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Abstract: - Electromyography has been a key element in revolutionizing biomedical engineering. It has aided in 

the detection and treatment of patients with abnormal muscle movement. Further growth in this field is the 

development of a prosthetic or other assistive device to enable people to mobilize as they would be able to 

without their muscular difficulties. These devices need estimation of natural or healthy motion in order to 

effectively assist the patient. Signal processing for parameter estimation provides a path to modeling the 

healthy range of motion that must be replicated. 
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1 Introduction 
Electromyography (EMG) is a technique for 

evaluating and recording the electrical activity 

produced by the muscular system. EMG is 

performed using an electronic instrument called an 

electromyograph. The electromyograph measures 

the minute electrical signals created by the flexing 

and movement of muscles, i.e., by detecting the 

electrical potential generated by muscle cells when 

these cells are electrically or neurologically 

activated, and produces a record called an 

electromyogram. The recorded electrical signals can 

be viewed, interpreted, and processed to determine 

activation level or recruitment order, to detect 

medical abnormalities, or to analyze the function of 

human or animal movement.  

  Signal processing techniques such as the 

Short-Time Fourier Transform (STFT) and wavelet 

transforms can be used for modelling EMG 

processes and parameter estimation for control 

system design. The models and parameters are 

utilized by the control system to determine the 

general diagnosis of the user. 

  Electromyogram results are used for 

diagnosing muscular diseases, including 

neuropathies and myopathies. Neuropathy is any 

disease that damages the nerves present in and 

around the muscles. Neuropathic disease has some 

defining EMG characteristics. One factor is a 

muscle signal whose action-potential amplitude is 

twice that of a normal muscle signal. This is due to 

the increased number of fibers-per-motor-unit 

because of the compensation for dead or damaged 

fibers. This compensation is called reinnervation. 

Another factor is an increase in duration of the 

action potential, which decreases the frequency of 

the overall signal. 
Myopathy is any disease that causes damage 

to the muscle fibers. Myopathic diseases also have a 

few defining EMG characteristics, most notable are 

decreases in duration and area-to-amplitude ratio of 

the action potential. Patients with myopathy have a 

decrease in the number of motor units in the muscle.  

Figure 1 shows three examples of EMG 

signals: 1) a healthy patient, 2) a patient with 

neuropathy, and 3) a patient with myopathy. The 

test point for all subjects was the same; the tibialis 

anterior muscle. It is located on the lower leg (the 

shin) and aids in moving the foot up, or the toes 

closer to the shin. 
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Fig. 1 Normal, neuropathic, and myopathic EMG 

signals [1] 

 

 

2 EMG Structure 
A typical electromyograph (EMG) consists of three 

main parts: three electrodes, a multi-stage high gain 

amplifier, and some form of digital signal 

processing. Figure 2 is a block diagram of what the 

structure of an electromyograph typically looks like. 

 
Fig. 2 General electromyograph structure 

 

  There are two different types of EMG’s, 

classified based on the type of electrode used. 

Intramuscular electromyography (IEMG) is done by 

inserting needle electrodes or a needle containing 

two fine-wire electrodes through the skin into the 

muscle tissue. A trained professional is authorized 

to read the electrical signal activity after inserting 

the electrode. As a downside, intramuscular EMG 

may be considered too invasive and uncomfortable, 

especially for younger patients. 

  Instead, a surface, or stick-on, electrode 

may be used to monitor the general function of the 

muscle's activation, instead of the activity of a select 

number of fibers [2]. Surface electromyography 

(SEMG) reads the muscle signals from the surface 

of the skin and can be a better choice since it is less 

invasive and does not cause electrical irritation in 

the muscles. This irritation, which is caused by 

insertion of the needle electrodes, can muddle the 

information obtained by the EMG. The surface 

electrodes are stuck to the skin at three points: at the 

middle of the muscle, at the end of the muscle, and 

at a bony portion of the limb, such as on the elbow 

or knee. 

  Myoelectric signals are quite small, in the 

range of tens-of-microvolts to tens-of-millivolts, 

depending on the muscle being measured. As such, 

the amplifier portion of the EMG is essential. One 

researched example of an electromyograph had a 

total gain of 1200V/V. Of special importance is the 

instrumentation amplifier, as its high common-mode 

rejection ratio cancels out much of the noise picked 

up by the natural antenna that is the human body. 

  Other noise, including the 60 Hz frequency 

that is common to most AC-powered electrical 

equipment, must be filtered out using the digital 

signal processing stage of the EMG. The 60 Hz 

band is removed using a band stop or notch filter. 

This type of filter must be used, as 60 Hz is in the 

middle of the 0-to-500 Hz common range of 

frequency of the myoelectric signals [3]. The exact 

values differ based on whether the patient is healthy, 

or is suffering from myopathy or neuropathy. 

  Other sources of noise or distortion include 

skin resistance or motion artifacts, clipping, baseline 

drift, and processing errors [4]. 
 
 

3 Signal Analysis and Modeling 
As shown in Figure 1, three EMG signals were 

obtained from the PhysioNET database: one from a 

healthy patient, one from a patient with neuropathy 

and one from a patient with myopathy. The signals 

are analyzed to determine defining characteristics as 

well as relative differences between the three types. 

The modelling is done to create ideal signals to 

compare to the received voltages. Results of the 

comparison will provide information to the control 

system which correction maneuver, if any, should 

be done. For modelling, autoregressive, fuzzy logic, 

or neural network systems can be used to model 

various signals. In this case, autoregressive 

modelling was implemented. 

To better assess the difference in signals, 

spectrogram analysis was performed on each of the 

signals using MATLAB. Creating a spectrogram 

using the Short-Time Fourier Transform (STFT) is a 
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process in which data sampled in the time domain, 

is broken up into segments and Fourier-transformed 

to calculate the magnitude of the frequency 

spectrum for each portion. Each piece then 

corresponds to a vertical line or block in the image. 

The pieces are then laid side by side to form the 

image. 

The continuous wavelet transform was also 

used on each signal. A wavelet transform (WT) is 

used to divide a continuous-time function into 

wavelets. In contrast to the STFT, the continuous 

wavelet transform possesses the ability to construct 

a time-frequency representation of a signal that 

allows frequency and amplitude to be located at a 

particular time. Analysis of the provided signals will 

aid in the modelling of clinically obtained muscular 

signals. 

The wavelet transform can be performed by 

using different wavelet families. Each of these 

families has a particularly shaped mother wavelet 

which is then compressed and/or dilated. These 

differing shapes allow the analyzer to get more 

information from the signal that is being studied. 

The wavelet family whose shape more similarly 

matches the original signal waveform will give 

more information about that signal. For each of 

these myoelectric signals, both the Morlet and 

Daubechies wavelets were utilized. In all three 

cases, the Morlet wavelet was found to give more 

accurate information about the original signal. 

For the healthy patient, when the muscle is 

smoothly contracted, action potentials begin to 

appear. As the strength and duration of the muscle 

contraction are increased, an increased number of 

muscle fibers produce action potentials. When the 

muscle is fully contracted, there should appear a 

non-periodic and apparently random group of action 

potentials of varying rates and amplitudes. When the 

muscle is not contracted, there should be no 

electrical activity whatsoever. Figure 3 is the 

MATLAB-plotted values of a healthy tibialis 

anterior muscle obtained from PhysioNET.  

 
Fig. 3 Healthy EMG 

 

Time (in seconds) is along the horizontal axis, and 

the voltage (in millivolts) is along the vertical axis. 

Figure 4 shows the spectrogram of the healthy 

patient’s myoelectric signal. 

 
Fig. 4 Spectrogram of healthy EMG 

 

The spectrogram shows varying frequencies from 0-

to-600 Hz. Most are lower amplitudes but the darker 

color at two seconds, four seconds, and ten seconds 

shows higher-amplitude signal components. This 

correlates with the data from the original signal. 

Figure 5 shows the Continuous Wavelet Transform 

(CWT) of the healthy signal using the Daubechies 4 

wavelet.  

 
Fig. 5 Daubechies CWT of healthy signal 

 

The CWT shows a three-dimensional view of the 

time-frequency representation of our healthy signal. 

It is a smooth graph due to the difference in shape of 

the Daubechies 4 wavelet as compared to the 

waveform of the EMG signal. Figure 6 shows 

another form of the CWT called the Morlet Wavelet.  
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Fig. 6 Morlet CWT of healthy signal 

 

Here the signal has a more jagged response due to 

the Morlet wavelet being very similar to the shape 

of the healthy individual's muscular waveform. The 

wavelets verify the spectrogram results that there are 

varying frequencies present the whole time, most of 

which have low amplitudes. The only exceptions are 

those amplitudes located as seen in Figures 2 and 3, 

at times of two-, four-, and ten-seconds. 

A person suffering from myopathy has 

damage within the muscle itself. There is a decrease 

in the duration of the action potentials. The 

myopathy signal in Figure 7 shows that the 

amplitude voltages change more quickly and that 

the action potential duration shortens. 

 
Fig. 7 Myopathic EMG 

 

The spectrogram version of the myopathy signal in 

Figure 8 shows varying frequencies with medium to 

high amplitudes. Highest amplitudes are from 0-to-

1000 Hz, which are present the whole time the data 

was being recorded.  

 

 

 

Fig. 8 Spectrogram of myopathic EMG 

 

The Daubechies wavelet (Figure 9) shows a 

smoother representation of the myopathy signal, 

which still verifies the characteristics of a patient 

with myopathy.  

Fig. 9 Daubechies CWT of myopathic signal 

 

The Morlet wavelet (Figure 10) however, shows that 

the amplitudes are actually higher than the 

Daubechies results suggest.   

 
Fig. 10 Morlet CWT of myopathic signal 

 

Mathematics and Computers in Biology and Biomedical Informatics

ISBN: 978-960-474-333-9 40



A person who suffers from neuropathy has 

endured damage to the nerves inside the muscles. 

An EMG of a person with neuropathy will show an 

increase in duration of the action potentials. It will 

also show a decrease in the reaction time of the 

remaining motor neurons because of the attempt to 

compensate for the damaged or missing ones. Figure 

11 shows the plotted data from the patient with 

neuropathy.  

Fig. 11 Neuropathic EMG  

 

It is unknown whether the higher-amplitude signal 

component starting at approximately eleven seconds 

is an error or part of the useful data. Figure 12 is the 

spectrogram of the neuropathic patient’s 

electromyogram. 

 

Fig. 12 Spectrogram of neuropathic EMG 

 

It shows medium-high amplitude frequency bands at 

400 Hz and 1100 Hz, and a medium amplitude 

frequency band at 3000 Hz. All amplitudes after 

twelve seconds are high and of varying frequencies, 

which correlates with the graphing of the raw data 

results. The wavelets shown were taken using scales 

from 25 to 225, which emphasizes the lower 

frequencies. Both are approximately the same shape, 

with low amplitudes up to the very high amplitude 

shown in the data and spectrogram. The Morlet 

CWT shows higher amplitude at that point than the 

Daubechies CWT shows (Figures 13 and 14 

respectively). 

Fig. 13 Daubechies CWT of neuropathic signal 

 

Fig. 14 Morlet CWT of neuropathic signal 
 

It is necessary to create, or model, versions 

of these signals that could be implemented in a 

control system strategy. As stated earlier, 

autoregressive modelling was implemented to 

accomplish this. Successful completion of this 

processing shows that the modelled signals, 

illustrated by the thicker, smoother line, stay 

approximately true to the behavior and expectation 

of the original signals, which are shown with a 

thinner, more variable line. Figures 15-17 show 

each EMG and accompanying model, one with a 

healthy EMG signal, one with myopathy and one 

with neuropathy respectively. 
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Fig. 15 Healthy signal and model 

 

 
Fig. 16 Myopathic signal and model 

 

 
Fig. 17 Neuropathic signal and model 

 

Each model uses the Yule-Walker 

autoregressive method to obtain its coefficients. 

This method estimates the power spectral density of 

the signal by creating an autoregressive model that 

fits the sectioned or windowed input data [5]. These 

particular models had a model order of twenty (i.e., 

20 coefficients). Human speech, the most 

complicated commonly-modelled signal, requires a 

model order of fourteen coefficients to create a 

sufficient model. Twenty was decided on as a good 

model order, as one that should create an even 

higher-fidelity signal, without relying on an 

unnecessarily large number of coefficients. Due to 

the amount of variation in the signals as a whole, the 

modeling would need to be performed on blocks of 

data. Ideally, multiple models could be made of 

each signal to facilitate in the matching process used 

by the control system. 

 

 

4 Control System 
A control system utilizing the results of the signal 

modeling and analysis can be implemented in a 

number of different ways. The flow chart in the 

Appendix specifies that the spectrograms be 

compared, but a similar processing operation can be 

followed to compare the autoregressive models or 

the wavelet transforms. 

 The spectrograms – and, the autoregressive 

models in particular – work well for this application. 

They give general information about the signal, 

which allows for the natural differences between 

various patients. Without this generalization, it 

would be nearly impossible to be able to match any 

two signals, and even more difficult to ensure that 

the correct match (i.e., diagnosis of myopathy or 

neuropathy) would be made. 

In a clinical setting, the electromyograph 

would record ten seconds of muscle activity data, 

which was the approximate length of the data sets 

from PhysioNET. The microcontroller would then 

take a spectrogram of the received signal using a 

Hanning window with an overlap of zero. It would 

then compare this spectrogram in succession to 

those stored of a healthy individual, an individual 

with myopathy, and an individual with neuropathy. 

The matching process would have a slight 

variance to provide allowance for differences 

between patients. With a 75% match or better, the 

braces would be adjusted for one of three actions. If 

the spectrogram matched that of a healthy patient, 

no additive processing would occur for the braces. 

Generally, no corrective action would be needed for 

a healthy individual, but the data would still be 

available to the device for comparison purposes. If 

the spectrogram of the received signal matched that 

of a patient with myopathy, the braces would be 

setup to provide the maximum support. This action 

was chosen because myopathy causes more 

weakness in the muscles than neuropathy causes. If 

the spectrogram matches that of a patient with 
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neuropathy, then the braces would be setup to 

provide a slight amount of additional support and 

stability, as maximum support would be 

unnecessary. 

In everyday use, a Bluetooth transmitter 

could be used to send a text or email to the doctor in 

the event of brace malfunctions. 

 

 

4 Conclusion 
Signal processing and analysis play an important 

part in utilizing electromyograms to control a 

rehabilitative or assistive device. In particular, 

parameter estimation can be used to create models 

that can be utilized by the assistive technology’s 

control system to aid in increasing the patient’s 

ability to perambulate on their own. 
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Appendix 
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