.73 ± 0.00
Path edges 23.75 ± 15.73 4.86 ± 1.41 47.00 ± 0.00 32.00 ± 0.00

RRT Single RRT Bidirectional Dijkstra Grid Dijkstra Grid Diag.
Time [ms] 3084,88 ± 1866.35 1229.71 ± 588.01 771.04 ± 106.66 1399.13 ± 103.66
Edges 1703.12 ± 620.95 841.84 ± 329.19 1046.00 ± 0.00 1958.00 ± 0.00
Path length [m] 17.62 ± 1.06 17.87 ± 1.06 15.60 ± 0.00 14.62 ± 0.00
Path edges 205.11 ± 43.13 140.33 ± 34.38 104.00 ± 0.00 90.00 ± 0.00

DG Diagonal 8 px DG Diagonal 16 px DG Diagonal 24 px
Time [ms] 7129.80 ± 513.07 1182.04 ± 57.25 495.52 ± 30.33
Edges 8791.00 ± 0.00 1899.00 ± 0.00 713.00 ± 0.00
Path length [m] 14.31 ± 0.00 14.66 ± 0.00 14.43 ± 0.00
Path edges 166.00 ± 0.00 85.00 ± 0.00 56.00 ± 0.00
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