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Abstract: The Generalized Traveling Salesman Problem (GTSP) is an extension of the well known Traveling 
Salesman Problem (TSP). The GTSP is defined on a graph in which the nodes (customers or vertices) are 
grouped into a given number of clusters (node sets). Solution procedures for the GTSP are generally focused on 
transforming the problem to the TSP and applying the exact or heuristic solution methods developed for the 
TSP. There exist a few integer programming formulations for the GTSP some of which are exponential size 
with respect to number of the nodes. In this paper, we propose two new formulations for the GTSP with 
polynomial size with respect to number of the nodes. For preliminary computational analysis, GTSP instances 
from TSPLIB are solved by proposed formulations and also by the previously existing formulations in the 
literature. Performances of the formulations in terms of linear programming relaxations and CPU times are 
analyzed. We observe that, performances of the proposed formulations are better than the existing formulations 
in terms of these two evaluation criteria. 
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1 Introduction 
 
The TSP, the problem of finding the minimum cost 
Hamiltonian Tour on a given graph, is one of the most 
studied combinatorial optimization problems. There 
exist a large number of application areas, and exact or 
heuristic solution methods for the TSP (Lawler et al. 
1984, Gutin and Punnen 2002, Dinh and Mamun, 
2004; Aziz et al., 2009). The Generalized Traveling 
Salesman Problem (GTSP) is an extension of the TSP 
where the nodes of the graph is grouped into clusters 
and the problem is to find a minimum cost 
Hamiltonian Tour which visits each cluster once and 
visits (exactly or at least) one node from each cluster. 
The GTSP is a special case of the generalized 
network design problem (Pop et al., 2007). The GTSP 
defined as “exactly one node from each cluster” or “at 
least one node from each cluster” according to the 
number of nodes must be visited from each cluster. 
Laporte and Nobert (1983) show that, “at least one 
node from each cluster” coincide with “exactly one 
node from each cluster” when the distance matrix is 
Euclidean. In this paper, we consider the “exactly one 

node from each cluster” case. In accordance with 
Laporte and Nobert (1983), the GTSP is defined by 
Henry and Lapordere in 1969, Srivastava et al. in 
1969 and Saksena in 1970 independently and 
dynamic programming is proposed as a solution 
procedure. 

 
The GTSP and its variants may arise in real-life 

applications such as loop material flow design, post-
box collection, arc routing, computer operations, 
manufacturing logistics, distributions of goods by sea 
to the potential number of harbors (see Laporte et al. 
1996, Laporte and Palekar 2002, Ben-Arieh et al. 
2003). 

 
The GTSP is NP-hard since it reduces to the TSP 

when each cluster contains only one node. We may 
group the solution approaches of the GTSP under the 
following headings:  

 

i) Special solution procedures based on a decision 

model (Laporte and Nobert, 1983; Laporte, 
Mercure and Nobert, 1987; Noon and Bean, 1991; 
Fishetti, Gonzales and Toth, 1995, 1997, 2002)  
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and/or to use a decision model directly (Kara et.  
al., 2005; Kara and  Demir, 2006; Pop, 2007), 
 

ii) Solving the GTSP by transforming it to TSP and 

solving related TSP. (Noon and Bean, 1993; Lien-
Ma-Wah, 1993; Dimitrijevic and Saric, 1997; 
Laporte and Semet, 1999; Ben-Arieh et al., 2003) 
and, 
 

iii) Special Heuristics (Renaud and Boctor, 1998; 
Huang et al. 2005; Snyder and Daskin, 2006; 
Pintea et al.,2007; Hu and Raidl, 2008; 
Karapetyan and Gutin, 2011) 
 
As far as we are aware, first integer linear 

programming formulation (ILPF) is proposed by 
Laporte and Nobert (1983). They consider the case 
where at least one node from each cluster must be 
visited. The authors concentrate on symmetric cost 
matrix and present an ILPF with an objective 
composed of travel and fixed costs. The symmetric 
GTSP has been studied in details by Fishetti, 
Gonzales and Toth (1995, 1997, 2002). Asymmetric 
version of the problem has been formulated by 
Laporte et al. (1987) and later by Noon and Bean 
(1991). When n is the number of the nodes in the 
graph, in all of these formulations, there are O(n2) 
binary variables but the number of the constrains 
grows exponentially with respect to n, which cause 
serious difficulties to solve such models directly by 
using any optimizer.  

 
According to the best of our knowledge, first 

polynomial size ILPF for the GTSP is proposed by 
Kara et al. (2005). This formulation is  a node based 
formulation and contains O(n2) decision variables and 
O(n2) constraints. Thus, we will not consider the 
older exponential size formulations. Later, Kara and 
Demir (2006) propose a new arc based polynomial 
size formulation with O(n2) constraints and decision 
variables. They computationally show that the node 
based formulation proposed by Kara et al. (2005) is 
superior to their arc based formulation in terms of 
linear programming relaxation and CPU time. Pop 
(2007), reviews the existing formulations for the 
GTSP and proposes new node and arc based 
formulations. Kara et al. (2009), adapt Pop’s 
formulations to the symmetric and asymmetric cases, 
and computationally show that, the earlier node based 
formulation proposed by Kara et al. (2005) is superior 
to these formulations in terms of linear programming 
relaxations and CPU time. Consequently, the node 
based formulation proposed in 2005 is the 
outstanding formulation up to now. So, in this paper, 
for computational analysis we just consider the 

formulation proposed by Kara et al. (2005) as the 
comparable existing formulation. 

 
There is a need to have formulations having 

polynomial number of integer variables and 
constraints, which is the main motivation and 
contribution of this paper. We propose two new 
polynomial size ILPFs for the GTSP. Then, we 
computationally analyze their  performances by 
solving instances from the literature.  

 
In section 2, we introduce a general ILPF for the 

GTSP, and clarify node and arc based formulations. 
In sections 3 and 4, the proposed formulations are 
presented. Preliminary computational results are 
summarized in section 5. The paper ends with a 
conclusion and further remarks in section 6. 

 
 

2 General Formulation for the 

Generalized Traveling Salesman 

Problem 
 
Let G = (V, A) be a graph where � � �1, 2, … , �	 is 
the set of nodes and A = {(i, j): i, j ∈ V, i ≠ j} is the 
set of directed arcs (or edges), and let cij be the travel 
distance (or cost or time) from node i to node j. Let 
V1, V2, ... , Vk be disjoint subsets of V such that union 
of these subsets equals to V. These subsets are called 
clusters. The GTSP is to find the tour that (i) starts 
from a node and visits exactly one node from each 
cluster and turns back to the starting node (ii) never 
visit a node more than once and (iii) has the minimum 
total tour length. 

 
Associated with each arc, let 
�� be a binary 

variable equal to “1” if the traveler goes from node i 
to node j, and “0” otherwise. A general ILPF for the 
GTSP may be given as follows: 

 

�� � � ���
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���\��	���

 

������� �� 

� � 
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���\������
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Constraints (2) and (3) are degree constraints of 
each cluster, whereas, constraints (4) balance the 
inflow and outflow of each node. These constraints 
proposed by Noon and Bean (1991). Constraints (6) 
are sub tour elimination constraints, which must 
guarantee that the solution contains no illegal sub 
tours. Integrality constraints are given in (5).  

 
Existing ILPFs of routing problems in the 

literature differ from each other with respect to the 
sub tour elimination constraints (SECs).  In order to 
prevent illegal tours, i.e., eliminate sub tours, in most 
of the studies, additional decision variables are 
defined and then SECs of the formulation are 
developed. Such formulations may be divided into 
two groups according to these additional variables. 
We call a formulation node based if the additional 
variables are due to nodes, and arc (flow) based if 
they are due to arcs of the underlying graph. 

 
For an ILPF of a routing problem, if the number of 

the constraints and/or decision variables of the 
formulation grows exponentially with respect to the 
number of the nodes, it’s named as “exponential size 

formulation”; and if they grow polynomially, it’s 
named as “polynomial size formulation”.  

 
The formulation of Kara et al. (2005) which is 

mentioned above and will be considered as the 
existing formulation in this study is given below. In 
this formulation up is the auxiliary variables defined 
as the visit number of cluster p and constraints (7) are 
the subtour elimination constraints of the formulation. 
 

min � � cijxij                                                                                �1�
j�V\�i	i�V

 

subject to 

(2), (3), (4), (5) and  

up‐uq@k � � xij
j�Vqi�Vp

@�k‐2� � � xij
j�Vpi�Vq

≤k‐1,   p≠q;p,q�2, …,k  �7�   

upD0 ,                                                                     p�2, …, k               �8�   
 

3 A New Node Based Formulation 
 
In addition to the above  auxiliary variables, let us 
define one more auxiliary variable as: 
 

FGH � I 1,     if traveler goes from cluster p to cluster q
0,       otherwise                                                       J  

 
With these auxiliary variables, we propose a new 

node based formulation F1 for the GTSP as:  
   

F1: 

min � � cijxij                                                                                �1�
j�Vi�V

 

subject to 

�2�, �3�, �4�, �5� and 

wpq� � � xij   ,                                      p≠q;p,q�1, …,k        �9�
j�Vqi�Vp

 

up‐uq@�k‐1�wpq@�k‐3�wqp≤k‐2  ,       p≠q;p,q�2, …,k       �10�   

up‐ � wqp≥1  ,                                          p�2,…,k
k

q�2
q≠p

                   �11� 

up@�k‐2�w1p≤k‐1 ,                                   p�2,…,k                   �12� 

 
In F1, constraints (9) are expressions of the new 

variables by the previous decision variables. 
Constraints (10) are the subtour elimination 
constraints. Constraints (11) and (12) form the lower 
and upper bounds of the auxiliary variables. The 
validity of these constraints is shown in the 
propositions given below. 

 

Proposition 1: The equalities given in (9) 
guarantee that wpq equals to 1 if the traveler goes from 
cluster p to q, and 0 otherwise. 

 

Proof: Equality given in (9) is the expression of 
wpq’s as a function of the decision variables xij’s. In 
accordance with the constraints given in (2), (3), (4) 
and (5), right  hand side of this equality is equal to l if 
traveler goes from cluster p to cluster q or equal to 0 
otherwise. So, wpq’s are binary derived decision 
variables corresponding to clusters. □ 

 

Proposition 2: Inequalities given in (10), (11) and 
(12) are valid for the GTSP. 

 

Proof: With the new decision variables wpq’s for  
clusters, constraints given in (11) and (12) initialize 
the auxiliary variable corresponding to the first cluster 
of the tour  as equal to 1, i.e., up=1 when w1p=1. As a 
result of the inequality given in (10), if wpq=1 then 
uq=up+1. So, up’s of the clusters of the tour will 
cumulate and perform a step function. Thus, the 
auxiliary variables �G’s correspondence to the visit 
number of the pth cluster and inequality (10) prohobits 
formation of illegal tours, i.e.,they are subtour 
elimination constraints of the formulation.□ 

 
Proposed formulation F1 has |A| binary and (k2-k) 

continuous variables, and (n + 2k
2)   constraints. So, 

F1 contains O(n2) binary variables and O(n2) 
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constraints., i.e., F1 is a polynomial size formulation 
for the GTSP.  

 
We now propose another new polynomial 

formulation for the GTSP below. 
 
 

4 A New Arc Based Formulation 
 
With FGH variables which are defined in F1, let us 
define a new auxiliary variable for the  number of 
arcs on the tour as: 
 

OGH: the number of arcs which are occurred on the 
tour until the cluster q if traveler goes from cluster p 
to cluster q. 

 
With these new variables, a new arc based 

formulation, F2, is proposed for the GTSP as: 
 

F2: 

min � � cijxij                                                                              �1�
j�Vi�V

 

subject to 

�2�, �3�, �4�, �5�, �9� and 

ypq≤k*wpq  ,                  p≠q;p�2, …,k;q�1,…,k                   �13� 

y1p�w1p  ,                     p�2, …,k                                               �14� 

� ypq‐ � yrp�1  ,     p�2, …,k                                              �15� 
r≠pq≠p

 

 
In this formulation, constraints (13) and (14) give 

the lower and upper bounds of the connections 
between the clusters. Constraints (15) prevent the sub 
tours. The validity of these constraints is given in 
proposition 3 below. 

 

Proposition 3: Inequalities given in (13), (14) and 
(15) are valid for the GTSP. 

 

Proof: Inequality given in (13) gives upper bound 
for the ypq’s and guarantee that if wpq=0 then ypq=0.  
Equation (14) implies that, if the traveler goes from 
the first cluster to the cluster p then w1p=1 and we will 
initialize y1p=1. If  wpq=1,  equation given in (15) 
implies that number of the arcs on the tour up to 
cluster p is increased by one for the number of the 
arcs up to cluster q. So, equation (15) will perform a 
step function between the ypq’s of the adjacent 
clusters. Thus, it will prohibit formation of illegal 
tours, i.e., they are sub tour elimination constraints of 
the formulation.□  

Proposed formulation F2 has |A| binary and (2k
2-

2k) continuous variables, and (n+2k
2+k-1)  

constraints. So, F2 contains O(n2) binary variables 
and O(n2) constraints., i.e., F2 is a polynomial size 
formulation for the GTSP. 

 
 

5 Preliminary Computational Analyses   
 
The linear programming (LP) formulation obtained 
by omitting all integrality or 0-1 constraints on 
variables is called the LP relaxation of the 
formulation in the decision models. The 
computational analyses are made in terms of the 
solution times and LP relaxation values (LPR values) 
of the models. 19 asymmetric and 32 symmetric 
GTSP instances are taken from TSPLIB 
(http://www.cs.rhul.ac.uk/home/zvero/GTSPLIB). 
These problems are solved with the CPLEX 12.0 
solver by a computer having Intel Core i5 processor 
with 4 cores, 4 GB of RAM and 276 GB of SSD 
drive. The solution times are limited to 7200 seconds. 
The benchmarking problems are solved with the 
existing (Kara et al., 2005) and proposed 
formulations F1 and F2. Preliminary results are 
summarized in the following part.  

 

Asymmetric Problems: There does not exist 
significant differences between the linear 
programming relaxations. All three formulations 
produced optimal solutions of all 19 test problems. 
Mean of the solution times of the existing 
formulation is 84.26 seconds while it is 29.34 
seconds for F1 and 96.53 seconds for F2. So, mean of 
the solution time of  F1  is superior to the existing 
and new arc based formulation. Consequently, for the 
asymmetric GTSP, if one wants to use a formulation, 
we certainly propose formulation F1. 

 
Symmetric Problems: Within predetermined 

time limit 7200 seconds, existing formulation solved 
15 problems optimally while F2 solved 21 and F1 
reached optimal solution of the 22 test problems. So, 
both new formulations are superior to the existing 
one. Mean of the fluctuation of the linear 
programming relaxations from the optimal values of 
22 problems is found as 0,345 for F1 and 0,37 for F2. 
So, node based formulation produces a little bit better 
lower bound than arc based formulation of the GTSP.  
Mean solution time of 21 problems that both F1 and 
F2 obtained optimal solutions shows that F1 is better 
than F2.  
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6 Conclusions and Further Remarks 
 
Two polynomial size integer programming 
formulations for the generalized traveling salesman 
problem are presented. The first formulation, 
designated as F1, is node based and the second one, 
designated as F2 is arc based. Both formulations have 
O(n2) binary variables and O(n2) constraints. 
Preliminary computational analysis show that, for 
both asymmetric and symmetric instances, 
performance of F1 is better than the existing node 
based formulation and F2 in terms of CPU time. 
There does not exist significant differences between 
the linear programming relaxations of the 
formulations. Thus we recommend to use of our node 
based formulation for  the GTSP.   

 
To develop valid inequalities for F1 and F2 and 

conduct detailed computational analysis on the 
proposed formulations, and to adapt the formulations 
to multiple traveler case seem further research areas. 
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