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Abstract: - In this paper some numerical problems that occur in finite element analysis of the 3D magnetostatic 

fields are discussed. The impact of the Coulomb gauge condition on the accuracy of magnetostatic field 

computed in homogenous and non homogenous media is evaluated, using iterative and direct solvers. 

The influence of the Coulomb gauge condition on the iterations number is evaluated. The influence of the 

boundary conditions on the magnetic flux density and MVP distribution is described. The behavior of the 

magnetic field at the interface of the media is evaluated.  
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1 Introduction 
The magnetic vector potential(MVP) is not uniquely 

defined by the Maxwell equations.For 3D 

magnetostatic problems the divergence of A should 

be specified in order to make the solution unique. 

Even if the MVP is not unique the magnetic flux 

density vector B is unique. 

The topic has certain approaches in the literature. 

Imposing this gauge with the nodal elements causes 

some problems  

The finite element formulation can obtain the 

solution even for the ungauged equations. 

But this approach implies a high number of 

iterations of the solver used, because of the system 

matrix is ill conditioned [1].One solution is to use 

penalty functions. 

In [2] this approach is investigated for Coulomb 

gauge using FE model simulations. 

In [3],[4],[5] different finite element solutions using 

nodal and vector elements, with gauged and 

ungauged formulations are presented. 

In [6], [7], [8] and [9],[10] there are comprehensive 

presentations of potential formulations used in finite 

element methods applied  in electromagnetic field. 

The influence of the Coulomb gauge condition on 

the solving process is evaluated, considering 

homogenous and non homogenous media, with 

vector quadratic elements.  

Direct and iterative solvers are used and also the 

accuracy of the results are discussed. 

 

 

 

 

2 Theoretical considerations 

 
2.1 Magnetostatic field equations 

 
The Maxwell equations describing the 

magnetostatic field are: 

 

0=⋅∇ B    (1) 

JH =×∇    (2) 

 
The curl of the magnetic vector potential (MVP) is 

defined : 

AB ×∇=    (3) 

 

Relation (3) satisfies automatically (1). 

By replacing (3) in (2) we obtain : 

 

JA =×∇×∇ ν   (4) 

 

where ν  is the magnetic reluctivity. 

The Coulomb gauge condition is described by: 

 

0=⋅∇ A      (5) 

 

In order to have a unique solution for the MVP the 

divergence of it should also be defined.  

For a constant ν  a vector Poisson equation is 

obtained: 
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JA µ−=∆    (6) 

where µ  is the magnetic permeability. 

 

2.2 3D finite element formulations for linear 

magnetostatic analysis 
 

In 3D problems equation (4) has to be solved. Any 

function: 

fAA ∇+= '    (7) 

 

is a solution of (4).Hence, a gauge condition should 

be used in order to obtain a unique solution. 

Depending on the gauge condition there are three 

variational functionals used in the finite element 

method formulations [8]: 

- The first functional doesn’t include a gauge 

condition : 
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       (8) 

 

-The second functional adds the divergence term as 

a penalty term : 
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  (9) 

- The third functional imposes a gauge condition 

explicitly : 
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 (10) 

 

2.3 Nodal 3D elements vs. vector elements 

 

At the interface of certain two media, 1 and 2, 

certain conditions for the state quantities of the 

magnetic field have to be satisfied. The normal 

component of the magnetic flux density and the 

tangential component of the magnetic field intensity 

vectors should be continous [8]: 

 

21 nn BB =    (11) 

 

21 tt HH =    (12) 

 

Using the MVP conditions (11) and (12) are 

expressed as follow: 
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where 1t and 2t are two orthogonal tangential 

directions at the interface. 

The conventional nodal elements give a overall 

magnetic field solution but it fails to obtain an 

accurate field solution at the material interfaces. 

The nodal element formulation presumes that not 

only the tangential but also the normal component 

of the MVP is continuous at any element interface. 

The derivative of every component of MVP,along 

the tangential direction, is always continuous. 

The first requirement (13) is automatically satisfied 

with the nodal MVP formulation. In the second 

requirement, two derivative terms 
2t

An

∂
∂

 and 

n

At

∂
∂ 2 need to represent the jump caused by the large 

difference between the magnetic permeabilities of 

the media.The first term, 
2t

An

∂
∂

, is continuous, 

because is the derivative in the tangential direction. 

Only the second term, 
n

At

∂
∂ 2 , should represent the 

necessary jump.In some cases the first continous 

derivative term is much larger than the second 

discontinous derivative term. 

As a consequence the nodal MVP formulation fails 

to satisfy condition (14). 

The shape function is in a vector form and 

represents the direction of the MVP.this different 

type of approximation allows the discontinuity of 

the derivative term 
2t

An

∂
∂

and condition (14) is 

satisfied. 

 

2.4 Representation of vector functions using 

vector finite elements 

 

Inside each vector finite element a vector function is 

approximated by a linear combination of shape 

functions associated with edges. Within an element, 

a vector function T is approximated as [10]: 

 

ei

e

i

tiNTT ∑
=

=
1

   (14) 
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where the coefficient tiT  is the degree of freedom at 

edge I and eiN is the edge shape function 

corresponding to edge i.  

The index e is the number of edges in the element 

and is equal to 6 for the tetrahedral element.  

The line integral of eiN along edge i equals unity, 

yielding that the line integral of T  along edge i can 

be written as: 

 

tiei

i

ti

i

TldNTldT ==⋅ ∫∫  (15) 

So tiT is the line integral of T along edge i. The 

degrees of freedom, instead of being components of 

the vector function at element nodes, must be 

understood as the line integrals of the approximated 

vector function along element edges. 

When two elements share an edge i, the degrees of 

freedom Tti at edge i are set to be equal. Applying 

this procedure throughout a mesh makes the vector 

functionT tangentially continuous across all 

element interfaces. The vector function thus 

constructed is not normally continuous (Fig.1)  

 
 

Fig.1Low order tetrahedral vector finite element 

 

 

3 Finite element simulations 
3.1 Non-ferromagnetic sphere in homogenous 

magnetostatic field 

 

Two cases were considered: gauge on and gauge 

off, for the MVP formulation. 

 

3.1.1 Gauge off 

 

The geometry is presented in Fig.2.There is an 

interior sphere is subjected to an external 

homogenous magnetic field kBB z= , of 0.1 T, in a 

spherical domain (Fig.2). 

 

 
 

Fig.2 Model and boundary conditions 

 

For reasons of symmetry only a quarter of the 

geometry is modeled. The radius of the spherical 

domain is 1000=er mm and of the internal sphere 

is 100=ir mm.The finite element method Comsol 

Multiphysics software was used, the AC/DC, 

Magnetostatics submodule, that uses MVP and 

allows to activate or not the gauge condition [10]. 

A 53000 tetrahedral quadratic vector mesh was used 

(Fig.2).In this figure only elements that satisfy the 

condition 0.05 < z < 0.09 m are presented. 

 

 
 

Fig.3 Selected mesh elements 

 

A zoomed detail that emphasizes the mesh 

distribution is described in Fig.3 

 

 
Fig.4 Detailed mesh 
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The source of the field was introduced as a 

boundary condition: a magnetic field value or a 

MVP value.  

For the MVP formulation the number of DOFs is 

63771 and the execution time is 48.7 s, using a 

direct solver Spooles and for magnetic field BC the 

execution time is 52.9 s. 

The Spooles solver uses the multifrontal method and 

direct LU factorization of the matrix A. 

The distribution of the magnetic flux density B is 

slightly different for different types of source 

boundary conditions. In Fig.5 is the MVP source 

description  and Fig.6 is the magnetic field strength 

H. 

 
Fig.5 Distribution of the magnetic flux density for MVP 

magnetic field BC 

 
Fig.6 Distribution of the magnetic flux density for 

the magnetic field strength BC 

 

The difference is rather natural because the 

MVP is not unique in this case. The MVP 

distribution is almost random, in both cases, as 

in Fig.7 and 8. 

 
Fig.7 Distribution of the MVP 

 
Fig.8 Distribution of the MVP 

 

The values in the origin for the magnetic field case 

is Bi(0,0) = 0.103 T and  Bmax =0.426 T. 

It indicates a good accuracy.  

For the MVP formulation Bi(0,0) = 0.15 T with a 

Bmax = 2.42 T. This indicates that this approach is 

not a proper one.  

The iterative solver doesn’t work for the H source 

describing but works for the A formulation. 

The solver used was FMGRES with the 

preconditioner Vanka. 

In order to use an iterative solver a preconditioner 

should be selected. The convergence and the 

number of iterations are influenced by the selection. 

If a linear system of algebraic equations is 

considered: 

bxA =⋅   (16) 

 

The preconditioner is a matrix M that approximates 

A (sometimes in a very rough sense).The 

preconditioned system becomes : 

 

bMxAM ⋅=⋅⋅ −− 11
  (17) 

 

Because the AM ⋅−1
matrix is close to the identity 

matrix, in some sense, the iterative solver converges 

faster when applied on the preconditioned system. 

The convergence is presented in Fig.8.The value of 

magnetic flux density, Bi(0,0) = 0.102 T. 

 

 
Fig.9 Error vs.number of iterations for gauge off 

 

3.1.2 Gauge on 
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For a direct solver Spooles, Bi = 0.1 T, and 

Bmax=0.1T.The execution time is 127.7 s for 73000 

DOFs.  

When the gauge is on the distribution of the 

magnetic flux density and of the magnetic vector 

potential is normal, ie orthogonal.The Oz orientation 

of the B magnetic flux density is presented in Fig.10 

and the oy direction of the MVP in Fig.11. 

 
Fig.10 Distribution of the magnetic flux density 

 
Fig.11 Distribution of the MVP 

 

The iterative solver used for homogenous media 

was FMGRES with a Vanka preconditioner. The Bi 

= 0.1 T, in 43.6 s having 65971 DOFs, with vector 

quadratic elements. 

From Fig.11 it can be noticed that the number of 

iterations is smaller, for gauge on approach than for 

the gauge off. 

 
Fig.12 Error vs.number of iterations for gauge on 

 

3.2Ferromagnetic sphere in homogenous 

magnetostatic field 
The same two cases were considered. 

3.2.1 Gauge off 

The Bi=0.299 T obtained with direct Spooles solver 

for 54076 DOFs, 8188 elements vector quadratic, 

needed an execution time t=15.53 s on a 2GHz dual 

core laptop. This result is in good agreement with 

the theoretical value 0.3 T. In Fig.13 the random 

distribution of magnetic potential is presented. 

 
Fig.13 Distribution of the MVP  

 

A ferromagnetic sphere with the relative magnetic 

permeability 1000=rµ  is considered. 

In Table 1 the comparison of the results for the 

gauge off and on cases, solved using the Spools 

solver. 
Table 1 The magnetic flux density values 

Gauge No. of 

elements 

DOFs Execution  

time [s] 

Bi 

on 21616 65071 45.6 0.299 

off 21616 139588 12.64 0.466 

 

It can be noticed that the gauge off state decrease 

significantly the accuracy of the magnetic flux 

density. Iterative solvers didn’t converged. 

 

 
Fig.14 Variation of the Oz component of the magnetic 

flux density at the media interface for gauge off 

 

In Fig.14 the variation of the z component of the 

magnetic flux density, along an arc between the 

origin of the spheres and the external boundary, is 

presented. It can be noticed the strange variation of 

the Bz inside the ferromagnetic sphere and at the 

peak at the interface. 

 

3.2.2 Gauge on 

Advances in Automatic Control, Modelling & Simulation

ISBN: 978-1-61804-189-0 389



The iterative solver was FMGRES with a Vanka 

preconditioner. The Bi = 0.3 T, in 37.8 s having 

65971 DOFs, with vector quadratic elements. 

In Fig.15 the variation of the z component of the 

magnetic flux density, along an arc between the 

origin of the spheres and the external boundary ,is 

presented. 

The jump from 0.3 T to 0.1 T, caused by the 

difference of the magnetic permeabilities, has to be 

noticed. 

 
Fig.15 Variation of the Oz component of the magnetic 

flux density at the media interface for gauge on 

4 Conclusion 
The Coulomb gauge condition has a significant 

impact on the values and distribution of the 

magnetic flux density and MVP. The magnetic flux 

density preserves its unique value and its 

distribution despite of the state of gauge condition. 

When the gauge is off the distribution of the MVP is 

affected. The BC has a certain influence on MVP 

distribution, when using a direct solver. For the 

iterative solver the impact of the gauge is higher, 

especially for the non homogenous media. 
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