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Abstract: A new multidimensional optimization problem is considered in the tropical mathematics setting. The
problem is to minimize a nonlinear function defined on a finite-dimensional semimodule over an idempotent semi-
field and given by a conjugate transposition operator. A special case of the problem, which arises in just-in-time
scheduling, serves as a motivation for the study. To solve the general problem, we derive a sharp lower bound for
the objective function and then find vectors that yield the bound. Under general conditions, an explicit solution is
obtained in a compact vector form. This result is applied to provide new solutions for scheduling problems under
consideration. To illustrate, numerical examples are also presented.
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1 Introduction

Tropical (idempotent) mathematics is concerned with
the theory and applications of semirings with idempo-
tent addition. Tropical mathematics had its origin in
seminal works [24, 6, 12, 30, 26], which introduced it
as a constructive tool to represent and solve real-world
problems in operations research, such as scheduling
problems that was examined in [6, 12]. Over the past
few decades, significant progress has been achieved
in the field, which is reflected in several monographs
(see, e.g., [2, 17, 13, 16, 14, 20, 4] for recent publica-
tions) and in a wide range of research papers.

Since early studies [7, 27], optimization problems
that are formulated and solved within the framework
of tropical mathematics have constituted an impor-
tant research domain in the field. The problems are
to minimize or maximize functions defined on finite-
dimensional semimodules over idempotent semifields
subject to constraints in the form of linear equalities
and inequalities. Both linear and nonlinear objective
functions are considered.

The span (range) seminorm, which is defined as
the maximum deviation between components of a
vector, is one of the objective functions that are en-
countered in the problems. This function is used as
an optimality criterion for some problems in a range
of areas from the analysis of Markov decision pro-
cesses [3, 25] to the form-error measurement in pre-

cision metrology [23, 15]. In the context of tropical
mathematics, the span seminorm has been introduced
by [10, 9], where it was called the range seminorm.

The span seminorm appeared in [5, 28] in a
tropical optimization problem drawn from machine
scheduling. A manufacturing system is considered, in
which machines start and finish under certain prece-
dence constraints to produce components for final
products. The problem is to find the starting times of
each machine so that the completion times are spread
over a shortest possible period of time. A solution to
the problem is given in a somewhat complicated form
that involves two reciprocally dual idempotent semi-
fields.

In this paper, we examine a more general prob-
lem of just-in-time scheduling [11, 29]. The prob-
lem is formulated in the common setting of project
scheduling in terms of activities that are conducted
under various precedence relations between their ini-
tiation and completion times. The goal is to design
a schedule that provides, as far as possible, a single
common completion time of all activities and can thus
be solved by minimizing a span seminorm. Compared
to that in [5, 28], the new problem takes into account
additional constraints that limit the time intervals be-
tween initiation of activities.

We represent the precedence relations by linear
vector equalities and inequalities in an idempotent
semifield. The span seminorm is written in a straight-
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forward, if not linear, vector form. As a result, we ar-
rive at a constrained optimization problem with a non-
linear objective function, which involves a conjugate
transposition operator, subject to linear constraints.

The above mentioned problem serves as a mo-
tivating example and a starting point to define and
solve a new general tropical optimization problem
in a rather formal setting. We exploit the fact that
the application of the solution of linear inequalities
in [19, 20] reduces the problem to an unconstrained
problem with new variables. We examine an extended
version of the unconstrained problem that is formu-
lated in terms of a general idempotent semifield. To
solve the latter problem, the solution approach devel-
oped in [18, 20, 21] is used based on the derivation
of a sharp lower bound for the objective function and
then the construction of vectors that give the bound.

We obtain a direct solution to the extended prob-
lem under fairly general conditions and represent it
in a compact vector form in terms of the carrier semi-
field. Then, the above mentioned scheduling problems
are solved as particular cases. Specifically, a new so-
lution to the machine scheduling problem examined
in [5, 28] is obtained as a consequence.

The solutions are given in an explicit form that is
suitable for both formal analysis and practical imple-
mentation. The results obtained, which are first aimed
at formulating and solving new tropical optimization
problems, may also serve as a contribution to project
scheduling, which offers direct solutions rather than
indirect solutions to many scheduling problems that
can often be solved only by sophisticated computa-
tional algorithms [11, 29].

The paper is organized as follows. It begins with a
motivating problem drawn from just-in-time schedul-
ing in Section 2. Furthermore, we give a brief intro-
duction to basic definitions, notation, and preliminary
results in tropical mathematics in Section 3 to provide
a formal framework for subsequent results. Section 4
suggests the main results that include the definition
of and a solution to a general optimization problems
with nonlinear objective functions. Application of the
results to optimal scheduling problems are presented
and illustrated with numerical examples in Section 5.

2 Motivating Example

We start with a real-world problem that is drawn from
project scheduling and intended to both motivate and
illustrate further results. The problem arises in just-
in-time manufacturing and aims to design a schedule
that minimizes the maximum deviation between the
completion times of the activities in a project sub-
ject to various activity precedence constraints. For

more details and references on project scheduling, and
specifically on just-in-time scheduling, one can con-
sult [11, 29].

Consider a project which consists of n activities
(jobs, tasks) that operate under start-finish and start-
start precedence constraints. The start-finish con-
straints require that a minimal time lag be held be-
tween the initiation of one activity and the comple-
tion of another. Each activity is assumed to be com-
pleted as early as possible to meet these constraints.
The start-start constraints specify a minimal time lag
between the initiation of any two activities. The prob-
lem is to find a schedule that provides, as far as pos-
sible under the constraints, a single common comple-
tion time for all activities.

For each activity i = 1, . . . , n, let xi be the initi-
ation time, yi be the completion time, and cij be the
minimum possible time lag between the initiation of
activity j = 1, . . . , n and the completion of activity
i. Given cij , the completion time of activity i must
satisfy the start-finish precedence relations

xj + cij ≤ yi, j = 1, . . . , n,

with at least one inequality holding as equality. Note
that we assume cii ≥ 0 for all i. Provided that cij is
not given for some j, we put cij = −∞.

Now we combine the relations into one equality
of the form

max
1≤j≤n

(xj + cij) = yi.

Furthermore, let dij be the minimum possible
time lag between the initiation of activity j and the
initiation of activity i. Once again, we assume dij =
−∞ if no lag is specified for i and j. Due to the start-
start constraints, we have relations

xj + dij ≤ xi, j = 1, . . . , n,

and rewrite them as one inequality

max
1≤j≤n

(xj + dij) ≤ xi.

We define an objective function for the optimal
scheduling problem under study. We take the maxi-
mum deviation between the completion times as a cri-
terion, which is equal to zero only when a schedule
provides a single common completion time for all ac-
tivities. The criterion has the form of the span semi-
norm:

max
1≤i≤n

yi − min
1≤i≤n

yi = max
1≤i≤n

yi + max
1≤i≤n

(−yi).
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We now formulate an optimization problem of in-
terest. Given cij and dij for all i, j = 1, . . . , n, the
problem is to find x1, . . . , xn such that

minimize max
1≤i≤n

yi + max
1≤i≤n

(−yi),

subject to max
1≤j≤n

(xj + cij) = yi,

max
1≤j≤n

(xj + dij) ≤ xi, i = 1, . . . , n.

(1)
Below, we represent the problem in the tropical

mathematics setting and then solve it directly in a
compact vector form.

3 Preliminary results

In this section, we give a brief overview of the main
algebraic definitions, notation and preliminary results,
which provide a basis for the subsequent solution
to tropical optimization problems and applications to
project scheduling. Both concise introductions to and
thorough presentation of tropical mathematics are pre-
sented in various forms in a range of works, including
[2, 8, 17, 13, 14, 16, 1, 22, 4]. Below, we mainly
adhere to the results in [19, 20], which offer a use-
ful framework to obtain direct solutions in a compact
form. For additional details, one can consult other
publications listed above.

3.1 Idempotent Semifield

Let X be a set that is closed under two associative
and commutative operations, addition ⊕ and multipli-
cation ⊗, and equipped with their neutral elements,
zero 0 and identity 1. Addition is idempotent, which
means that x ⊕ x = x for all x ∈ X. Multiplica-
tion is distributive over addition and invertible, which
implies that each x ∈ X+, where X+ = X \ {0},
has an inverse x−1 to satisfy x−1 ⊗ x = 1. Since
X+ forms a group under multiplication, the structure
〈X,0, 1,⊕,⊗〉 is commonly referred to as the idem-
potent semifield.

The integer power is introduced as usual. For any
x ∈ X+ and integer p > 0, we have x0 = 1, 0p = 0,
xp = xp−1 ⊗ x, and x−p = (x−1)p.

In what follows, the multiplication sign ⊗ is
dropped for simplicity. The power notation is used
in the sense of the above mentioned definition.

The idempotent addition produces a partial order,
by which x ≤ y if and only if x⊕ y = y. The partial
order is assumed to extend to a consistent total order
over X. The relation symbols and the minimization
problems are thought in the context of this order for
here on.

As examples of the general semifield under con-
sideration, one can take

Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉,
Rmin,+ = 〈R ∪ {+∞},+∞, 0,min,+〉,
Rmax,× = 〈R+ ∪ {0}, 0, 1,max,×〉,
Rmin,× = 〈R+ ∪ {+∞},+∞, 1,min,×〉,

where R is the set of reals and R+ = {x ∈ R|x > 0}.
Specifically, the semifield Rmax,+ has the null

0 = −∞ and identity 1 = 0. Each x ∈ R has its
inverse x−1 given by −x in standard notation. For
any x, y ∈ R, the power xy is equal to the arithmetic
product xy. The order, which is induced by addition,
corresponds to the natural linear order on R.

3.2 Matrix Algebra

We now consider matrices overX and denote the set of
matrices withm rows and n columns Xm×n. A matrix
with all entries equal to 0 is called the zero matrix. A
matrix is row (column) regular, if it has no zero rows
(columns). A matrix is regular, if it is both row and
column regular.

For any matrices A = (aij), B = (bij), and
C = (cij) of appropriate dimensions, and a scalar x,
matrix addition, matrix and scalar multiplication are
routinely defined as

{A⊕B}ij = aij ⊕ bij , {BC}ij =
⊕
k

bikckj ,

{xA}ij = xaij .

For any matrix A, its transpose is denoted AT .
Consider square matrices in Xn×n. A matrix that

has all diagonal entries equal to 1 and off-diagonal
entries equal to 0 is the identity matrix represented by
I . For any matrix A, the trace is given by

trA =
n⊕

i=1

aii.

The matrices with only one column (row) are rou-
tinely referred to as column (row) vectors. We denote
the set of column vectors of order n by Xn.

A vector that has all components equal to 0 is the
zero vector. A vector is regular if it has no zero com-
ponents.

Let x be a regular column vector and A be a ma-
trix. It is not difficult to see that the vector Ax is
regular only when the matrix A is row regular. Sim-
ilarly, the row vector xTA is regular only when A is
column regular.
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As usual, a vector y is linearly dependent on vec-
tors x1, . . . ,xm if there are scalars c1, . . . , cm ∈ X

such that y = c1x1 ⊕ · · · ⊕ cmxm. Specifically, a
vector y is collinear with x when y = cx for some
scalar c.

For any nonzero vector x = (xi) ∈ X
n, we in-

troduce the multiplicative conjugate transpose to be a
row vector x− = (x−i ) with components x−i = x−1

i if
xi 6= 0, and x−i = 0 otherwise. The following prop-
erties of the conjugate transposition are easy to verify.

For any regular vectors x and y of the same size,
the component-wise inequality x ≤ y implies that
x− ≥ y− and vice versa.

For any nonzero column vector x, we have
x−x = 1. Moreover, if the vector x is regular, then
xx− ≥ I .

3.3 Solution to Linear Inequality

Given a matrix A ∈ Xn×m, consider a problem that is
to find regular vectors x ∈ Xn to satisfy the inequality

Ax ≤ x. (2)

Below, we present solutions to the inequality,
which are obtained in [19, 20] and written here in a
more compact equivalent form.

For each matrix A ∈ Xn×n, we introduce a func-
tion

Tr(A) = trA⊕ · · · ⊕ trAn.

If Tr(A) ≤ 1, we use a star operator that sends
A to the matrix

A∗ = I ⊕A⊕ · · · ⊕An−1.

Lemma 1. Let x be the complete regular solution to
inequality (2). Then the following statements hold:

1. If Tr(A) ≤ 1, then x = A∗u for all regular
vectors u.

2. If Tr(A) > 1, then there is no regular solution.

4 Optimization Problem

We now present the main result that solves an ex-
tended problem formulated in terms of a general
idempotent semifield. We follow the solution ap-
proach, which is based on the derivation of sharp
bounds on the objective function and applied to trop-
ical optimization problems in a range of studies [18,
20, 21].

Given matrices A,B ∈ Xm×n and vectors p, q ∈
X
m, the problem is to find regular vectors x ∈ X

n

such that

minimize q−Bx(Ax)−p. (3)

The following statement offers a direct solution to
the problem.

Theorem 2. Suppose that A is row regular and B is
column regular matrices, p is nonzero and q is regular
vectors. Denote ∆ = (A(q−B)−)−p.

Then the minimum in problem (3) is equal to ∆
and attained at any vector

x = α(q−B)−, α > 0.

Proof. To verify the statement, we first show that ∆
is a lower bound for the objective function in (3), and
then present vectors x that provide the bound.

Using the inequality xx− ≥ I , we write

q−Bxx− ≥ q−B.

Since the vector q is regular and the matrix B is
column regular, the left and right sides of the last in-
equality are also regular. Furthermore, for any regular
x, we have q−Bx > 0 and then write

(q−Bx)−1x = (q−Bxx−)− ≤ (q−B)−.

Multiplication by A from the left gives

(q−Bx)−1Ax ≤ A(q−B)−.

Considering that the matrix A is row regular, both
sides of the inequality are regular vectors, and thus

q−Bx(Ax)− ≥ (A(q−B)−)−.

After right multiplication of both sides by the vec-
tor p, we finally have the lower bound in the form

q−Bx(Ax)−p ≥ (A(q−B)−)−p = ∆ > 0.

It remains to verify that x = α(q−B)− yields
the bound for any α > 0. Indeed, substitution into the
objective function and identity x−x = 1 give

q−Bx(Ax)−p = q−B(q−B)−(A(q−B)−)−p

= (A(q−B)−)−p = ∆.

We conclude this section with solutions of two
particular cases of problem (3). First, assume that
B = A = I and p = q = 1, where 1 denotes a
vector that has all components equal to 1. We arrive
at a problem in the form

minimize 1
Txx−

1.

Application of Theorem 2 immediately gives
∆ = 1 as the minimum in the problem, which is at-
tained at any vector x = α1 for all α > 0.
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Finally, we examine a problem that underlies the
design of optimal schedules to be given below. We put
A = B, p = q = 1, and consider the problem

minimize 1
TAx(Ax)−1. (4)

Using Theorem 2, we readily obtain the following
result.

Corollary 3. Suppose that A is a regular matrix and
denote ∆ = (A(1TA)−)−1.

Then the minimum in problem (4) is equal to ∆
and attained at any vector

x = α(1TA)−, α > 0.

5 Optimal Scheduling Problem

We are now in a position to place the scheduling prob-
lem described above into the framework of tropical
mathematics and to give a direct solution to the prob-
lem in a compact vector form.

5.1 Representation of Scheduling Problem

Consider problem (1) and note that, in ordinary no-
tation, it involves only the operations max, addition,
and additive inversion. Therefore, we can represent
the problem in terms of the semifield Rmax,+.

First, we write constraints as scalar equalities and
inequalities:

n⊕
j=1

cijxj = yi,

n⊕
j=1

dijxj ≤ xi, i = 1, . . . , n.

Using the matrices

C = (cij), D = (dij),

and the vectors

x = (xi), y = (yi),

the scalar constraints take the form

Cx = y,

Dx ≤ x.

Furthermore, we rewrite the objective function in
(1). Since, for Rmax,+, we have 1 = (0, . . . , 0)T , the
objective function can be readily given by(

n⊕
i=1

yi

)(
n⊕

i=1

y−1
i

)
= 1

Tyy−
1.

Finally, by combining the objective function with
the constraints, we arrive at the problem formulated in
terms of Rmax,+ to find vectors x and y such that

minimize 1
Tyy−

1,

subject to Cx = y,

Dx ≤ x.

(5)

5.2 Solution to Scheduling Problem

Under general conditions, a direct solution to (5) is
obtained as follows.

Theorem 4. Suppose that C is a regular matrix and
D is a matrix that satisfies the condition Tr(D) ≤ 1.
Denote ∆ = (CD∗(1TCD∗)−)−1.

Then the minimum in problem (5) is equal to ∆
and attained at

x = αD∗(1TCD∗)−,

y = αCD∗(1TCD∗)−

for all real numbers α.

Proof. It follows from Lemma 1 that the inequality
constraints in problem (5) have the solution x = D∗u
for all regular vectors u.

Based on the solution, the equality constraints be-
come y = CD∗u.

Substitution of y in the objective function at (5)
leads to problem (3) with B = A = CD∗, p = q =
1, and an unknown regular vector u.

The obvious inequality D∗ ≥ I implies that the
matrix CD∗ is regular. The application of Corollary 3
gives the minimum ∆ = (CD∗(1TCD∗)−)−1,
which is attained at the vector u = α(1TCD∗)−.
Back substitution of u leads to the desired solutions
x = αD∗(1TCD∗)− and y = αCD∗(1TCD∗)−

for all α > 0.

Finally, we consider the problem, which was ex-
amined in [5, 28] and can be now represented as

minimize 1
Tyy−

1,

subject to Cx = y.
(6)

As a consequence of the solution to (5), we get
the following result.

Corollary 5. Suppose that C is a regular matrix and
denote ∆ = (C(1TC)−)−1.

Then the minimum in problem (6) is equal to ∆
and attained at

x = α(1TC)−,

y = αC(1TC)−

for any real number α.
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Note that the solutions to the above problems are
given up to a scale factor α. In the context of schedul-
ing, this form of solutions offers a room to accommo-
date additional constraints such as a due date for the
project.

5.3 Numerical Examples

To illustrate the results obtained, we consider an ex-
ample project of three activities under constraints
given by the matrices

C =

 4 0 0

2 3 1
1 1 3

 , D =

 0 −2 1
0 0 2
−1 0 0

 ,

where the symbol 0 = −∞ is used for ease of expo-
sition.

First, we do not take into account the start-start
constraints to solve the reduced problem (6). After
calculating the vectors

(1TC)− =

 −4
−3
−3

 , C(1TC)− =

 0
0
0

 ,

we apply Corollary 5 and immediately arrive at the
solution

∆ = 0, x = α

 −4
−3
−3

 , y = α

 0
0
0

 ,

where α is any number such that α > 0 = −∞.
Note that, in this situation, we really get a just-in-

time schedule with a single common completion time
of all activities.

Let us now incorporate the start-start constraints
given by D into the problem. We take D to calculate

D2 =

 0 0 0
1 −2 1
0 −3 0

 .

Furthermore, we obtain

D3 =

 −1 −2 1
0 −1 2
−1 0 −1

 , Tr(D) = 0,

and then evaluate the sum

D∗ = I ⊕D ⊕D2 =

 0 −2 1
1 0 2
−1 −3 0

 .

Since the first and the third columns in the matrix
D∗ are collinear, we can drop the last column to sim-
plify the solution. We successively get the matrices

D∗ =

 0 −2
1 0
−1 −3

 , CD∗ =

 4 2
4 3
2 1

 ,

and calculate the vector

(1TCD∗)− =

(
−4
−3

)
,

D∗(1TCD∗)− =

 −4
−3
−5

 ,

CD∗(1TCD∗)− =

 0
0
−2

 .

The application of Theorem 4 gives the results

∆ = 2, x = α

 −4
−3
−5

 , y = α

 0
0
−2

 ,

where α is any real number.
The solution offers a schedule that is optimal with

respect to the span seminorm. Note, however, that the
constraints in the problem give no way for the sched-
ule to provide a single common completion time of all
activities.
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