
On Using Sitara AM335x Starter Kit to achieve basic applications based 

on Linux operating system 
 

SEPTIMIU MISCHIE, ROBERT PAZSITKA  

Faculty of Electronics and Telecommunications 

Politehnica University of Timisoara 

Vasile Parvan 2 

ROMANIA 

septimiu.mischie@etc.upt.ro, robert.pazsitka@etc.upt.ro,  http://www.etc.upt.ro 
 

 

Abstract: - Recently, Texas Instruments has been presented the new Sitara AM335x Starter Kit (short, AM335x 

SK) system. This device is based on an AM3358 ARM processor and it can be used by either a Linux operating 

system or an Android operating system. Also the system contains a 4.3 inch LCD touchscreen and other 

hardware resources. In the literature there are very few documents which report applications with this new 

system. This paper presents Linux based applications with this system like: accessing the GPIO pins, accessing 

the user LED’s and keys, connecting an I2C device to the appropriate connector, reading the values from the 

accelerometer. All of these applications can be started from a PC which is connected to the AM335x SK by 

Ethernet and also by using the touchscreen of the AM335x SK.   

 

 
Key-Words: - Sitara AM335x Starter Kit, Linux, Code Composer, Matrix application, I2C interface. 

 

1 Introduction 
The applications based on ARM processors and 

Linux operating systems are very popular today [1-

3], [6]. Also, development systems like Beagle 

Board [4], AM335x Evaluation Module and Sitara 

AM335x Starter Kit [5] were launched recently on 

the market. In the literature, especially on the 

Internet, there are documents about these systems, 

but very few present feasible applications. So, this 

paper presents all the necessary steps to achieve 

applications using Sitara AM335x Starter Kit.    

The paper is organized as follows. Chapter 2 

presents the hardware and software structure of this 

system. Chapter 3 presents the software 

requirements for the host PC which is used to 

develop applications on AM335x SK. The 

applications which are started by the host PC are 

presented in chapter 4, while chapter 5 presents how 

these applications can be started by the touchscreen 

of the AM335x SK. Finally, chapter 6 presents the 

conclusions. 

 

2 The Structure of the AM335x SK 
The hardware structure 

The AM335x SK is based on an AM3358 ARM 

Cortex A8 processor and contains a LCD with 

touchscreen. Other resources are: one micro SD card 

connector, 256 MB DDR3 SDRAM memory, two 

Ethernet connectors, one USB connector, one micro 

USB connector, one WiFi/BlueTooth module, one 

stereo audio output (stereo jack), four user LED’s 

and four keys. Also, the system contains an 

accelerometer and two expansion connectors. The 

first has 6 pins and corresponds to SPI interface; the 

other has 4 pins for I2C interface, see Appendix 1. 

The system is powered by a 5V adapter. 

The software structure  

The AM335x SK comes with two micro SD 

cards, one with Linux and the other with Android. 

Thus, the system can boot up with one of these 

operating systems, depending which of them is 

introduced into the micro SD card connector.  

In this paper we are concerning with applications 

achieved when the AM335x SK uses the Linux 

operating system. So, when the system is boot up, 

the application called Matrix Application Launcher 

is started. As effect, a 4x3 matrix of icons are 

displayed. These icons can be operated by touch.  

 

3 The Software Requirements of the 

Host PC 
In order to develop applications for Sitara AM335x 

system when it runs Linux, it is necessary a host 

Personal Computer (PC) running Linux (Linux PC). 

The simplest solution to have a Linux PC is to 

install a virtual machine like VMWare on a 

Windows PC. Then, the Linux distribution called 

Ubuntu 10.04 LTS can be installed under VMWare. 

     In this way, the content of the Linux SD card of 

the AM335x SK can be accessed under the Ubuntu. 

Recent Advances in Circuits, Systems and Automatic Control

ISBN: 978-960-474-349-0 218



In addition to Linux Operating System, this card 

contains the necessary tools to develop applications 

like Sitara Linux SDK and Code Composer Studio 

v5 (CCS). By connecting the Linux SD card to the 

Linux PC by using an USB card reader, three 

partitions are mounted under Ubuntu. One of them, 

START_HERE, can be accessed to install the Sitara 

Linux SDK and the CCS. The Sitara Linux SDK 

contains drivers and libraries which are used by 

CCS to develop applications. The Linux SD card 

can also be accessed direct on the AM335x SK, by 

using an USB cable between the Linux PC and the 

AM335x SK (micro USB connector). 

     It is known that CCS is used to write applications 

in C language and download them into the flash 

memory of the processors to execute or debug them. 

Furthermore, in this case, CCS allows the Linux PC 

to see the resources (directories and files) of the 

AM335x SK (called Target), in addition to its own 

resources, and also to send Linux commands to the 

Target. For this purpose, the AM335x SK and the 

Linux PC must be connected in a local network. 

This can be done by connect the AM335x SK to an 

output of a (wireless) router using one Ethernet 

connector while the Linux PC is (wireless) 

connected to the same router. The IP which the 

router has been allocated to AM335x SK can be 

read by accessing Settings/Network Settings – eth0, 

within Matrix Application Launcher. This IP is used 

in the process of configuring the Remote Interface 

option in CCS. Figure 1 presents a capture form the 

CCS. It can be seen Local (Linux PC) and Target 

(its name is My Target EVM). Thus, the 

applications which were created on the Linux PC 

can be moved on the Target using the classical 

copy/paste procedure. These applications can be 

achieved using either CCS or any other method (as 

in the future will be presented). 

 
Fig. 1 Resources of the Local and Target, in CCS 

    Also the IP of AM335x SK can be used to run the 

Matrix Application Launcher from a web browser 

located on a Linux PC (remote mode). 

     The other facility of CCS is to allow executing 

the Linux commands designed to AM335x SK as 

we presented. This can be done by the Terminals tab 

of CCS (fig.2). Examples: 

1. General Linux commands. Example:  
~# pwd       //print work directory 

/home/root     //this is the answer 

2.  Commands to configure the peripherals of the 

ARM processor. Example: 
~#  echo 3 >/sys/class/gpio/export   

3. Command to execute the application which have 

been created in CCS and then moved on the Target 

Example (the application is named application_1): 
~# chmod +x application_1 

~# ./application_1 

 

 
Fig. 2 Linux commands in Terminals tab of CCS 

 

 

4 Example Applications 
In order to create applications which uses the 

peripherals of the ARM processor but also the 

external resources which are on the system 

(accelerometer, touch screen, …), the Linux 

operating system of the Target has directories, 

subdirectories and files which allows configuring 

the peripherals and writing or reading data to/from 

them. In this way is not necessary to know the 

registers of the processor and their bits to create an 

application. Appendix 2 presents the paths to the 

files which are used in this paper, and some further 

information about them. These files can be accessed 

either using Linux commands or applications 

created in C language, using CCS. 

     Using the Linux commands represents a very 

simple possibility to test the peripherals of the 

processor. Thus, the command echo can be used for 

write to files and command cat for read the files. 

The functions fopen(), fclose(), fread() and fwrite() 

can be used to make similar things in C language. 

     In the following, a few applications achieved 

using Linux commands but also C language are 

presented. 

     1. Writing and reading the logic level of the 

general purpose input-output pins. 

To use this facility it is necessary to know the 

number of the pin, denoted by x. For AM3358, x can 

Recent Advances in Circuits, Systems and Automatic Control

ISBN: 978-960-474-349-0 219



be from 1 to 128, see Appendix 1 for details. 

Throughout in this example, x=3, because this pin is 

available in connector J11. The first step is to 

execute the following command.  
~# echo 3 >/sys/class/gpio/export 

      The effect of this command is to create the 

directory gpio3, which contains files for handling 

the pin 3 (direction, value, etc.).  

      Then, the command that configure the direction 

of the pin 3 as an output (out) or input (in) must be 

executed. In this example, the pin 3 is configured as 

output. 
~# echo out > /sys/class/gpio/gpio3/ 

direction 

      Finally, the command that set the logic level, 1 

or 0 (1 in this example) of the pin can be executed. 
~# echo 1 >/sys/class/gpio/gpio3/value 

      If a pin is configured as an input, the following 

command read its logic level, while the result of 

reading is displayed on the next row, 1 in this 

example.  
~# cat /sys/class/gpio/gpio3/value 

1 

      If a pin configured as output or input will no 

longer be used, it can be disabled by the command 
~# echo 3 >/sys/class/gpio/unexport 

     We also tested this application on the pins having 

the numbers 2, 5 and 6, because these pins are 

available in the expansion connector J11 (see 

Appendix 2). 

 

     2. Accessing the user LED’s and the user keys. 

The four user LED’s are connected to the pins 

gpio1_4,…,gpio1_7, whereas the four keys are 

connected to the pins gpio0_30, gpio2_3, gpio2_2 

and gpio2_5. Appendix 1 presents the method to 

convert these GPIO numbers of the pins in the 

numbers within the range 1-128. These pins can not 

be configured using the statements from the 

previous application. Thus, the command echo x 

>/sys/class/gpio/export has no effect for these 

pins, that is the directory gpiox is not created. 

Instead, there are special directories which allow 

configuring of these devices. 

      In Appendix 1 is presented the path where the 

directories for the four LED’s are: 

/sys/devices/platform/leds-gpio/leds. Here 

there are four directories, one for each led: 
am335x:EVM_SK:usr0 

am335x:EVM_SK:usr1 

am335x:EVM_SK:mmc0 

am335x:EVM_SK:heartbeat. 

Each of these directories contains more files. One of 

them is trigger. The content of this file specifies 

how (when) that led is controlled. By default, the 

content of this file is none for the first two LED’s. 

That is, there is no a device which controls these 

LED’s, so they can be controlled by the user, so it 

will be seen. 

      The content of the trigger file is mmc0 for the 

third led, that means that it is controlled when the 

SD card (or multi media card) is accessed.  

      The content of the trigger file is heartbeat for 

the fourth led, that means it blinks depending of the 

CPU (processor) activity.  

      Thus, the first two LED’s can be set “on” by the 

command:   
~# echo 1 >/sys/devices/platform/leds-gpio 

/leds /am335x:EVM_SK:usrx/brightness, 

where x can be 0 or 1. If the argument 0 replaces 1 

after the echo, the LED will be “off ”. This 

command can also be applied for the third LED 

(mmc0), if the SD card is not accessed.  

The fourth led, which blinks all the time, can be 

disabled by the command. 
~# echo none >/sys/devices/platform/leds-

gpio/leds/am335x:EVM_SK:heartbeat/trigger 

This command can be applied to the third LED too. 

Then, these LED’s can be set “on” or “off ” similar 

to the first two LED’s.  

      To read the status of the four user keys, the next 

command can be used: 
~# cat  /dev/input/event2 |hexdump 

After the execution of this command, the system is 

waiting for pressing a key. Only when a key is 

pressed (the logic level applied to the pin is 

changed) an answer message will be displayed in 

the terminal. However, the content of the message is 

difficult to understand due to hex codes. To obtain a 

better display mode, the next command can be 

executed 

~# evtest  /dev/input/event2 

      In this case, the answer message can be like in 

Figure 3. 

 
Fig.3 The answer when an user key was pressed and released 

By inspecting this message it follows: 

-the time moment (time) when the event was 

happened; by subtracting two such values, the time 

interval in seconds, between two actions can be 

determined; 

-the key which was pressed (code); this field can 

have one of the values: Btn0 (code 256),…, Btn3 

(code 259). 

-the level (value) applied to the appropriate pin (in 

this example: 1, 0); or, in other words, what action 

Recent Advances in Circuits, Systems and Automatic Control

ISBN: 978-960-474-349-0 220



was happened: key pressed or released (by pressing 

the key, the level 1 is applied to the pin) 

 

      3. Configuring the accelerometer and reading 

the 3-axis values. There are two possibilities to do 

this function. 

     The first possibility allows returning the 3-axis 

value of the acceleration at the moment when the 

next Linux command is executed.  
~# cat /sys/devices/platform/lis3lv02d/ 

position 

The answer message can be like 

 (4, 12, 1096). 

Also the range and the rate of the accelerometer can 

be read or set. The following Linux commands 

allow reading these values: 

 
~#cat /sys/devices/platform/lis3lv02d/range 

 2 

~# cat /sys/devices/platform/lis3lv02d/rate 

 50 

     The other possibility for accessing the 

accelerometer is the Linux command 
~# evtest  /dev/input/event0 

In this case, the answer message is displayed at any 

time when at least the value corresponding to one 

axis of the accelerometer is changed. The format is 

very similar with that of the user keys, as in Figure 

4. 

 

 
Fig. 4 The answer of the accelerometer   

 

      It this case, the field code represents the axis (0 

for x, 1 for y and 2 for z) and value represents the 

acceleration of that axis. 

      Also, by looking to the format of the keys and 

that of the accelerometer, it can be seen that the 

field type has the value 1 (Key), and respectively 3 

(Absolute). Another possible value of this field is 0, 

for synchronization (---Report Sync---). This field is 

sent between two successive results, and is visible 

only in C language. 

      In the following, some details about using C 

language to access these data are presented. 

The program should contain 2 important steps:  

-opening the file /dev/input/event0 for read: 
int file = open("/dev/input/event0", 

O_RDONLY); 

-reading data from this file and send it in variable 
ev: 

num_bytes=read(file,&ev,sizeof(struct 

input_event)); 

The variable ev is of struct input_event type and 

has 4 components (the library linux/input.h): 

 
struct input_event { 

      struct timeval time; 

      __u16 type; 

      __u16 code; 

      __s32 value; 

}; 

struct timeval  { 

    time_t         tv_sec;   //seconds 

    susecond_t     tv_usec;  //microseconds 

}; 

The components of this structure are in connection 

with the data returned by the accelerometer and 

presented above. 

These components can be displayed, for instance by 
print(“%1d sec “,ev.time.tv_sec); 

print(“%1d usec  \t “,ev.time.tv_usec); 

print(“%u %u %d  \n “,ev.type,ev.code, 

ev.value); 

 

     4. Reading the touchscreen values 

By executing the Linux command  
~# evtest /dev/input/touchscreen0 

the system is waiting as the touchscreen to be 

touched and as effect it answers by the coordinates 

(x,y) of the point which was touched. The 

coordinates have values in the range (0,0) - for the 

lower right corner - to (4095, 4095) - for the upper 

left corner. Also, in this case the display format is 

very similar to that of the user keys or 

accelerometer. 

 

      5. Connect a device to I2C interface.    

   We want to connect an I2C device to AM335x 

SK, using the connector J8. This device is an 

integrated circuit, AD5241, which contains three 

digital potentiometers having the next 7 bit 

addresses: 2Ch, 2Eh and 2Fh [7].  

     On the other hand it is known that ARM 

processor contains three I2C modules (I2C0, I2C1 

and I2C2) and the system AM335x SK contains 

some devices, like accelerometer, audio codec, etc., 

connected to I2C0 module. The addresses of these 

devices are: 12h, 18h, 1Bh, 2Dh, 38h, 50h. It is 

important to verify that the addresses of our device 

are not overlapped with these addresses. 

     To do the desired connection, it is necessary to 

identify a suitable I2C adapter. This can be done by 

executing the command  
~# i2cdetect –l 

The answer is i2c-1, so the file having this name, 

which is within the directory dev, must be used to 

access the devices connected to the I2C interface.   

Recent Advances in Circuits, Systems and Automatic Control

ISBN: 978-960-474-349-0 221



      Then, the two I2C (SDA and SCL) terminals of 

AD5241, as well as the two power terminals, must 

be connected to the connector J8 (see Appendix 1). 

Also two pull-up resistors must be connected 

between SDA and V3_3D, and, respectively, SCL 

and V3_3D. 

      Having these statements in mind, a C program 

must be created to control the digital potentiometers.  

The program should contain 3 important steps:  

-opening the file /dev/i2c-1 for read and write. This 

can be done by the C sequence: 
if ((file = open("/dev/i2c-1",O_RDWR)) < 0) 

{printf(“Failed to open the bus”); 

exit(1); 

} 

-establish the I2C address (addr1, 2Ch for instance) 

like in the next C sequence: 
if (ioctl(file, I2C_SLAVE, addr1) < 0)  

{ printf(“Failed to establish the 

address”); 

exit(1); 

} 

This command has no effect after its execution, but 

the I2C address will be used in the next step, as it 

will be seen. 

-then, a number of bytes (2 in our example, the first 

two elements of the array buf) can be written as in 

the following C sequence. 
if (write(file,buf,2) !=2)  

{ printf(“Failed to write to I2C bus”); 

exit(1); 

} 

Actually this command sends to the I2C interface a 

first byte containing the I2C address (2Ch) 

appended with a bit having the level 0 (write) and 

then the two bytes of the array buf. The first of these 

bytes configures the potentiometer, and the last one 

establishes its dividing factor [7]. 

 

5 Using the Touch Screen to start the 

applications 
To launch the Target applications, there is a most 

advanced option, further to that of using the Linux 

command on the Linux PC. Thus, it can be added 

new icons within the Matrix Application Launcher. 

These icons can launch applications by simple touch 

the screen. For this, two steps must be performed, as 

following. 

     1. Create a new Matrix empty directory. This 

directory has an icon that will be displayed among 

the Matrix Applications icons. To do this, a 

directory having two files must be created on the 

Linux PC. The first file is called *.desktop and its 

content must contain: the name of this icon, the path 

for the image file of the icon, the position in the 

Matrix Application where the icon will be placed. 

The second file is called *.img and it contains the 

icon. This directory must be moved on the Target 

(the path: /usr/share/matrix-gui-2.0/apps) using the 

facility of the CCS. After the executing of Refresh 

command (Settings/Refresh Matrix, within Matrix 

Application Launcher), the icon will be displayed 

on the LCD.     

     2. Create a new application within the previous 

created Matrix directory (icon).  For this purpose, 

another directory containing 4 files must be created 

on the Linux PC. The first two files are very similar 

with those of the previous created directory. The 

third is called *.sh and contains the Linux 

commands that will be executed. These Linux 

commands can be similar to those presented in 

chapter 4 (for peripheral accessing or for executing 

C applications). The last is called *.html and its 

content will be displayed on the LCD before the 

execution of the application and therefore can 

contain a description of the application. Also in this 

case, the created directory must be moved within the 

same path of the Target and the Refresh command 

must be executed.  

     Then, when the icon of the directory is touched, 

the icon of the application can be seen. By touching 

this icon, the RUN icon and the content of the 

*.html file will be displayed. Finally, the application 

can be executed by touching the RUN icon. In this 

case, the execution results are displayed on the 

touchscreen of AM335x SK. 

     Fig. 5 presents the Matrix Application Launcher 

(upper panel), where the new created icon First_App 

can be seen, and three applications created within 

this icon (lower panel). Both images were obtained 

using the remote mode of the Matrix Application. In 

the first image, it can be seen the IP of the target, 

192.168.1.132.   

 
 

 
Fig.5  The new application,  First_App 

Recent Advances in Circuits, Systems and Automatic Control

ISBN: 978-960-474-349-0 222



6 Conclusion 
The paper presents the basics issues to be known to 

achieve applications for AM335x SK. For this 

purpose, it is necessary to use CCS on a Linux PC. 

Applications can be run using the Linux commands 

executed in Terminals tab of CCS but also by using 

the touchscreen of the AM335x SK. 

      In the future, these applications can be 

improved. Thus, the accelerometer will be used to 

display the orientation of the system, and the digital 

potentiometer connected by the I2C interface will be 

used to control a helicopter. 

References: 

[1] Ping Li ,Jian Ping Li, Embedded Intelligent 

Home Control System Based on Arm Linux,  

ICWAMTIP, 2012, pp. 429-431. 

[2] Ting Zhang, Xu Chunxiu et all, Implementation 

of Ad Hoc Network management system based 

on embedded ARM-Linux platform, ICNDS 

2012, pp.167-170. 

[3] Xiang-hai, Jian-hui Liu, Design of embedded 

data acquisition and remote control system 

based on Linux, ICCASM 2012, vol. 3, pp. 

299-302. 

[4] B. Betea, L. Tomesc, P. Dobra, M. Trusca, 

Spectrum Analyzer Instrument based on 

OMAP3530, Proceedings of 5th European DSP 

Conference, 2012, pp.257-260.  

[5] http://www.ti.com/tool/tmdssk3358. 

[6] Shi Jun-Yong, Design and Implementation of 

Embedded GPS System, CSAE 2012 IEEE 

International Conference, pp. 311-314. 

[7] http://www.analog.com. 

 

 

Appendix 1 

The Sitara AM335x system has two expansion 

connectors, J11 (for SPI0 interface) and J8 (for I2C 

interface).  

     The structure of the two connectors is presented 

in tables A1 and A2. 

     It is known that pins of an ARM-type processor 

which have input and output capabilities are 

grouped in 4 modules, each having 32 pins. Thus, 

the GPIO number presented in tables A1 and A2, 

represents the module and, respectively, the pin 

within that module. Example: gpio0_4 means pin 4 

within the module 0. Using this number, the index 

that corresponds to that pin for using in Linux 

commands can be computed. For example, gpio3_5 

has the index 3*32+5=101. 

Table A1 
Pin 

number  

Function Physical package 

pin number 

GPIO 

number 

1 V3_3D - - 

2 SPI0_CS_0 A16 gpio0_5 

3 SPI0_D1 B16 gpio0_4 

4 GND - - 

5 SPI0_CLK A17 gpio0_2 

6 SPI0_D0 B17 gpio0_3 

Table A2 
Pin 

number  

Function Physical package 

pin number 

GPIO 

1 GND - - 

2 I2C0_SDA C16 gpio3_5 

3 I2C0_SCL C17 gpio3_5 

4 V3_3D - - 

 

Appendix 2 

 

Function The path of the file Values that can  

be written 

GPIO pins /sys/class/gpio/export 

/sys/class/gpio/unexport 

/sys/class/gpio/gpiox/direction 

/sys/class/gpio/gpiox/value 

1,…,128 

1,…,128 

out or in 

1 or 0 

user leds /sys/devices/platform/leds-gpio/leds/ 

    am335x:EVM_SK:usr0/trigger 

         … 

    am335xEVM_SK:heartbeat/brightness 

 

none, mmc0, hearbeat,… 

 

0 or 1 

accelerometer /sys/devices/platform/lis3lv02d/range 

/sys/devices/platform/lis3lv02d/rate 

/sys/devices/platform/lis3lv02d/position 

2, 4, 8 

50,100, 400, 1000 

can only be read 

accelerometer 

user keys 

touchscreen 

/dev/input/event0 

/dev/input/event2 

/dev/input/touchscreen0 

return automatically  

after an event 

New Matrix applications /usr/share/matrix-gui2.0/apps - 

 

Recent Advances in Circuits, Systems and Automatic Control

ISBN: 978-960-474-349-0 223




