Addressing Big Data Problems using Semantics and Natural Language Understanding

EMDAD KHAN
Coll. of Computer & Information Science
Imam University
P.O. BOX 5702, Riyadh
SAUDI ARABIA
emdad@ccis.immau.edu.sa

EMDAD KHAN
InternetSpeech, Inc
San Jose
California
USA
emdad@internetspeech.com

Abstract – The need to solve the key problems related to Big Data in a practical and effective way is becoming very important as the data is growing very fast - already exceeding the exabyte range. There are multiple problems with big data including storage, search, transfer, sharing, analysis, processing, viewing, and deriving meaning / semantics. Such problems are mainly due to the 4 Vs i.e. Volume, Velocity, Variety and Variability. In this paper, we propose semantic engine and associated Natural Language Understanding (NLU) based approach to address the key problems of big data. Our approach resembles human Brain-Like and Brain-Inspired algorithms as humans can significantly compress the data by representing with a few words or sentences using the semantics of the information.

Humans use hierarchical multi-level compression of the sentences, paragraphs, pages using the semantics. Our approach uses a Semantic Engine using Brain-Like approach (SEBLA) to handle big data in a similar way. The main theme in SEBLA is to use each word as object with all important features, most importantly the semantics. In our human natural language based communication, we understand the meaning of every word even when it is standalone i.e. without any context. Sometimes a word may have multiple meanings which get resolved with the context in a sentence. The next main theme is to use the semantics of each word to develop the meaning of a sentence as we do in our natural language understanding as human. Similarly, the semantics of sentences are used to derive the semantics or meaning of a paragraph. The 3rd main theme is to use natural semantics as opposed to existing “mechanical semantics” of Predicate logic or Ontology or the like.

Keywords: Big Data, Unstructured Data; Natural Language Understanding (NLU); Semantics; Artificial Intelligence; Internet; Intelligent Internet; Question & Answer System; Intelligent Agent; Machine Learning; Predictive Analysis; Business Intelligence; High Value Business Problems; Information Technology.

1 Introduction

The amount of data in our world has been exploding, and using (analyzing, processing, searching, storing and understanding) large data sets - so called big data - has become a critical issue providing both challenges and opportunities. The increasing volume and details of information captured by enterprises, the rise of multimedia, social media, and the Internet of Things will fuel exponential growth in data for the foreseeable future [1].

As of 2012, limits on the size of data sets that are feasible to process in a reasonable amount of time were on the order of exabytes of data [4]. Scientists regularly encounter limitations due to large data sets in many areas, including meteorology, genomics, economics, complex physics simulations and biological & environmental research.

Big data usually include data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process the data within a tolerable elapsed time.— Big data sizes are a constantly moving target - as of 2012 ranging from a few dozen terabytes to many petabytes of data in a single data set. The target moves due to constant improvement in traditional DBMS technology as well as new databases like NoSQL and the ability to handle larger amounts of data. With this difficulty, new platforms of "big data" tools are being developed to handle various aspects of large quantities of data.

One key area is handling of unstructured data. This is usually a high value business problem as it can save (or generate) significant amount of money by doing good Predictive Analysis, and hence providing a good Business Intelligence (BI).
Handling of large unstructured data is also very important from several other aspects including Intelligent Information Retrieval, Intelligent Search (getting more relevant information), and Question & Answer (Q & A) System.

The Big Data industry is growing fast. In 2010, this industry on its own was worth more than $100 billion and was growing at almost 10 percent a year: about twice as fast as the software business as a whole ([1], [4]).

Many scientists, engineers, researchers and others have been working on Big Data. They have been using various algorithms, methods and technologies including A/B testing, association rule learning, classification, cluster analysis, crowd sourcing, data fusion and integration, ensemble learning, genetic algorithms, machine learning, natural language processing, neural networks, pattern recognition, anomaly detection, predictive modeling, regression, sentiment analysis, signal processing, supervised and unsupervised learning, simulation, time series analysis and visualization [4].

In this paper we have addressed the Big Data (mainly unstructured data) problem using Semantics and Natural Language Understanding (NLU). As we know, humans do a very good job in processing unstructured data, especially using semantics to significantly compress the data by representing with a few words or sentences using the semantics of the information. Since our approach is based on the way we believe our brain works (as also evidenced by many researchers), we call it Semantic Engine using Brain-Like approach (SEBLA) even though we do not know how our brain exactly does it.

Section II describes key issues in dealing with unstructured data. Section III describes our approach using SEBLA to handle big data. Section IV describes how our approach can be used on structured data. Section V describes how our solution can be used in various applications, and Section VI provides Conclusions & Future works.

2. Issues Dealing with Unstructured Data

Unstructured data dominates the data world. It is estimated that over 80% data in computers and Internet are unstructured [5]. Unstructured data can be broadly classified into two groups:

(a) Text data and
(b) Non-text data (including sound, image video).

Computers are very good in processing structured data (e.g. data in a database). This is mainly because computers are still mathematical devices, especially, fast number crunchers. When it comes to unstructured data, we are dealing with the meaning or semantics and associated context; and humans are very good at that.

In the textual case there is a key problem of context. The classic example often given is the difference between the statements that “John rides in a mustang” and “John rides on a mustang” [5].

A human analyst will see a great deal of difference between these two sentences. Our experience adds enormously to our understanding of both. We know, for a start, that the first statement refers to a car, the second to a horse. But we will also understand that in the first statement John is a man, and he is probably in the United States, because Ford Mustangs are not sold in large numbers outside the US.

In the second statement, we may consider that the event might have occurred in the US as the descriptive term is generally associated with that country, and a long time ago, as there are not many wild horses left in the US. It might even occur to us reading one of the two sentences that, because the O and I keys are beside one another on a standard keyboard, there could have been a typographical error and the other sentence may be the correct one.

The human brain picks up all of this data almost instantaneously – our understanding is implicit. Computers cannot deal with implicit information and have to be told how to understand it. Consequently they deal with this ‘tacit’ information very badly, if at all.

This gets further complicated as the writing style, sentence structure and vocabulary used in formal documents are very different to those used in e-mails, which are in turn different to those used in text messaging. Humans can handle all these very well.

One classical approach used in a computer to handle text data is “keyword” or key phrase search. Although useful, this method is far from perfect. If the set of search terms is too narrow it can miss vital information, if it is too broad the resulting set of ‘hits’ can contain large numbers of totally irrelevant ‘false positives’.

Modern search tools have improved things somewhat. Computerized thesauruses allow us to search for synonyms and homonyms without having to explicitly set out every possible variation. Other tools allow for ‘stemming’ - for example, in Lexis Nexis putting in the term ‘run+s’ will cause the engine to search for ‘run’, ‘runs’, ‘running’, ‘runner’, and so on.

One key modern method is the use of some semantics using Predicate logic, Ontology and the like. However, one would need to define clearly all such semantics. Any
small variation in the words or structure can cause the semantics to be different yielding wrong results or no results. Such approaches basically provide some “mechanical” semantics; thus limiting them to applications with small domain.

The problem becomes even more critical when we try to use non-text data – like audio, image, video. Here also, human brain handles such data very efficiently.

Thus, existing approaches have simplified the process somewhat, but they still have not solved the problem of computers’ inability to deal with tacit and context-based information. At present, we can conclude that text analysis technology may be better at data reduction than actual data analysis. As already explained, human brain is very good in addressing these problems. The key point is that we would need to use the semantic and NLU capabilities in dealing with unstructured data (see Section III).

It is important to note that although humans can do text processing very well, they can do it only for relatively smaller size data. Human brain cannot handle very large data like big data. However, using human brain’s intelligent approach with the fast number crunching computers, we believe, we can effectively solve the big data problem - the theme of our approach.

3. Semantics and NLU to Address Unstructured Big Data Problems

The key problems associated with unstructured data (as described in the previous Section) are related to the semantics of words, sentences and paragraphs. As mentioned, human brain uses semantics and natural language understanding (NLU) to very efficiently use unstructured data. Below, first we briefly describe a Semantic Engine ([6], [7], [8]) using Brain-Like algorithms (SEBLA). Then we show how SEBLA can handle Big Data.

3.1 Semantic Engine - SEBLA

While traditional approaches to NLU have been applied over the past 50 years and had some good successes mainly in a small domain, results show insignificant advancement, in general, and NLU remains a complex open problem. NLU complexity is mainly related to semantics: abstraction, representation, real meaning, and computational complexity. We argue that while existing approaches are great in solving some specific problems, they do not seem to address key Natural Language problems in a practical and natural way. In [8], we proposed a Semantic Engine using Brain-Like approach (SEBLA) that uses Brain-Like algorithms to solve the key NLU problem (i.e. the semantic problem) as well as its sub-problems.

The main theme of our approach in SEBLA is to use each word as object with all important features, most importantly the semantics. In our human natural language based communication, we understand the meaning of every word even when it is standalone i.e. without any context. Sometimes a word may have multiple meanings which get resolved with the context in a sentence. The next main theme is to use the semantics of each word to develop the meaning of a sentence as we do in our natural language understanding as human. Similarly, the semantics of sentences are used to derive the semantics or meaning of a paragraph. The 3rd main theme is to use natural semantics as opposed to existing “mechanical semantics” of Predicate logic or Ontology or the like.

A SEBLA based NLU system is able to:

1. Paraphrase an input text.
2. Translate the text into another language.
3. Answer questions about the content of the text.
4. Draw inferences from the text.

As an example, consider the following sentence:

“Maharani serves vegetarian food.”

Semantics represented by existing methods, e.g. Predicate Logic, is

Serves(Maharani, Vegetarian Food) and Restaurant(Maharani)

Now, if we ask “is vegetarian dishes served at Maharani?” the system will not be able to answer correctly unless we also define a semantics for “Vegetarian Dish” or define that “food” is same as “dish” etc. This means, almost everything would need to be clearly defined (which is what is best described by “mechanical semantics”). But with SEBLA based NLU, the answer for the above question will be “Yes” without adding any special semantics for “Vegetarian Dish”.

The “mechanical semantics” nature becomes more prominent when we use more complex predicates e.g. when we use universal and existential quantifies, and/or add constructs to represent time.
It is important to note that ML (Maximum Likelihood) based performance commonly used in prediction (e.g. when one types words in a search field on a search engine it shows the next word(s) automatically) will be improved with natural semantics. Currently, mainly ML (and sometimes other techniques including existing semantics methods) is used for prediction. By using proposed more natural semantics (e.g. using SEBLA), the meaning of the typed words will be more clear; thus helping better prediction of the next word(s). It will also help using natural sentences in the search field than special word combinations, e.g. when using advanced search.

3.2 Using SEBLA to Handle Unstructured Big Data
To handle unstructured Big Data, an Intelligent Agent (IA) is used that utilizes semantics of SEBLA and NLU in various ways depending on the task. The Big Data tasks can be broadly classified as:

a. Information Retrieval (IR) / Search
b. Question & Answer System
c. Summarization
d. Converting data to information to knowledge to intelligence

Note that all these do significant data compression that helps other key features of Big Data including storage, processing, and visualizing. E.g. in IR, instead of retrieving all information using string search, SEBLA will reject all information that is not related semantically i.e. it will retrieve information that are related semantically.

For the key tasks of IA, let’s consider the case of a Q & A System. The key tasks for this case are:

1. Understand user’s request and break it into key component parts.
2. act on all the component parts, find requested answers by accessing appropriate sources (including database tables).
3. assemble a concise answer, and then present it in a nice way.

The IA itself also uses SEBLA’s natural semantic engine to make correct decisions by avoiding “mechanical semantics”, as commonly used in existing systems. Such an IA for Q & A system (IAQA) is shown in Fig. 1. The term “rendering” ([9], [10] [11]) needs some explanation. As we know, the Internet was designed with visual access in a relatively large display screen (like a 8.5 inch x 11 inch page) in mind. Thus, all the content are laid out on any website and webpage in a manner that attract our eyes in a large screen. Retrieving the desired content (which is much smaller in size than the total content on a webpage or website) from a typical webpage / website and displaying that (or playing in audio) into a much smaller screen (like in a cell phone or PDA) is a very challenging task. This process of retrieving and converting most desired content from a large source of content into a much smaller but desired content is called “rendering”. Clearly, rendering is mainly related to Internet Browsing on a small device. A Q & A system uses rendering to get an initial answer and then further refines it with semantics. Rendering includes form rendering, retrieving appropriate data when a form is submitted, and retrieving multi-media data. A Q & A system also uses rendering to get appropriate data from various websites, via web services and other query methods.

4. Semantics and NLU to Address Large Structured Data
Structured data are much smaller in size compared to unstructured data and computers can handle structured data well. Thus, it may appear that the need to more efficiently address structured data is not that critical. While this perception is partially true, the need to more efficiently address structured data is also very important. The key reasons are:

a. structured data are also growing very fast and conventional algorithms are not enough in many cases.

b. many Big Data applications, although are dominated by unstructured data still needs structured data (e.g. analysis report in a BI)

c. meanings of structured data are critical to process them effectively and efficiently.

Thus, most of the issues related to unstructured data are also equally applicable for structured data. Accordingly, semantics and NLU can be efficiently applied for structured data.

Let’s take an example of relationships between various data fields in various tables in a database. Today’s approach using database programming (e.g. using a set of SQL queries and some associated conclusions) becomes difficult when relationship size and data size grow. Besides, such relationships are defined “mechanically” sometimes using “mechanical semantics” as explained for unstructured data.

In contrast, let’s consider that data table headings have natural words or sentences. Using the semantics of such words or sentences, it would be much easier to express such relationships. Moreover, semantics will enable to define many complex relationships that cannot be defined currently. Via appropriate data-mining and other techniques and the use of semantics, a significant data compression will also be possible.

Another key contribution is database User Interface via NLU. A NLU based interface can take natural sentences and automatically convert them into equivalent database queries and then assemble the retrieved information in a simple usable form. This will make the implementation of various Big Data applications (including a Q & A) simpler and more useful. Today, using a relational (or other database) is not easy and intuitive for many people, especially those who are

a. New to interface with a database for general use (e.g. a manager or a business intelligence expert). Such people use some programmers to develop some simple interface to a database with limited commands.

b. New to software programming and new to learn how to program with database.

Database programming is still very important but semantics and NLU based interface will make the process more efficient and useful, especially, in addressing the problems related to structured Big Data.

5. Sample Applications

Our SEBLA and NLU based approach can be used in various applications including Intelligent Information Retrieval, Intelligent Search, Q & A System, Summarization, and Business Intelligence. Below we have provided a brief description of an Intelligent Information Retrieval (IIR) system as an example application.

The information retrieval through existing IR and search engines are mainly based on string search. Thus, the search process needs to deal with many data to find matches. And all matched data are extracted even though many data are not relevant and desired. Accordingly, such engines produce many (often thousands of) results, and human knowledge and intelligence are needed to retrieve the desired information from such search results. This requirement usually limits the usage of search engines to experienced and educated users. There are FOUR key issues with the current approaches:

a. Search process needs to deal with very large data.

b. String search results contain many undesired and unrelated results.

c. String search results may not contain the desired results and user may need to do multiple searches by various search word combinations.

d. String search results may NOT contain the desired information even after trying major key word combinations as a user may skip key words of similar meaning.

The semantic capability of SEBLA addresses these issues in TWO broad ways:

A. Retrieve expanded and more related information and then get most desired information by filtering.

B. Retrieve far less but more related and appropriate information and then get more refined desired information.

Approach in A is useful when string search data is not too large and conventional search engines can be used. The key steps using approach A are:
1. In the query sentence / string to understand the meaning of each word and sentence.
2. Generate all related sets of query strings using semantic meaning of each word and sentence (thus generating lot more appropriate search results that are related to the input words and sentences).
3. Extract the most appropriate and related results from the extended search results. This is achieved by employing the semantics and rendering.

Many words have multiple synonyms. By understanding the semantics of each word, a complete (or nearly complete) set of synonyms will be generated. Without semantic meaning, only limited predefined synonyms can be used as done for some words in existing search engines. This is also true for sentences. By understanding each search sentence, corresponding equivalent search sentences and corresponding words will be generated. The sentence level semantics will be used to refine the word list to help reduce search results when submitted to search engines.

If a user only presents search key words and no sentences, then, using NLU, a set of most relevant search words will be generated. This is be done by creating different word combinations (including all synonyms), deriving the semantic meanings, and then appropriate filtering to derive the most appropriate set of search word combinations.

If a user presents sentences, then similar sentences using synonym words will be generated by keeping the context same. Then corresponding set of key words will be generated. This is important as existing search engines mainly work on string search and does not depend on the meaning of the sentences or words. However, they do strongly consider word combinations.

Approach in B is useful when string search data are very large and conventional search engines can take too long. This approach is more appropriate for Big Data. The key steps using this approach are:

1. In the query sentence / string to understand the meaning of each word and sentence.
2. Calculate the semantics of each title / indexed item and calculate semantic matching or overlap of the query with each target. In this case new search method using semantic matching (instead of string matching) will be needed. Searching with semantic meaning will retrieve very appropriate and much less information.
3. Extract the most appropriate and related results from the search results in step #2.

6. Conclusions and Future Works

It is important to address the key Big Data problems in an effective and efficient way. We have discussed how to address Big Data problems using semantics and Natural Language Understanding (NLU). We have shown how Semantic Engine using Brain-Like Approach (SEBLA) and NLU can address key problems with big data including storage, search, transfer, sharing, analysis, processing, viewing, and deriving meaning / semantics.

We have focused mainly on the unstructured data. However, our approach is applicable for structured data as well as briefly explained.

We have emphasized on human Brain-Like and Brain-Inspired algorithms as humans can significantly compress the data by representing with a few words or sentences using the semantics of the information. Humans use hierarchical multi-level compression of the sentences, paragraphs, pages using the semantics. SEBLA and NLU handle big data in a similar way. The main theme in SEBLA is to use each word as object with all important features, most importantly the semantics. The next main theme is to use the semantics of each word to develop the meaning of a sentence as we do in our natural language understanding as human. Similarly, the semantics of sentences are used to derive the semantics or meaning of paragraph. The 3rd main theme is to use natural semantics as opposed to existing “mechanical semantics” of Predicate logic or Ontology or the like.

We plan to work on using SEBLA to handle large structured data. We also plan to develop more enhanced Intelligent Agent (IA) and SEBLA for more complex Big Data applications, especially for Intelligent Search, better Q & A System, “Summarization” and “Converting data to information to knowledge to intelligence”.

References:

 http://en.wikipedia.org/wiki/Big_data

 http://www.grantthornton.ie/db/Attachments/Publications/Forensic_%26_inve/Grant%20Thornton%20-The%20problem%20of%20analysing%20unstructured%20data.pdf

