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Abstract: Let G be a group and ω(G) be the set of element orders of G. Let k ∈ ω(G) and sk be the number of
elements of order k in G. Let nse(G) = {sk|k ∈ ω(G)}. In Khatami et al and Liu’s works, L3(2) and L3(4)
are unique determined by nse(G). In this paper, we prove that if G is a group such that nse(G)=nse(L3(8)), then
G ∼= L3(8).
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1 Introduction
We introduce some notations which is needed. Let
a.b denote the products of an integer a by an integer
b. Ln(q) denotes the projective special linear group of
degree n over finite fields of order q. Un(q) denotes
the projective special unitary group of degree n over
finite fields of order q. Let r be a prime and G be
a group. Then Pr denotes the Sylow r-subgroups of
G and nr or nr(G) denotes the number of Sylow r-
subgroups of G. The notations are standard (see [1]
and [15]).

In 1987, J. G. Thompson posed a very interesting
problem related to algebraic number fields as follows
(see [16]).

Thompson’s Problem. Let T (G) =
{(n, sn)|n ∈ ω(G) and sn ∈nse(G)}, where sn
is the number of elements with order n. Suppose that
T (G) = T (H). If G is a finite solvable group, is it
true that H is also necessarily solvable?

If the groups G and H have the same order type,
then |G| = |H| and nse(G)=nse(H). The following
results are gotten.

Result 1: Let G be a group and M some simple
Ki-group, i = 3, 4, then G ∼= M if and only if |G| =
|M | and nse(G)=nse(M) (see [12, 13]).

Result 2: The group A12 is characterizable by or-
der and nse (see [7]).

Result 3: All sporadic simple groups are charac-
terizable by nse and order (see [5]).

Result 4: L2(2m) with 2m + 1 prime or 2m − 1
prime, is characterized by nse and order (see [14]).

Comparing the sizes of elements of same order
but disregarding the actual orders of elements in T (G)
of the Thompson’s Problem, in other words, it re-
mains only nse(G), whether can it characterize finite
simple groups? Up to now, some groups especial for
L2(q), where q ∈ {7, 8, 9, 11, 13}, can be character-
ized by only the set nse(G) (see [6, 15]). The author
has proved that the groupsL3(4), U3(5) andL5(2) are
characterizable by nse (see [8, 9, 10]). In this paper, it
is shown that the group L3(8) also can be character-
ized by nse.

2 Introduction
Lemma 1 [2] Let G be a finite group and m be a pos-
itive integer dividing |G|. If Lm(G) = {g ∈ G|gm =
1}, then m||Lm(G)|.

Lemma 2 [11] Let G be a finite group and p ∈ π(G)
be odd. Suppose that P is a Sylow p-subgroup of G
and n = psm with (p,m) = 1. If P is not cyclic
and s > 1, then the number of elements of order n is
always a multiple of ps.

Lemma 3 [15] Let G be a group containing more
than two elements. If the maximal number s of ele-
ments of the same order in G is finite, then G is finite
and |G| ≤ s(s2 − 1).

Lemma 4 [3, Theorem 9.3.1] Let G be a finite solv-
able group and |G| = mn, where m = pα1

1 · · · pαr
r ,

(m,n) = 1. Let π = {p1, · · · , pr} and hm be

Recent Advances in Applied and Theoretical Mathematics

ISBN: 978-960-474-351-3 44



the number of Hall π-subgroups of G. Then hm =

qβ11 · · · qβss satisfies the following conditions for all
i ∈ {1, 2, · · · , s}:

(1) qβii ≡ 1 (mod pj) for some pj .

(2) The order of some chief factor of G is divided by
qβii .

To prove G ∼= L3(8), we need the structure of
simple K4-groups.

Lemma 5 [17] Let G be a simple K4-group. Then G
is isomorphic to one of the following groups:

(1) A7, A8, A9 or A10.

(2) M11, M12 or J2.

(3) One of the following:

(a) L2(r), where r is a prime and r2 − 1 =
2a · 3b · vc with a ≥ 1, b ≥ 1, c ≥ 1, and v
is a prime greater than 3.

(b) L2(2m), where 2m − 1 = u, 2m + 1 = 3tb

with m ≥ 2, u, t are primes, t > 3, b ≥ 1.

(c) L2(3m), where 3m+1 = 4t, 3m−1 = 2uc

or 3m+1 = 4tb, 3m−1 = 2u, withm ≥ 2,
u, t are odd primes, b ≥ 1, c ≥ 1.

(4) One of the following 28 simple groups: L2(16),
L2(25), L2(49), L2(81), L3(4), L3(5), L3(7),
L3(8), L3(17), L4(3), S4(4), S4(5), S4(7),
S4(9), S6(2), O+

8 (2), G2(3), U3(4), U3(5),
U3(7), U3(8), U3(9), U4(3), U5(2), Sz(8),
Sz(32), 2D4(2) or 2F4(2)′.

Lemma 6 Let G be a simple K4-group and {73} ⊆
π(G) ⊆ {2, 3, 7, 73}. Then G ∼= L3(8), or U3(9).

Proof. From Lemma 5(1)(2), order consideration
rules out this case.

So we consider Lemma 5(3). We will deal with
this with the following cases.

• Case 1. G ∼= L2(r), where r ∈ {3, 7, 73}.

* Let r = 3, then |π(r2 − 1)| = 1, which
contradicts |π(r2 − 1)| = 3.

* Let r = 7, then |π(r2 − 1)| = 2, which
contradicts |π(r2 − 1)| = 3.

* Let r = 73, then |π(r2 − 1)| = 3. Hence
G ∼= L2(73), but 37 | |G|, a contradiction.

• Case 2. G ∼= L2(2m), where u ∈ {3, 7, 73}.

* Let u = 3, then m = 2 and so 5 = 3tb.
But the equation has no solution in N, a
contradiction.

* Let u = 7, then m = 3, and 23 + 1 =
3tb. Thus t = 3 and b = 1. But t > 3, a
contradiction.

* Let u = 73, then 2m − 1 = 19. But the
equation has no solution in N.

• Case 3. G ∼= L2(3m).

We will consider the case by the following two
cases.

* Subcase 3.1. 3m + 1 = 4t and 3m − 1 =
2uc.
We can suppose that t ∈ {3, 7, 73}
Let t = 3, 73, the equation 3m+1 = 4t has
no solution. So we rule out the case.
Let t = 7, then m = 3 and so 33 − 1 = 2 ·
11, which means 11 | |G|, a contradiction.

* Subcase 3.2. 3m + 1 = 4tb and 3m − 1 =
2u.
We can suppose that u ∈ {3, 7, 19}
Let u = 3, 7, 73, then the equation 3m −
1 = 2u has no solution in N, a contradic-
tion.

In review of Lemma 5(4), G ∼= L3(8), or U3(9).
This completes the proof of the Lemma.

3 Main theorem and its proof
Let G be a group such that nse(G)=nse(L3(8)), and
sn be the number of elements of order n. By Lemma
3 we have that G is finite. We note that sn = kφ(n),
where k is the number of cyclic subgroups of order n.
Also we note that if n > 2, then φ(n) is even. If m ∈
ω(G), then by Lemma 1 and the above discussion, we
have

{φ (m) | sm; m |
∑
d |m

sd (1)

Theorem 7 Let G be a group with
nse(G)=nse(L3(8))={1, 4599, 257544, 261632,
784896, 1569792, 1709952, 1766016, 4709376,
5419008}, where L3(8) is the projective special
linear group of degree 3 over field of order 8. Then
G∼= L3(8).

Proof. We prove the theorem by first proving that
π(G) ⊆ {2, 3, 7, 73}, second showing that |G| =
|L3(8)|, and so G ∼= L3(8).
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By (1), π(G) ⊆ {2, 3, 5, 7, 19, 73, 784897,
1569793}. If m > 2, then φ(m) is even, then
s2 = 4599, 2 ∈ π(G).

In the following, we prove that 784897 6∈ π(G).
If 784897 ∈ π(G), then by (1), s784897 = 784896.
If φ(2.784897) | s2.784896, then s2.784897=784896,
1569792, or 4709376. On the other hand, 2.784897 |
1 + s2 + s784897 + s2.784897(=1574392, 2359288,
5498872), a contradiction. Therefore 2.784897 6∈
ω(G). Now we consider Sylow 784897-subgroup
P784897 of G acts fixed point freely on the set of
elements of order 2, then |P784897| | s2, a con-
tradiction. Similarly we can prove that the prime
1569793 does not belong to π(G). Hence we have
π(G) ⊆ {2, 3, 5, 7, 19, 73}. Furthermore, by (1)
s3=261632, 4709276 or 5419008, s5=257544, or
5419008, s7=1709952, s19=257544, or 5419008, and
s73=5419008.

If 2a ∈ ω(G), then φ(2a) = 2a−1 | s2a and so
0 ≤ a ≤ 13.

If 3a ∈ ω(G), then 1 ≤ a ≤ 4.
If 2a.3b ∈ ω(G), then 1 ≤ a ≤ 12 and 1 ≤ b ≤ 4.
If 7a ∈ ω(G), then 1 ≤ a ≤ 3.
If 2a.7b ∈ ω(G), then 1 ≤ a ≤ 12 and 1 ≤ b ≤ 3.
If 73a ∈ ω(G), then 1 ≤ a ≤ 2. Since

s732 6∈nse(G), then a = 1.
If 5a ∈ ω(G), then a = 1.
If 19a ∈ ω(G), then a = 1.
If 7.19 ∈ ω(G), then s7.19 6∈nse(G). Therefore

7.19 6∈ ω(G).
If 2a.19 ∈ ω(G), then 1 ≤ a ≤ 12
If 3a.19 ∈ ω(G), then 1 ≤ a ≤ 2.
In the following, we first prove that 73 ∈ π(G),

then consider the proper subset of {2, 3, 7, 73} and fi-
nally the set {2, 3, 7, 73}.

As exp(P2) = 2, · · · , 213, by Lemma 1, |P2| |
1 + s2 + · · ·+ s13 and so |P2| | 213.

If 3 ∈ π(G), then as exp(P3) = 3, 32, 33, 34, by
Lemma 1, |P3| | 1 + s3 + s32 + s33 + s34 and so
|P3| | 36.

If 5 ∈ π(G), then by Lemma 1, |P5| | 1 + s5 and
so |P5| = 5.

If 7 ∈ π(G), then |P7| | 1 + s7 + s72 + s73 and
so |P7| | 73

If 19 ∈ π(G), then |P19| | 1 + s19 and so
|P19|=19.

To remove the primes 5 and 19, we must show
that 73 ∈ π(G).

Assume that 73 6∈ π(G).
If 3, 5, 7, 19 6∈ π(G), then G is a 2-group and

so 16482816 + 257544k1 + 261632k2 + 784896k3 +
1569792k4+1709952k5+1766016k6+4709376k7+
5419008k8 = 2m, where k1, k2, · · · , k8,m are non-

negative integers and 0 ≤
8∑
i=1

ki ≤ 4. Since

16482816 ≤ |G| = 2m ≤ 16482816 + 4.5419008,
then m = 24, 25, a contradiction since m is at most
13.

Let 19 ∈ π(G). Then as exp(P19) = 19 and by
Lemma 1, |P19| | 1 + s19. If s19 = 257544, then
|P19| = 19. Since n19 = s19/φ(19), then 73 ∈ π(G),
a contradiction. If s19 = 5419008, then |P19| 6| 1+s19

and so |P19| = 19. Since n19 = s19/φ(19)=301056.
Since {2} ⊆ π(G) ⊆ {2, 3, 5, 7, 19}, then we
assume that 16482816 + 257544k1 + 261632k2 +
784896k3 + 1569792k4 + 1709952k5 + 1766016k6 +
4709376k7 + 5419008k8 = 2m.3n.5p.7q.19, where
k1, k2, · · · , k8,m are nonnegative integers and 0 ≤

8∑
i=1

ki ≤ 259. Since 16482816≤ |G| ≤ 16482816 +

5419008.259, 1 ≤ m ≤ 13, 0 ≤ n ≤ 6, 0 ≤
p ≤ 1 and 0 ≤ q ≤ 3, then there is some solutions
(m,n, p, q) such that the conditions. We only give an
example for these case (the other cases can be ruled
out as this case). For example, |G| = 210.33.5.7.19,
then the number of Sylow 19-subgroups of G is 1,
20, 96, 210, 1008, 1920, 9216, 20160, 96768, and so
the number of order 19 of G is 18, 360, 1728, 3780,
18144, 34560, 165888, 362880, 1741824, but these
do not belong to nse(G), a contradiction.

Let 7 ∈ π(G). We know that exp(P7) =
7, 72, 73, 73.

If exp(P7) = 7, then by Lemma 1, |P7| | 1 + s7

and so |P7| | 72. If |P7| = 7, then n7 = s7/φ(7)
and so 73 ∈ π(G), a contradiction. If |P7| = 72,
then since {2} ⊆ π(G) ⊆ {2, 3, 5, 7, 19} and the
above arguments, we can assume that 16482816 +
257544k1 + 261632k2 + 784896k3 + 1569792k4 +
1709952k5+1766016k6+4709376k7+5419008k8 =
2m.3n.5p.72, where k1, k2, ..., k8,m are nonnegative

integers and 0 ≤
8∑
i=1

ki ≤ 230. Since 16482816≤

|G| ≤16482816+5419008.230, 1 ≤ m ≤ 13, 0 ≤
n ≤ 6, 0 ≤ p ≤ 1 and 0 ≤ q ≤ 3, then set
p = 1, (m,n)=(12, 3), (13, 3), (13, 2), (10, 4), (11,
4), (12, 4), (13, 4), (9, 5), (10, 5), (11, 5), (12, 5),
(13, 5), (7, 6), (8, 6), (9, 6), (10, 6), (11, 6), (12,
6) and set p = 0, (m,n) =(9, 6), (10, 6), (11, 6),
(12, 6), (13, 6), (11, 5), (12, 5), (13, 5), (13, 4).
We only give an example for these cases (the other
cases can be ruled out as this case). For example,
|G| = 212.33.5.72, then the number of Sylow 5-
subgroups of G is 1, 6, 16, 21, 36, 56, 96, 126, 196,
216, 256, 336, 441, 576, 756, 896, 1176, 1536, 2016,
2646, 3136, 3456, 4096, 5376, 7056, 9216, 12096,
14336, 18816, 32256, 42336, 50176, 55296, 86016,
112896, 193536, 301056, 677376, 1806336, and so
the number of elements of order 5 ofG is 4, 24, 64, 84,
144, 224, 384, 504, 784, 864, 1024, 1344, 1764, 2304,
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3024, 3584, 4704, 6144, 8064, 10584, 12544, 13824,
16384, 21504, 28224, 36864, 48384, 57344, 75264,
129024, 169344, 200704, 221184, 344064, 451584,
774144, 1204224, 2709504, 1445068, but none of
which belongs to nse(G), a contradiction.

If exp(P7) = 72, then by Lemma 1, |P7| | 1+s7+
s72 for s72=257544 or 5419008, and so |P7| | 72. If
s72=257544, then 73 ∈ π(G) since n7 = s72/φ(72),
a contradiction. If s72=5419008, then n7=129024. By
Sylow’s theorem, n7 = 7k+ 1 for some non-negative
integer k, but the equation has no solution in N.

If exp(P7) = 73, then by Lemma 1, |P7| |
1 + s7 + s72 + s73 for s73=257544, or 5419008, and
so |P7| | 73. If s73=257544, then 73 ∈ π(G) since
n7 = s73/φ(73), a contradiction. If s73=5419008,
then n7=18432. By Sylow’s theorem, n7 = 7k + 1
for some non-negative integer k, but the equation has
no solution in N.

Let 5 ∈ π(G). As exp(P5)=5, by Lemma 1, |P5| |
1 + s5 for s5=257544 or 5419008, and so |P5| = 5.
If s5=257544, then 73 ∈ π(G) since n5 = s5/φ(5), a
contradiction. If s5=5419008, then n5=1354752. By
Sylow’s theorem, n5 = 5k+ 1 for some non-negative
integer k, but the equation has no solution in N.

Let 3 ∈ π(G). We know that exp(P3) =
3, 32, 33, 34.

If exp(P3)=3, then by Lemma 1, |P3| | 1 + s3

for s3=261632, 4709376 or 5419008, and so |P3| =
3. If s3=261632, 4709376, then n3 = s3/φ(3) and
so 73 ∈ π(G), a contradiction. If s3=5419008, then
n3=2709504. By Sylow’s theorem, n3 = 3k + 1 for
some non-negative integer k, but the equation has no
solution in N.

If exp(P3) = 32, then by Lemma 1, |P3| |
1 + s3 + s32 for s32=261632, 4709376 or 5419008,
and so |P3| | 32. If s32=261632, 4709376, then
n32 = s3/φ(32) and so 73 ∈ π(G), a contradiction. If
s32=5419008, then n3=903168. By Sylow’s theorem,
n3 = 3k + 1 for some non-negative integer k, but the
equation has no solution in N.

If exp(P3) = 33, then by Lemma 1, |P3| | 1+s3+
s32 +s33 for s33=257544, 1766016,4709376, 257544,
1766016,4709376 or 5419008, and so |P3| | 34. Let
|P3| = 33. If s33=257544, 1766016,4709376, then
n3 = s33/φ(33) and so 73 ∈ π(G), a contradiction.
If s33=5419008, then n3=301056. By Sylow’s theo-
rem, n3 = 3k + 1 for some non-negative integer k,
but the equation has no solution in N. Let |P3| = 34.
Then 16482816+257544k1+261632k2+784896k3+
1569792k4+1709952k5+1766016k6+4709376k7+
5419008k8 = 2m.34, where k1, k2, · · · , k8,m are

non-negative integers and 0 ≤
8∑
i=1

ki ≤ 56. Since

16482816 ≤ |G| ≤ 16482816 + 5419008.56, then

m = 18, ..., 21, a contradiction.
If exp(P3) = 34, then by Lemma 1, |P3| | 1 +

s3 + s32 + s33 + s34 and so |P3| | 36. Let |P3| = 34.
Since s34=1766016 or 4709376, then n3 = s34/φ(34)
and so 73∈ π(G), a contradiction. If |P3| > 34, then
by Lemma 2, s34 = 34t for some non-negative in-
teger t. But the equation has no solution in N since
s74 ∈nse(G).

Therefore 73 ∈ π(G).
In the following, we prove that the primes 5 and

19 do not belong to π(G).
Let 5 ∈ π(G). If 5.73 ∈ ω(G), then by (1),

s5.73 6∈nse(G). It follows that the Sylow 5-subgroup
of G acts fixed point freely on the set of elements of
order 73 and so |P5| | s73, a contradiction. Therefore
5 6∈ π(G). Similarly 19 6∈ π(G).

Therefore we have that {2, 73} ⊆ π(G) ⊆
{2, 3, 7, 73}

Case a. π(G) = {2, 73}.
As exp(P73)=73, then by Lemma 1, |P73| | 1+s73

and so |P73| = 73. Since n73 = s73/φ(73), then
7 ∈ π(G), a contradiction.

Case b. π(G) = {2, 3, 73}.
The proof is the same as Case a
Case c. π(G) = {2, 7, 73}.
We know that exp(P7) = 7, 72, 73, 73.
If exp(P7) = 7, then by Lemma 1, |P7| | 1 + s7

and so |P7| | 72. If |P7| = 7, then n7 = s7/φ(7)
and so 3 ∈ π(G), a contradiction. If |P7| = 72,
then 16482816+257544k1+261632k2+784896k3+
1569792k4+1709952k5+1766016k6+4709376k7+
5419008k8 = 2m.72.73, where k1, k2, · · · , k8,m are

non-negative integers and 0 ≤
8∑
i=1

ki ≤ 17. Since

16482816 ≤ |G| ≤ 16482816 + 5419008.17, then
m = 13 and |G| = 213.72.73, thus the number of Sy-
low 73-subgroups of G is 1, 512, 28672, and so the
number of order 73 of G is 72, 36864, 2064384, but
none of which belongs to nse(G), a contradiction.

If exp(P7) = 72, then by Lemma 1, |P7| | 1 +
s7 + s72 for s72=257544 or 5419008, and so |P7| | 72.
If s72=257544, then 3 ∈ π(G) since n7 = s72/φ(72),
a contradiction. If s72=5419008, then n7=129024. By
Sylow’s theorem, n7 = 7k+ 1 for some non-negative
integer k, but the equation has no solution in N.

If exp(P7) = 73, then by Lemma 1, |P7| | 1 +
s7 + s72 + s73 and so |P7| | 73. Since s73=257544,
5419008, then 3 ∈ π(G) since n7 = s73/φ(73), a
contradiction.

Case d. π(G) = {2, 3, 7, 73}.
In the following, we first show that |G| = 2m.3n.

and second prove that G ∼= L3(8).
Step 1. |G| = 2m.3n.72.73, where m =

9, 10, 11, 12 and n = 2, 3.
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We have known that |P73|=73.
If 2.73 ∈ ω(G), set P and Q are Sylow 73-

subgroups of G, then P and Q are conjugate in G and
so CG(P ) and CG(Q) are also conjugate inG. There-
fore we have s2.73 = φ(2.73).n73.k, where k is the
number of cyclic subgroups of order 2 in CG(P73).
Since n73 = s73/φ(73)=5419008/72, 5419008 | s2.73

and so s2.73=5419008. But by Lemma 1, 2.73 |
1 + s2 + s73 + s73, a contradiction. Therefore 2.73 6∈
ω(G), it follows that the Sylow 2-subgroup of G acts
fixed point freely on the set of elements of order 73,
|P2| | s73 and so |P2| | 212.

If 3.73 ∈ ω(G), then by (1), 3.73 | 1 + s3 +
s73 + s3.73. Therefore 3.73 6∈ ω(G), it follows that
the Sylow 3-subgroup of G acts fixed point freely on
the set of order 73 and so |P3| | s73. Hence |P3| | 33.
Similarly 7.73 6∈ ω(G) and |P7| | 72.

Therefore we can assume that |G| =
2m.3n.7p.73. Since 16482816 = 29.32.72.73 ≤
|G| = 2m.3n.7p.73, then |G| = 2m.3n.72.73, where
m = 9, 10, 11, 12 and n = 2, 3.

Step 2. G ∼= L3(8)

First prove that there is no group such that |G| =
210.33.72.73 and nse(G)=nse(L3(8)), similarly we
rule out the other cases except for |G| = 29.32.72.73.
Then get the desired result by [13].

Let |G| = 210.32.72.73 and nse(G)=nse(L3(8)).
Let G be soluble. Since n73 = s73/φ(73) =

512.3.49, then by Lemma 4, 3 ≡ 1 (mod 73), a con-
tradiction. So G is insoluble.

ThereforeG has a normal series 1 ≤ K ≤ L ≤ G
such that L/K is isomorphic to a simple Ki-group
with i = 3, 4 as 5329 does not divide the order of G.

If L/K is isomorphic to a simple K3-group,
from [4], L/K ∼= L2(7), L2(8), U3(3). From [1],
n7(L/K) = n7(L2(7))=8, and so by [13] n7(G) =
8t and 7 6| t. Hence the number of elements of order
7 in G is: s7 = 8t · 6 = 48t for some non-negative
integer t. Since s7 ∈nse(G), then s7 = 1709952 and
so t = 35624. Therefore 8.61.73 | |K| | 27.3.7.73,
which is a contradiction. For the groups L2(8) and
U3(3), similarly we can rule out.

Hence G is isomorphic to a simple K4-group,
then by Lemma 6, L/K ∼= L3(8), U3(9). Order con-
sideration rules out the group U3(9). Hence L/K ∼=
L3(8).

Let Ḡ = G/K and L̄ = L/K. Then
L3(8) ≤ L̄ ∼= L̄CḠ(L̄)/CḠ(L̄) ≤ Ḡ/CḠ(L̄) =

NḠ(L̄)/CḠ(L̄) ≤ Aut(L̄)

Set M = {xK | xK ∈ CG(L)}, then G/M ∼=
G/CG(L) and so L3(8) ≤ G/M ≤Aut(L3(8)).
Therefore G/M ∼= L3(8), G/M ∼= 2.L3(8), G/M ∼=
3.L3(8) or G/M ∼= 6.L3(8).

If G/M ∼= L3(8), then order consideration
|M | = 3 and M = Z(G). So there exists an element
of order 3.73, which is a contradiction.

If G/M ∼= 2.L3(8), then G ∼= 2.L3(8). By Sy-
low’s theorem, the number of the Sylow 73-subgroups
of G is 1, 147, 512, 75264, and so the number of ele-
ments of order 73 of G is 72, 10548, 37376, 5419008,
but none of which belongs to nse(G), a contradiction.

If G/M ∼= 3.L3(8) or G/M ∼= 6.L3(8), then
order consideration rules out these cases.

Similarly we can rule out the cases “|G| =
2m.32.72.73 with m = 11, 12” and “|G| =
2m.33.72.73 with m = 9, 10, 11, 12”.

Therefore |G| = 29.32.72.73 = |L3(8)| and by
assumption, nse(G)=nse(L3(8)), then by [13], G ∼=
L3(8).

This completes the proof of the theorem.

4 Conclusion
The following theorem is the main theorem

Theorem 8 Let G be a group such that
nse(G)=nse(L3(8)). Then G ∼= L3(8)

As a corollary, we have the following corollary of
Theorem 8.

Corollary 9 Let G be a group such that
nse(G)=nse(L3(8)) and |G| = |L3(8)|. Then
G ∼= L3(8)

Proof. See [13].
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