

A Performance Comparison of Rapidly-exploring Random Tree and
Dijkstra’s Algorithm for Holonomic Robot Path Planning

LUKAS KNISPEL, RADOMIL MATOUSEK
Institute of Automation and Computer Science

Brno University of Technology, Faculty of Mechanical Engineering
Technicka 2896/2, 616 69 Brno

CZECH REPUBLIC
lukas.knispel@gmail.com, matousek@fme.vutbr.cz http://sites.google.com/site/rrtexplorer

Abstract: The present article deals with a performance comparison of the Rapidly-exploring Random Tree
(RRT) and Dijkstra’s algorithm for the path planning of omnidirectional holonomic robots in known
environments with static obstacles. The surveyed problem is applicable for a number of general 2D
applications. It presents a unique implementation of the given problem by a novel grid approach to the
Dijkstra’s algorithm and custom optimized RRT solver. This article shows the analysis of performance
comparison and graphic results of the given algorithms on open-space and maze-type maps of continuous. The
conclusion of this article discusses benefits and disadvantages of both methods and suggests the choice for
different configurations of the explored space.

Key-Words: Rapidly-Exploring Random Tree, RRT, Dijkstra’s algorithm, holonomic robot, path planning,
graph data structure, adjacency list, path optimization

1 Introduction
In these days, robots are able to solve complicated
problems in many complex environments. Science
of robotics is growing more important. One of the
core problems in robotics is the path planning,
(informally also known as the “navigation
problem” or “piano mover's problem”). Generally,
robot path planning is concerned with generating a
suitable path for the robotic device, avoiding any
possible collisions with known or unknown
obstacles in the real space (Fig.1b).

There are two main groups of path planning
algorithms based on the awareness of the robot
about its surroundings – informed and uninformed
methods. We speak about informed path planning
when the robot has a complete knowledge of the
environment around – both the information about
the obstacles and the information about the position
of the starting and finishing configuration.

This article approaches to the robot path
planning by finding sub-optimal path for the robot,
avoiding possible collisions with known obstacles in
the given continuous space based on reality. It
displays informed methods, which can be handled as
a simple processing task before the start of the robot
movement. In order to make the designed path more
effective, the inclusion of corrective post-processing
optimization algorithms is advisable.

Approaches to the path planning can be roughly
divided based on the objective function that they
optimize. The most common objective function is
minimization of the path length, which leads to the
shortest possible path between two points in space.
The overall length of the path is equal to the sum of
the lengths of the all sub-parts of the path (Fig.1c),
thus the dynamic programming approaches are
efficient for solving this kind of problems [1].

Fig.1: 2D Path planning a) invalid path example, b)

valid path example, c) road map with valid path

Path planning is applicable in many sectors such
as industrial robotics, autonomy, automation,
robotic surgery, automated space exploration,
computer graphics, video games artificial
intelligence (AI), architectural design or animation.
Modern aplications include not only gadgets like
autonomous vacuum cleaners, loan mowers or pool
cleaners, but also nobler examples of usage like land
mine detectors or security robots.

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 154

1.1 Background
History of path planning algorithms is quite recent –
first works appeared in this field in the late 1960s,
started by Nils J. Nilsson – he introduced to the
world the visibility graph method, co-invented the
A* heuristic search and have described the mobile
robotic system motion planning in its very basics.
Path planning and motion planning became subject
of research in 1970s, but rapid development of path
planning methods started with progress of
computers in 1980s. During these decades, number
of techniques have been invented. The ultimate
survey of algorithms and progress of path planning
until the early 1990s brings Jean-Claude Latombe
[2], followed by Steven M. LaValle [3] in 2000s.

In the current state of art, the research literature
is adressing extensively path planning problem for
one or more robots, most of the works are assuming
that the environment is completely known before
the robotic device begins to traverse. Algorithms
presented so far are using the distance transform [4]
or heuristic methods [5] in order to find the lowest
cost path from the initial to the goal state of the
robot (where the cost can be defined as a distance,
energy or time spent). The trend of 1990s planners
was using the randomization for best dealing with
the high dimensionality of configuration space (they
are probabilistically complete, if they are able to
find solution in a given time). Nowadays, modern
methods are aiming the disposal of randomness for
the benefits of sampling-based approaches. [6]

The methods for 2D mobile robot path planning
generally consist of two sub-tasks: first part, which
describes the space with the graph or function, is
called pre-processing. It is usually followed by a
query phase, which is itself finding more or less
optimal way between two points. Stationary robots
usually require 3D planning (positioning of the
arm). Next paragraph presents a brief classification
and short description of the basic varieties of the
informative path planning methods.

1.2 Informative Path Planning Algorithms

1.2.1 Grid-based and Decomposition Methods
Planning on the grid involves approximate methods,
which are transforming space into the discrete form.
The accuracy and computational complexity are
depending on the size of the discrete cell of the
space model. These methods often result into sub-
optimal paths. There is a variety of algorithms that
can be applied to the problems of grid-based
planning like:

• Classic graph search methods (Breadth-first

Search, Depth-first Search, Iterative
Deepening Depth-fisrt Search)

• Potential Fields
• Dijkstra’s algorithm
• Trapezoidal Decomposition

1.2.2 Roadmap Methods
These methods are creating a map of roads from
continuous representation of the environment – a
graph representig the free space. Graph edges are
thus feasible paths, which robot can move freely
along. For finding resulting paths searching graph
algorithms are used. Among roadmap methods, we
can arrange for example:

• Visibility Graphs
• Voronoi Diagram

1.2.3 Probabilistic Sampling-based planning
The position of the robot in the space is described
by its configuration. Configuration space 𝐶𝑠𝑝𝑎𝑐𝑒 is
the set of all possible configuration. The sub-set of
configurations, that avoids collisions with obstacles,
is called the free space 𝐶𝑓𝑟𝑒𝑒, which makes the
complement of 𝐶𝑓𝑟𝑒𝑒 in 𝐶 the obstacle region.

If the robot is a 2D shaped device capable of
translation and rotation movements in 2D
workspace, 𝐶 is the Euclidean group:

 𝑆𝐸(3) = ℝ2 ∙ 𝑆𝑂(2,ℝ) (1)

𝑆𝑂(2,ℝ) represents the orthogonal group of 2D

rotations. Configuration of the robot can be
represented using three parameters (𝑥,𝑦,𝜃). For
succesful planning there is a strong requirement that
the initial configuration 𝑞𝑖𝑛𝑖𝑡 and goal configuration
𝑞𝑔𝑜𝑎𝑙 must belong to the 𝐶𝑓𝑟𝑒𝑒.

In its simplest form, probabilistic planner
operates in two stages: first, it generates a graph of
path (road map) and then searches the path in this
graph. Graph of roads is probabilistic, because it is
created from randomly selected configurations from
𝐶𝑓𝑟𝑒𝑒 (which can be connected to each other only by
paths also belonging to 𝐶𝑓𝑟𝑒𝑒). This addition of
edges is repeated until the goal configuration is
reached. It is advisable to try to connect directly to
the goal configuration after a certain number of
iterations in order to accelerate the convergence to
the goal.

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 155

Storing only the random samples significantly
decreases the amount of primary storage (memory)
needed for computation. The problem of
probabilistic planners is the large number of short
edges – hence, the result path is often complicated
and contains lot of possibly redundant moves. It is
appropriate to apply further optimization algorithms
for smoothing the path. Description of 𝐶𝑓𝑟𝑒𝑒 as one
tree is convenient, but has a consequence that even
relatively close configurations may appear like they
are far from each other (if we use e.g. probabilistic
map routes). This problem solves Rapidly-exploring
Random Tree approach, which generates a new tree
based on the positions of start and goal
configurations 𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙. This algorithm will
be more discussed further.

2 Used Algorithms
In this section, we first describe the original
versions of Rapidly-exploring Random Tree and
Dijkstra’s algorithm. Then we discuss the need for
customization and optimization for RRT planner.
Finally, we present a novel way to the grid approach
for Dijkstra’s algorithm solver.

2.1 Rapidly-exploring Random Tree
“A Rapidly-exploring Random Tree (RRT) is a data
structure and algorithm that is designed for
efficiently searching non-convex high-dimensional
spaces. RRTs are constructed incrementally in a
way that quickly reduces the expected distance of a
randomly-chosen point to the tree. RRTs are
particularly suited for path planning problems that
involve obstacles and differential constraints
(nonholonomic or kinodynamic). RRTs can be
considered as a technique for generating open-loop
trajectories for nonlinear systems with state
constraints. An RRT can be intuitively considered as
a Monte-Carlo way of biasing search into largest
Voronoi regions. Some variations can be considered
as stochastic fractals. Usually, an RRT alone is
insufficient to solve a planning problem. Thus, it
can be considered as a component that can be
incorporated into the development of a variety of
different planning algorithms.” [3] RRT was
developed by Steven M. LaValle and James
Kuffner.

Fig.2: RRT algorithm after a) 100, b) 1000 and c)
3000 iterations

2.1.1 Single-tree Search
RRT with obstacle collision checking needs on its
input the dense set of configuration space and the
obstacle set. The goal is to get as close as possible to
each configuration in free space, starting with initial
configuration. Algortihm iteratively connects
samples 𝛼(𝑖) by new edges of the graph, which are
the connection of random sample 𝛼(𝑖) and the
nearest point 𝑞𝑛 on the tree graph 𝐺. RRT is a
topological graph 𝐺(𝑉,𝐸) of vertices 𝑉 and edges
𝐸. The set of points reached by G indicates the
 set 𝑆 ⊂ 𝐶𝑓𝑟𝑒𝑒.

In the cases where nearest configuration (closest
point on tree) is located on the edge of the tree (it is
not its node), the edge is split into two pieces and
two new nodes are added: 𝑞𝑛𝑒𝑎𝑟 and 𝛼(𝑖), together
with the edge between 𝑞𝑛𝑒𝑎𝑟 and 𝛼(𝑖) configuration
nodes (Fig.4a).

The STOPPING_CONFIGURATION method
returns point 𝑞𝑠𝑡𝑜𝑝, which is constructed by
trimming the connection line between random
sample 𝛼(𝑖) and nearest sample 𝑞𝑛𝑒𝑎𝑟 accordingly
to the obstacle boundary (Fig.4b).

Fig.3: RRT algorithm considering obstacles
(pseudocode)

To be trully effective, the search algorithm is

forced after certain number of iterations to use
instead of random configuration 𝛼(𝑖) directly the
goal configuration 𝑞𝑔𝑜𝑎𝑙 for connecting new edge.

RRT_SINGLE(q0)
1. G.init(q0);
2. for i = 1 to k do
3. qn ← NEAREST(S, α(i));
4. qs ← STOPPING_CONFIGURATION(qn, α(i));
5. if qs ≠ qn then
6. G.add_vertex(qs);
7. G.add_edge(qn, qs);

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 156

Fig.4: Connection of nearest sample a) splitting of
edge in the case that nearest configuration is not a

node, b) in the case of the obstacle the random
sample is moved to the boundary point by collision

detection algorithm

2.1.2 Balanced Bidirectional Search
Much better performance of the algorithm is
achieved by using two trees – one exploring from
the initial configuration 𝑞𝑖𝑛𝑖𝑡, and second that is
going from the opposite direction, from the goal
configuration 𝑞𝑔𝑜𝑎𝑙. It must be ensured that both of
the trees met each other while retaining their
rapidly-exploring nature. This is acomplished best
by balancing both searches.

Fig.5: Balanced bidirectional RRT search
(pseudocode)

The graph 𝐺 is decomposed into two trees 𝑇𝑎 and

𝑇𝑏 (one starting from 𝑞𝑖𝑛𝑖𝑡, another from 𝑞𝑔𝑜𝑎𝑙.
After given number of iterations, both trees are
mutually exchanged. Therefore, the 𝑇𝑎 may not
always be the one that started from 𝑞𝑖 configuration.

In every iteration, 𝑇𝑎 grows as 𝐺 in the example
in Fig.3 pseudocode. If the new vertex 𝑞𝑠 is added
to 𝑇𝑎, the requirement to extend tree 𝑇𝑏 is called.
Rather than a new random configuration 𝛼(𝑖) the
same new vertex 𝑞𝑠 which was already added to the
𝑇𝑎 is used. This ensures that both trees are growing
towards each other. Balancing is represented at the
line 14 in Fig.5 – a new sample is always for a

smaller tree (with fewer edges or the one with
shortest length of all segments).

Usually, RRT algorithm is not powerful enough
to find an optimal solution. It is very often included
as a sub-component of path planning algorithms
designed for specific tasks and environments.

It is very suitable for applying further algorithms
for smoothing the result trajectory or other
enhancements in order to improve the convergence
of the solver to the goal configuration (e.g. generate
random biased samples while taking into account
position of the goal or another meaningful
heuristics).

2.1 Dijkstra’s Algorithm
Dijkstra’s algorithm was published by Dutch
computer scientist Edgser Wybe Dijkstra in 1959
[7]. It is a graph search algorithm that solves the
single-source shortest path problem for a graph with
positive edge path costs – it produces a shortest path
tree. For a given initial node in the graph, the
algorithm finds the path with lowest cost (shortest
path) from that node to every other node. It can be
used for finding shortest path from one node to
another by stopping the algorithm once the shortest
path to the destination node has been determined.
The original variant of Dijkstra’s algorithm does not
use a priority queue and runs in 𝑂(|𝑁|2) time [8],
usually implemented as the adjacency matrix. The
implementation based on adjacency lists or
Fibonacci heap with priority queue runs in 𝑂(|𝐸| +
|𝑁| log|𝑁|) time, which is often denominated by
𝑂(|𝐸| log |𝑁|), assuming the graph is fully
connected [9]. It is asymptotically the fastest single-
source shortest-path algorithm for graphs with
unbounded non-negative costs.

Fig.6: Dijkstra’s algorithm – example of the graph

evaluation

In the beginning, a distance value is set for each
node: zero for the initial node 𝑞𝑖𝑛𝑖𝑡 and infinity for
all the others. All nodes are marked as unvisited and
initial node set as a current. Then, a set of the
unvisited nodes called the unvisited set is created,

RRT_BIDIRECTIONAL(qi, qg)
1. Ta.init(qi); Tb.init(qg);
2. for i = 1 to k do
3. qn ← NEAREST(Sa, α(i));
4. qs ← STOPPING_CONFIGURATION(qn, α(i));
5. if qs ≠ qn then
6. Ta.add_vertex(qs);
7. Ta.add_edge(qn, qs);
8. q’n ← NEAREST(Sb, qs);
9. q’s ← STOPPING_CONFIGURATION(q’n, qs);
10. if q’s ≠ q’n then
11. Tb.add_vertex(q’n);
12. Tb.add_edge(q’n, q’s);
13. if q’s = qs then return SOLUTION;
14. if |Tb| > |Ta| then SWAP(Ta, Tb);
15. return FAILURE;

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 157

containing all of the nodes except the initial one. For
the current node, tentative distances to all its
unvisited neigbors are calculated. If this distance is
less than previously recorded tentative distance in
node, it is overwritten. When considering all of the
neighbors of the current node is done, current node
is marked as visited and removed from the unvisited
set – it will not be checked any more. If the
destination node has been marked visited (path
planning between two specific nodes), then stop.
Generally, stop if the smallest tentative distance
among the nodes in the unvisited set is infinity (path
planning for the complete traversal). In the case that
solution is not finished yet, the current node
becames the node marked with smallest tentative
distance among the nodes in unvisited set and
algorithm goes to the next iteration. Procedure is
shown in Fig.6.

Fig.7: Dijkstra’s algorithm for path planning
(pseudocode)

When the smallest tentative distance in node-to is
overwritten, also the pointer to the node-from is
stored in the node-to. Thus we can read the shortest
path from goal to initial node by reverse iteration
(while u.previous is defined u = u.previous).

3 Problem Approach

3.1 Informative Path Planning
In this article, informative path planning of the
nonholonomic robot is formulated as a discrete
problem. First, there is a graph 𝐺 representing the
mobility of the robot. Each node 𝑣 ∈ 𝑉 is represents
a waypoint, which can be visited by the robot. Each
edge 𝑒 ∈ 𝐸 stands for a movement of a robot
between two waypoints – vertices. There is a cost

𝐶(𝑒) associated to every edge representing the
difficulty of the robot traversal along the edge. Edge
lengths are representing the distance, which in our
case equals to the edge cost (in general cases,
depending on the graph construction, lengths/costs
can represent traversal times, amount of energy
needed to travel between nodes etc.).

A robot path 𝑃 = [𝑒0, 𝑒1, … , 𝑒𝑘] consist of a
sequence of edges needed for traversal, total length
of the path is a sum costs of all the edges:

 ‖𝑃‖ = ∑ 𝐶(𝑒)𝑖∈𝑃 (2)

It is clearer to represent a path as a sequence of
edges to traverse rather than a sequence of nodes to
visit, because there might be multiple edges suitable
for the traversal between two nodes. For solving the
general informative path planning problem, we need
to find a path 𝑃∗such that:

 𝑃∗ = arg min𝑃 𝑓(𝑃) (3)

It is obvious, that ‖𝑃‖ < 𝐵 where 𝐵 is the
maximum allowed path length. Objective function
𝑓(𝑃) captures the cost of the samples of the robot
that will be taken as the robot traverses the path.

3.2 Implementation of the Algorithms
The following chapter is devoted to the description
of the implementation and functionality of algorithm
solvers measured and compared in this article.

3.2.1 RRT Single and Bidirectional
RRT Single: is a single-searching RRT with
collision detection routines (Fig.8), which is
described in chapter 2.1.1 Single-tree Search.
The data structure is a hierarchical tree with a set of
linked edges. It is defined recursively as a collection
of edges (starting at a root edge), where each edge is
a data structure with a pointer to the parent edge,
with the constraints that no edge is duplicated. The
tree structure is a connected graph without cycles in
which any two vertices are connected by exactly one
simple path, but it is not full equivalent to the trees
in graph theory – it is more a rooted tree with
additional ordering of branches. The goal path is
read from the goal edge to the source edge by
periodically asking current edge for the parent edge
(while current.parent is defined current =
current.parent) – basically a reverse iteration
process.

DIJKSTRA(G, nstart, ngoal)
1. foreach node n in G
2. n.dist = infinity;
3. n.previous = undefined;
4. nstart.dist = 0;
5. Q = set of all nodes in G;
6. while Q is not empty
7. u = node from Q with smallest distance;
8. remove u from Q;
9. if u = ngoal then
10. break;
11. foreach neigbor v of u
12. alt = u.dist + distanceBetween(u, v);
13. if alt < v.dist then
14. v.dist = alt;
15. v.previous = u;

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 158

Fig.8: RRT Single on an open-space type map

RRT Bidirectional: represents balanced
bidirectional search as it is described in chapter
2.1.2 Balanced Bidirectional Search and shown in
Fig.9. Two single-search RRTs are periodically
switched when one of them has more edges – new
connection is always made on a smaller tree. Each
time when one of the trees is extended, the random
configuration tries to connect also to the other tree,
which forces RRT Bidirectional to connect and find
the solution faster than the previous single searching
algorithm RRT Single. The goal path is obtained in
the same way as in the single-searching tree, but
final path edges from one tree need to be re-
parented.

Fig.9: RRT Bidirectional on a maze-type map

3.2.2 Dijkstra Grid
As the representative of the Dijkstra’s algorithm we
present an unique novel implementation of the path
planning solver: Dijkstra’s Grid (Fig.10 and
Fig.11). The algorithm consist of two steps: first, the
grid is constructed in the explored space, removing
all the edges and nodes colliding with obstacles. In
the second step, the grid is evaluated by the
Dijkstra’s algorithm going from start node. When
the goal node is reached, shortest path is obtained
going from goal node to initial node in reverse loop.
Grid size and inclusion of diagonals is optional.

Fig.10: Dijkstra Grid (10 px size) on a open-space

type map

The graph structure of the grid is a simple
undirected graph weighted by length of the edges. It
is defined as a adjacency list data structure –
collection of unordered lists, one for each node in
the graph. Each list desribes the set of neigbors of
its node. The overall complexity of the prompting
for edges adjacent to the current vertex is reduced to
𝑂(|𝑁| + |𝐸|) in comparison with adjacency matrix,
where drawing out such a information from the data
structure results in overall complexity 𝑂(𝑁2).

Fig.11: Dijkstra Grid (25 px with diagonals) on a
maze-type map

4 Comparisons and conclusion

In this section, we present a performance
comparison of Rapidly-exploring Random tree and
Dijkstra’s algorithm on two types of the map of the
environment:

• open-space type map (Fig.8 and Fig.10)
• maze-type map (Fig.9 and Fig.11)

Based on the measurements of the performance
comparison, following results arised:

• Dijkstra Grid finds solution on maze-type
maps in significantly better total times,
where both RRT Single and RRT
Bidirectional are more or less busy with
exploring the space while the grid is
constructed in exact time.

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 159

• RRTs perform better on open-space type
maps, where the construction of the grid
over the whole map can be redundant –
RRT connects to the goal node in few
iterations.

• RRT Bidirectional is always better than a
single-search RRT in the time spent to
finding goal, while the length of the result
path does not vary much.

• RRTs need to be optimized – there are
substantially different results between the
instances of the algorithm (which is obvious
from the huge amount of flier points in
boxplots). In a nutshell, 100 different
instances of RRT results in a 100 different
result paths.

• Dijkstra grid is exact, for the 100 instances
of the algorithm there is always the same
result path (only the total times vary
because of the PC computational overhead.
But, there is a need to find the optimal size
of the grid cell.

• Dijkstra Grid usually ends up with a shorter
path with fewer edges than RRTs (even
without post-optimization of the path).

• It is necessary to polish the path given by
RRT and decrease the number of result
edges.

4.1 Result Measurements
Following figures displays statistical results from
measurements on given maps – graphs with various
parameters and box plots with whisker plots
extending from lower to upper quartile values of the
data, with a line at the median. The whiskers extend
from each box to show the range of the data. Flier
points are those past the end of the whiskers
(outliers).

Fig.12: RRT Single – Open-space Type Map

Fig.13: RRT Single – Maze-type Map

Fig.14: RRT Bidirectional – Open-space Type Map

Fig.15: RRT Bidirectional – Maze-type Map

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 160

10 px No Diagonals:

10 px Including Diagonals:

Fig.16: Dijkstra Grid – Open-space Type Map

4.2 Comparison
In this section, open-space type map and maze-type
measurements are compared for all algorithms.
There is one more comparison of the Dijkstra Grid –
different grid sizes on a maze-type map.

Table 1: Open-space Type Map

Table 2: Maze-type Map

Table 3: Various Sizes of Dijkstra Grid on Maze-
type Map

10 px No Diagonals:

10 px Including Diagonals:

Fig.17: Dijkstra Grid – Maze-type Map

Acknowledgement
This paper was supported by the IGA VUT Brno,
FSI No.: FSI-J-13-2136 and FSI-S-11-31 project.

Appendix: Note on Implementation
Measurements and algorithms presented by this
article are based on the unique custom application
RRTExplorer 2.0 [10] written in C++ programming
language in essentially multiplatform framework Qt.
Measurements and post-processing routines are
written in Python scripting language, where the
graph plotting is provided by the matplotlib library
with statistical computations in SciPy and
NumPy libraries.

RRT Single RRT Bidirectional Dijkstra Grid Dijkstra Grid Diag.
Time [ms] 92.84 ± 131.99 10.84 ± 6.99 657.22 ± 51.15 1322.97 ± 211.42
Edges 147.78 ± 179.16 7.22 ± 2.83 1145.00 ± 0.00 2199.0 ± 0.00
Path length [m] 7.28 ± 0.96 7.03 ± 0.79 7.05 ± 0.00 5.73 ± 0.00
Path edges 23.75 ± 15.73 4.86 ± 1.41 47.00 ± 0.00 32.00 ± 0.00

RRT Single RRT Bidirectional Dijkstra Grid Dijkstra Grid Diag.
Time [ms] 3084,88 ± 1866.35 1229.71 ± 588.01 771.04 ± 106.66 1399.13 ± 103.66
Edges 1703.12 ± 620.95 841.84 ± 329.19 1046.00 ± 0.00 1958.00 ± 0.00
Path length [m] 17.62 ± 1.06 17.87 ± 1.06 15.60 ± 0.00 14.62 ± 0.00
Path edges 205.11 ± 43.13 140.33 ± 34.38 104.00 ± 0.00 90.00 ± 0.00

DG Diagonal 8 px DG Diagonal 16 px DG Diagonal 24 px
Time [ms] 7129.80 ± 513.07 1182.04 ± 57.25 495.52 ± 30.33
Edges 8791.00 ± 0.00 1899.00 ± 0.00 713.00 ± 0.00
Path length [m] 14.31 ± 0.00 14.66 ± 0.00 14.43 ± 0.00
Path edges 166.00 ± 0.00 85.00 ± 0.00 56.00 ± 0.00

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 161

References:
[1] J. Klapka, P. Popela and J. Dvořák, Metody

operačního výzkumu (in Czech), Brno:
VUTIUM, 2001.

[2] J.-C. Latombe, Robot motion planning, Boston:
Kluwer Academic Publishers, 1991.

[3] S. M. LaValle, Planning algorithms, New
York: Cambridge University Press, 2006.

[4] A. Zelinsky, R. A. Jarvis, J. C. Byrne and S.
Yuta, "Planning paths of complete coverage of
an unstructured environment by a mobile
robot," in Proceedings of International
Conference on Advanced Robotics, 1993.

[5] N. J. Nillson, Principles of artificial
intelligence, Berlin, New York: Springer-
Verlag, 1982.

[6] S. M. LaValle and M. Branicky, "On the
Relationship Between Classical Grid Search
and Probabilistic Roadmaps," The International
Journal of Robotics Research, vol. 23, 2003.

[7] E. W. Dijkstra, "A note on two problems in

connexion with graphs," Numerische
Mathematik, vol. 1, no. 1, pp. 269-271, 1959.

[8] M. Leyzorek, R. S. Gray, A. A. Johnson, W. C.
Ladew, S. R. Meaker Jr., R. M. Petry and R. N.
Seitz, "Investigation of Model Techniques —
First Annual Report — 6 June 1956 — 1 July
1957 — A Study of Model Techniques for
Communication Systems," Case Institute of
Technology, Cleveland, Ohio, 1957.

[9] M. L. Fredman and R. E. Tarjan, "Fibonacci
heaps and their uses in improved network
optimization algorithms," Journal of the ACM,
vol. 34, no. 3, pp. 596-615, 1987

[10] L. Knispel, "RRT Explorer," 11 October 2011.
[Online], [Accessed October 2013], Available:
http://sites.google.com/site/rrtexplorer/.

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 162

