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Abstract: We examine two multidimensional optimization problems that are formulated in terms of tropical math-
ematics. The problems are to minimize nonlinear objective functions, which are defined through the multiplicative
conjugate vector transposition on vectors of a finite-dimensional semimodule over an idempotent semifield, and
subject to boundary constraints. The solution approach is implemented, which involves the derivation of the sharp
bounds on the objective functions, followed by determination of vectors that yield the bound. Based on the ap-
proach, direct solutions to the problems are obtained in a compact vector form. To illustrate, we apply the results
to solving constrained Chebyshev approximation and location problems, and give numerical examples.
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1 Introduction

Since the early publications in 1960s, tropical (idem-
potent) mathematics, as the mathematics of idempo-
tent semirings, has found many applications in opti-
mization, control, decision making, and other fields.
Over these decades, the theory and practice of idem-
potent mathematics has been developed in many pub-
lications, including [6, 22, 2, 7, 11, 8, 10, 1, 17, 9, 3].

In the literature, there is a range of real-world
optimization problems that can be formulated and
solved in the tropical mathematics setting to mini-
mize linear and nonlinear objective functions defined
on finite-dimensional semimodules over idempotent
semifields. Well-known examples include multidi-
mensional problems that arise in job scheduling [4, 6,
22, 20, 21, 19, 3] and location analysis [18, 5, 14, 15].

Many available solution techniques apply itera-
tive computational schemes and provide only partic-
ular solutions for the problems [20, 18, 21, 19, 3].
These techniques are based on numerical algorithms,
which produce a solution if any solution exists, or in-
dicate that there is no solution. Other approaches offer
direct explicit solutions and, in some cases, can give
complete solutions [4, 6, 22, 14, 15].

In this paper, we consider multidimensional trop-
ical optimization problems with nonlinear objective
functions defined through the multiplicative conjugate
vector transposition, and with boundary constraints.

As the starting point, we take the problem with two-
sided boundary constraints, which was first examined
and solved with a numerical algorithm in [20]. We
consider two particular cases of the problem and ob-
tain direct solutions in a compact vector form. For one
of the problems, we offer a complete solution.

We follow a solution approach that is based on
the application and further development of the tech-
nique, which was proposed in [12, 13, 16]. The tech-
nique involves the derivation of the sharp bounds on
the objective functions in the problems, followed by
determination of vectors that yield the bounds.

The rest of the paper is as follows. We give a
short concise overview of the notation and preliminary
results in Section 2. Furthermore, in Section 3, we
outline a class of tropical optimization problems of
interest. Section 4 presents the problems to be solved
and then gives direct solutions. Finally, application
and numerical examples are discussed in Section 5.

2 Notation and Preliminary Results

We start with an overview of notation and results of
idempotent algebra to provide an appropriate frame-
work for the analysis of tropical optimization prob-
lems to be performed below. The overview primarily
follows the presentation of the topic in [12, 13, 16].
For both introductory and advanced material one can
consult [6, 22, 2, 7, 11, 8, 10, 1, 17, 9, 3] as well.
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2.1 Idempotent Semifield

Consider an idempotent semifield 〈X,0,1,⊕,⊗〉,
where X is a carrier set that is closed under addition⊕
and multiplication ⊗, and contains the zero 0 and the
identity 1. Addition is idempotent, which implies that
x ⊕ x = x for all x ∈ X. In the semifield, for each
x ∈ X+, where X+ = X \ {0}, there exists an inverse
x−1 such that x−1 ⊗ x = 1.

For each x ∈ X+ and any integer p ≥ 0, exponen-
tial notation is routinely defined as follows: x0 = 1,
0
p = 0, xp = xp−1 ⊗ x, and x−p = (x−1)p. More-

over, the semifield is assumed algebraically closed
(radicable), which means that the integer power is ex-
tendable to the case of rational exponents.

In what follows, we suppress the multiplication
sign as in conventional algebra and use the exponen-
tial notation only in the above mentioned sense.

There is a partial order, which is induced on the
semifield by idempotent addition such that x ≤ y if
and only if x ⊕ y = y. The order is assumed extend-
able to a total order to make the semifield linearly or-
dered. Below, the relation symbols and the optimiza-
tion objectives are considered in terms of this order.

Addition and multiplication are monotone in each
argument, which implies that the inequalities x ≤ u
and y ≤ v involve x⊕ y ≤ u⊕ v and xy ≤ uv.

As an illustration of the idempotent semifields un-
der study, we suggest the real semifield

Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉.

This semifield is used later to provide application
examples of tropical optimization problems.

2.2 Matrix and Vector Algebra

We consider matrices with entries from X and denote
the set of matrices with m rows and n columns by
X
m×n. For conforming any matrices A, B, C, and

scalar x, the sum A ⊕ B and the products AC and
xA are calculated by the usual rules with the scalar
operations ⊕ and ⊗ in place of ordinary addition and
multiplication. Clearly, these matrix operations are
component-wise monotone in each argument.

A matrix is called row (column) regular, if it has
no rows (columns) with all entries equal to 0. A ma-
trix is regular, if it is both row and column regular.

A square matrix that has 1 on the diagonal and 0
elsewhere is the identity matrix, which is denoted I .

Let Xn be the set of column vectors over X with
n elements. Vector addition and scalar multiplica-
tion are defined component-wise in terms of the scalar
operations ⊕ and ⊗. Both vector operations are
component-wise monotone in each argument.

A vector that consists entirely of 0 is the zero vec-
tor. A vector is regular, if it has no zero elements.

For any nonzero column vector x = (xi), the
multiplicative conjugate transpose is a row vector
x− = (x−i ) with components x−i = x−1

i if xi 6= 0,
and x−i = 0 otherwise.

If both vectors x and y are regular, then the
component-wise inequality x ≤ y implies the in-
equality x− ≥ y− and vice versa.

For any two regular vectors x,y ∈ Xn, we define
the distance function

ρ(x,y) = y−x⊕ x−y. (1)

Note that, in terms of the semifield Rmax,+, the
function can be represented in the form

ρ(x,y) = max
1≤i≤n

|yi − xi|,

and thus coincides with the Chebyshev norm.
Finally, note that any nonzero column vector x

satisfies the equality x−x = 1. Moreover, it is not
difficult to verify that the matrix inequality xx− ≥ I
is valid for any regular column vector x.

We use these facts to solve the following problem:
given a matrix A ∈ Xm×n and a vector p ∈ Xm, find
all regular vectors x ∈ Xn to satisfy the inequality

Ax ≤ p. (2)

Lemma 1. For any column-regular matrix A and reg-
ular vector p, all regular solutions to (2) are given by

x ≤ (p−A)−. (3)

Proof. Let us verify that both inequalities (2) and (3)
are equivalent. First, we multiply inequality (2) on the
left by (p−A)−p−, and then write

x ≤ (p−A)−p−Ax ≤ (p−A)−p−p = (p−A)−

to obtain inequality (3). On the other hand, after left
multiplication of (3) by the matrix A, we have

Ax ≤ A(p−A)− ≤ pp−A(p−A)− = p,

which completes the proof.

3 Optimization Problems

We consider the tropical optimization problems with
non-linear objective functions and linear constraints,
which were apparently first examined in [4, 6, 20].
The problems appeared in the analysis of the tropi-
cal vector equation Ax = p and were motivated by
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real-world problems in job scheduling. Initially rep-
resented in somewhat different forms, the problems
are written below in a unified way in terms of multi-
plicative conjugate transposition.

Given a matrix A ∈ Xm×n and a vector p ∈ Xm,
consider the problem of finding vectors x ∈ Xn that

minimize (Ax)−p,

subject to Ax ≤ p.
(4)

In [4, 6], this problem was formulated to obtain
a best underestimating approximation Ax for p with
respect to the Chebyshev norm. A direct closed-form
solution to the problem was derived within the frame-
work of the minimax algebra theory developed there.

Suppose that g,h ∈ X
n are given vectors such

that g ≤ h are lower and upper boundary constraints
imposed on x. We now consider a problem

minimize p−Ax⊕ (Ax)−p,

subject to g ≤ x ≤ h,
(5)

which yields a best approximate solution to the equa-
tion Ax = p under the boundary constraints. This
constrained optimization problem was solved in [20]
via a finite polynomial threshold-type algorithm.

In the same context of solving linear equations,
an unconstrained version of problem (5) in the form

minimize p−Ax⊕ (Ax)−p,

and problem (4) were examined in [12, 13, 16]. A
solution approach was proposed, which involves the
evaluation of sharp bounds on the objective function.
Using this approach, direct solutions to the problems
were obtained in a compact vector form.

We now assume that one more vector q ∈ X
m is

given and consider the unconstrained problem

minimize q−Ax⊕ (Ax)−p. (6)

Setting A = I gives an unconstrained problem

minimize q−x⊕ x−p. (7)

Problem (7) together with two constrained prob-
lems, one having inequality constraints,

minimize q−x⊕ x−p,

subject to Ax ≤ x,

and the other with equality constraints,

minimize q−x⊕ x−p,

subject to Ax = x,

appeared in solving multidimensional single facility
location problems with the Chebyshev distance.

These problems were investigated in [14, 15],
where the application of the above mentioned ap-
proach provided exact solutions to the problems. The
solution obtained for problem (7) was complete.

Below, we consider extended problems that com-
bine the objective functions at (6) and (7) with the left
or both boundary constraints at (5).

4 Constrained Problems

We are now in a position to present our main results
on the solution to tropical optimization problems with
boundary constraints. The exact solutions to be given
are based on the use and further development of the
techniques offered in [12, 13, 16].

4.1 Lower and Upper Boundary Constraints

We start with a complete solution to the following
problem: given vectors p, q, g,h ∈ X

n, find regular
vectors x ∈ Xn that

minimize q−x⊕ x−p,

subject to g ≤ x ≤ h.
(8)

The next result offers a straightforward solution
to the problem under fairly general assumptions.

Theorem 1. Let p and q be regular vectors, g and h

be vectors such that g ≤ h, and ∆ =
√
q−p. Denote

µ = ∆⊕ q−g ⊕ h−p. (9)

Then the minimum in problem (8) is equal to µ
and attained if and only if

µ−1p⊕ g ≤ x ≤ (µ−1q− ⊕ h−)−. (10)

Proof. Consider the objective function in the problem
and show that µ is its lower bound. Take an arbitrary
regular x that satisfies the constraints and examine

r = q−x⊕ x−p.

From the equality, we have two inequalities

r ≥ q−x, r ≥ x−p.

The first inequality and the left boundary con-
straint provide a lower bound r ≥ q−x ≥ q−g.

Due to Lemma 1, the first inequality is equivalent
to the inequality x ≤ rq. The substitution into the
second inequality gives r ≥ x−p ≥ r−1q−p, which
yields another lower bound r ≥

√
q−p = ∆.
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Finally, the second inequality and the right
boundary constraint lead to r ≥ x−p ≥ h−p.

By combining the bounds, we obtain

r ≥ ∆⊕ q−g ⊕ h−p = µ.

To find all solutions to the problem, we examine
the equation

q−x⊕ x−p = µ.

Since µ is a lower bound, the equation has the
same regular solutions as the inequality

q−x⊕ x−p ≤ µ,

which is itself equivalent to the pair of inequalities

q−x ≤ µ, x−p ≤ µ.

The application of Lemma 1 to the inequalities
leads to the solutions

x ≤ µq, x ≥ µ−1p.

By coupling these solutions with the boundary
constraints, we arrive at solution (10).

It is easy to see from the proof of the theorem that,
if the left, right, or both boundaries are not specified
in problem (8), the solutions (9) and (10) take reduced
forms. Specifically, we have

µ = ∆⊕ q−g,

µ−1p⊕ g ≤ x ≤ µq,

for the case when only the constraint x ≥ g is given,

µ = ∆⊕ h−p,

µ−1p ≤ x ≤ (µ−1q− ⊕ h−)−,

for the constraint x ≤ h, and

µ = ∆,

µ−1p ≤ x ≤ µq,

if no boundary constraints are imposed.
Note that the last solution coincides with the re-

sult for this case, which was obtained in [15].

4.2 A One-Sided Boundary Constraint

Given a matrix A ∈ X
m×n together with vectors

p, q ∈ Xm and g ∈ Xn, consider the problem of find-
ing regular vectors x ∈ Xn that

minimize q−Ax⊕ (Ax)−p,

subject to x ≥ g,
(11)

A direct solution to the problem can be derived
using similar arguments as in the previous theorem.

Theorem 2. Suppose that A is a regular matrix, p
and q are regular vectors, g is an arbitrary vector,
and ∆ =

√
(A(q−A)−)−p. Denote

µ = ∆⊕ q−Ag.

Then the minimum in problem (11) is equal to µ
and attained at the vector

x = µ(q−A)−.

Proof. Take a regular x ≥ g and consider the value

r = q−Ax⊕ (Ax)−p.

We have two inequalities

r ≥ q−Ax, r ≥ (Ax)−p.

By combining the first inequality with the con-
straint, we obtain one bound r ≥ q−Ax ≥ q−Ag.

Furthermore, we apply Lemma 1 to solve the first
inequality in the form x ≤ r(q−A)−. The solu-
tion taken together with the second inequality give
r ≥ (Ax)−p ≥ r−1(A(q−A)−)−p, which leads to
another bound r ≥

√
(A(q−A)−)−p = ∆.

Both bounds can be written together as

r ≥ ∆⊕ q−Ag = µ.

We now verify that that the minimum value µ is
attained at the vector x = µ(q−A)− ≥ g. First, we
ascertain that

x = (∆⊕ q−Ag)(q−A)− ≥ (q−A)−q−Ag ≥ g.

Finally, we substitute this vector x into the objec-
tive function. Considering that ∆ ≤ µ, we obtain

q−Ax⊕ (Ax)−p

= µq−A(q−A)− ⊕ µ−1(A(q−A)−)−p

= µ⊕ µ−1∆2 = µ.

Suppose that no lower bound is defined in the
problem, and thus we can put g = 0. In this case,
the solution offered by the theorem becomes the same
as that derived in [15].

5 Applications and Examples

In this section we discuss applications of the results
obtained and give numerical examples. Below, we
take Rmax,+ as the carrier semifield and thus apply the
results under the assumption that X = Rmax,+.
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5.1 A Constrained Location Problem

Consider the following problem, which arises in the
solution of single facility location problems inRn with
the Chebyshev norm [14, 15]. Given points r, s, g,
and h, locate a new point x that minimizes the max-
imum of the Chebyshev distances from x to r and to
s, and satisfies the boundary constraints g ≤ x ≤ h.

To solve the location problem, we first apply (1)
to represent the maximum distance as follows:

ρ(x, r)⊕ ρ(x, s) = r−x⊕ x−r ⊕ s−x⊕ x−s

= (r− ⊕ s−)x⊕ x−(r ⊕ s),

and then formulate the problem in the form

minimize (r− ⊕ s−)x⊕ x−(r ⊕ s),

subject to g ≤ x ≤ h,
(12)

It remains to reduce the problem to (8) by substi-
tuting p = r ⊕ s and q− = r− ⊕ s− and then apply
Theorem 1 to obtain a complete direct solution.

Lemma 2. Suppose that r and s are regular vec-
tors, g and h are vectors such that g ≤ h, and
∆ =

√
(r− ⊕ s−)(r ⊕ s). Denote

µ = ∆⊕ (r− ⊕ s−)g ⊕ h−(r ⊕ s).

Then the minimum distance in problem (12) is
equal to µ and attained if and only if

µ−1(r ⊕ s)⊕ g ≤ x ≤ (µ−1(r− ⊕ s−)⊕ h−)−.

We illustrate this result with a location problem
with the given points

r =

 −3
1
1

 , s =

 1
3
−2

 ,

and the boundary points

g =

 0
0
0

 , h =

 1
1
1

 .

First, we find vectors

r ⊕ s =

 1
3
1

 , r− ⊕ s− =
(

3 −1 2
)
,

and then calculate

∆ = 2, (r− ⊕ s−)g = 3, h−(r ⊕ s) = 2.

Since µ = 3, we finally have the solution in the
form  0

0
0

 ≤ x ≤

 0
1
1

 .

5.2 A Constrained Approximation Problem

Let a matrix A and vectors p and g of appropriate size
be given over Rmax,+. Suppose that one has to deter-
mine a best approximation of p by Ax in terms of the
Chebyshev norm ρ(Ax,p), subject to the boundary
constraints x ≥ g. This problem has natural interpre-
tations in many areas, including real-world problems
in job scheduling (see, e.g., [4, 6, 20]).

With definition (1), we immediately arrive at the
problem to find regular vectors x that

minimize p−Ax⊕ (Ax)−p,

subject to x ≥ g.
(13)

By the substitution q = p in Theorem 2, we get
the following solution to the approximation problem.

Lemma 3. Suppose that A is a regular matrix, p is
a regular vector, g is an arbitrary vector, and ∆ =√

(A(p−A)−)−p. Denote

µ = ∆⊕ p−Ag.

Then the least approximation error in problem
(13) is equal to µ and attained at the vector

x = µ(p−A)−.

We now consider an approximation problem un-
der the assumption that m = n = 3 and

A =

 1 −1 1
3 1 0
0 0 2

 , p =

 3
4
4

 ,

g =

 2
2
2

 .

To evaluate the approximation error µ, we first
calculate the vectors

(p−A)− =

 1
3
2

 , A(p−A)− =

 3
4
4

 .

Furthermore, we successively find

∆ = 0 = 1, Ag =

 3
5
4

 , p−Ag = 1,

and then arrive at µ = 1.
Finally, we obtain the solution to the approxima-

tion problem in the form

x =
(

2 4 3
)T
.
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