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Abstract:- A new method of computation of singular values and left and right singular vectors of arbitrary non-

square matrices has been proposed. The method permits to avoid solutions of high rank systems of linear 

equations of singular value decomposition problem, which makes it not sensitive to ill-conditioness of 

decomposed matrix. On base of Eckart-Young theorem, it was shown that each second order r-rank tensor can 

be represent as a sum of the first rank r-order “coordinate” tensors. A new system of equations for “coordinate” 

tensor’s generators vectors was obtained. An iterative method of solution of the system was elaborated. Results 

of the method were compared with classical methods of solutions of singular value decomposition problem.   
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1. Introduction.  
Singular Value Decomposition (SVD) being 

generalization of Eigen Value Decomposition 

(EVD) permits to compute singular (proper) values 

of non-square matrices. Despite of its generality and 

efficiency in some Time Series Analysis problems 

(we mean Singular Spectrum Analysis or SSA [1, 2] 

it has not been used widely in many engineering 

fields, including mechanical engineering. Nowadays 

the method has only started to be used in several 

fields of mechanics and applied physics: processing 

of experimental data in vibrations problems, in 

numerical computation of the coefficients of 

amplitude equations and normal forms, in some 

problems of Hamiltonian Mechanics [3,4,5]. 

Usage of classical Singular Value 

Decomposition (SVD) leads to necessity of 

calculation of eigen values and eigen vectors of high 

dimensional matrixes [1, 2]. There are a lot of well 

known and widely used methods of their 

computation [6, 7]. First of all, we outline a big 

group of so called transformation methods: Schur, 

LR, QR, Jacobi, Givens, and Householder etc.  Also 

found a wide use polynomial iteration methods 

(direct computation of det (A-λ B) determinant’s 

roots) and a group of methods (variational) based on 

stationary property of the eigen values (Rayleigh 

quotient) [2, 6].We shall not discuss them as all 

these methods are well known and one can find their 

detailed consideration in many both classical and 

modern text books and monographs.  

 Despite of their very different nature all 

these methods can be characterized with similar 

disadvantages: necessity of big computations 

volume, not reliable stability and sensitivity for ill-

conditioning. The latter problem (ill-conditioning) is 

very important especially for SSA because the 

matrix X constructed on observed data can be turned 

to be ill-conditioning. To avoid these computational 

problems we elaborated a new approach and 

algorithms based on principally new approach. 

 

2. Theoretical part. 
The all results of the work is based on the 

conception of approximation by low rank tensors 

and Eckart-Young theorem [8,9]. 

Definition[7]. A best rank-r approximation to 

a tensor 
kVVt ⊗⊗∈ ...1

is a tensor smin with  

,inf
)(

min tsts
rsrank

−=−
≤

 

where ⋅ - Frobenius norm[1] 
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The latter generates Eckart-Young problem 

[8]: find a best r-rank approximation for tensor of 

order k.  

The problem is not solvable in general.  But 

for matrixes it was proved as  

Eckart-Young theorem [7,8]. Given a p x n 

matrix X of rank r ≤ n ≤ p, and its singular value 

decomposition, UΛV′, with the singular values 

arranged in decreasing sequence  

λ
1 
≥ λ

2 
≥ λ

3 
≥ … λ

n 
≥ 0 , 

then there exists a p x n matrix B of rank s, s ≤ r, 

which minimizes the sum of the squared error 

between the elements of A and the corresponding 

elements of B
1
 when  

B = UΛsV
T
, 

where U and V matrices consist of left and 

right singular vectors the  matrix X and Λs is 

diagonal matrix with the diagonal elements  

λ1 ≥ λ2 ≥ λ3 ≥ … λs > λs+1 = λs+2 = … = λn = 0. 

The theorem states that the least squares 

approximation in s dimensions of a matrix X can be 

found by replacing the smallest n-s roots of Λ with 

zeroes and remultiplying UΛV′. 

From the theorem follows that one can 

represent factorization of a K × L matrix X (with 

rank  r ≤ min(K,L)) by means of Singular Value 

Decomposition as 

∑∑
==

==
r

i

ii

r

i

i HXX
11

λ , (1) 

where Xi - 1-rank matrices, which can be 

represented as a Kronecker product  iii vuX ⊗= of 

left ui and right vi singular vectors, corresponded to 

the singular value iλ
 
 and Hi = iiXλ  – also 1-rank 

matrices. Note that Hi are decomposable, so 

iii baH ⊗= , where ai and  bi are linearly 

independent vectors
2
. They may be expressed via 

left ui and right vi singular vectors. 

iii ua λ= and iii vb λ= . 

Each of the two systems of vectors ui 

(i=1,2,…,K) and vi (i=1,2,…,L) are orthonormal  

systems, therefore full contraction of Xi matrices 

satisfies
3 

                                                 

1
 That is in Frobenius norm sense. 

2
 ai is K –dimensional vector and  bi –is L-dimensional vector. 

3 It follows from the orthonormality of the systems of vectors u and v 

and the multilinearity properties of tensor product ( ),( ⋅⋅ stands for dot 

product): 1. for any real α , xxx ααα =⊗=⊗ and 

1,
( , )

0,
i j

i j
X X

i j

∗ =
= 

≠
. (2) 

One can consider (1) as a decomposition of the 

second order tensor (r-rank) X by a system of 

“coordinate” tensors Xi (1-rank). It is interesting to 

underline that singular values iλ  can interpreted as 

magnitudes of the projections of tensor X onto 

tensors Xi (i=1,2,…,r).                 The justification of 

such interpretation follows from orthonormality of 

vectors ui (i=1,2,…,K) and vi (i=1,2,…,L)  

:
1

,
( , ) ( , ) ( (( ),( ))

0,

r
j

j i i j i i i j j

i

i j
X X X X u v u v

i j

λ
λ λ

=

=
= = ⊗ ⊗ =

≠
∑ . 

If singular values and both types of singular 

vectors are known, one may use decomposition (1). 

Now we are interested in inverse problem: define 

singular values and both types of singular vectors, 

using matrix X and decomposition (1). It can be 

done by means of consequent computation of 

matrices H1, by means of minimization of the sum 

of the squared errors between the elements of X and 

the corresponding elements of  H1. The squared sum 

of errors can be represented as follows  

2 2 2

1 1 1 1

( ) ( )
K L K L

ij ij ij i j

i j i j

S x h x a b
= = = =

= − = −∑∑ ∑∑ .  

Clear, that it is a function of (K+L)
2
 unknown 

variables ( , 1,..., )j

ia i j K=  and  ( , 1,..., )j

ib i j L= . 

So, minimization of the S
2
 leads to the system of 

equations  

2

1 1

( ) 0; ( 1,..., )
L L

ij j i j

j j

x b a b i K
= =

− = =∑ ∑  

2

1 1

( ) 0. ( 1,..., )
K K

mn m n m

m m

x a b a n L
= =

− = =∑ ∑   (3) 

Solution of the system gives vectors a and b, which 

define the best approximation of matrix X by 1-rank 

matrix H1. In fact, the matrix H1 is the first term in 

decomposition (1). Then, applying the same 

procedure to matrix X2=X-H1, we are getting the 

second term H2 and so on. 

Now, there is a problem - how to solve the 

system (3), because we have already reduced the 

problem of computation of (1) to the problem of 

solution of the system (3).  Few analysis permits to 

conclude, that the system can’t be solved 

analytically, so we elaborated numerical approach, 

which is the core of an algorithm of SVD by means 

of 1-rank tensors approximation. Below we 

                                                                               

2. ),)(,(),),(())(),(( uxvyuxvyuvyx ==⊗⊗ . The 

last one is the full contraction of tensors )( yx⊗  and )( uv⊗ . 
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represent full algorithm of the system (3) solution 

and SVD by means of approximation by 1-rank 

tensors, which is completely based on the above 

theoretical consideration. 

 

3. 1-rank tensors approximation 

algorithm of SVD problem 

solution.  
Now we can represent the method, which, in 

fact, is a method of solution of the system (3). It 

starts with the choosing of any arbitrary matrix 

(vector) a
(1)

 with the dimensions K×1.  

The elaborated method consists of cycles and 

iterations. Total number of cycles equals to r where 

r is the rank of the matrix X or number of singular 

values of the matrix X. Each cycle consists of 

iterations and at the end of cycle i we have Hi where 

Hi is a component of decomposition ∑
=

=
r

i

iHX
1

and 

i is the number of current cycle. Iterations are 

computed by means of the following steps.  

Step 1: Choose arbitrary vector
(0)a . 

Step 2: Construct a matrix using tensor 

product (0) (0) (0)w a b= ⊗ where b
(0)

 is a vector with 

unknown components; upper index in brackets 

shows number of iterations. These components can 

be computed by means of minimizing of Frobenius 

norm [2, 6] of differences between matrices X and 

w
(0)

    

(0) (0) 2

1
1 1

min ( )
i

K L

ij i j
a m

i j

x a b
≤ ≤

= =

 
− 

 
∑∑ . (4) 

Clear that minimizing of this norm is a special 

case of least square method [8]. As a result we shall 

have to get normal equations with respect to 

unknown components of   vector b 

( )
( ) ( )( )

2

(0) (0)

21 1 (0) (0)

(0)
1

2 0

K L

ij i j
L

i j

i ij i j

ij

x a b

a x a b
b

= =

=

 
∂ −  
  = − − =

∂

∑∑
∑  .  

( j=1,2,…,K)   

The latter is a normal equation for 

minimization problem of  (4). It is easy to define 

now unknown values of bj : 

( )

(0)

(0) 1

2
(0)

1

, where 1, , .

L

ij i

i
j L

i

i

x a

b j K

a

=

=

= =
∑

∑
K

  

(5) 

Step 3: Next step of the algorithm consists of 

calculation of 
(1)

ia  on the base of solution of the 

following problem  

( )
2

(1) (0)

1
1 1

min .
i

K L

ij i j
a K

i j

x a b
≤ ≤

= =

 
−  

 
∑∑   (6) 

Similar to (5), it is easy to represent the 

solution of (6) as 

( )

(0)

1(1)

2
(0)

1

, where 1, , .

K

ij j

j

i K

j

j

x b

a i L

b

=

=

= =
∑

∑
K   (7) 

Using (7) one can construct a new matrix 
(1) (1) (0)w a b= ⊗  . If Frobenius norm of difference 

of matrices w
(0)

 and w
(1)

  

( )
2

2
(0) (1) (0) (0) (1) (0)

1 1

L K

i j i j

i j

w w a b a b
= =

− = −∑∑
 

is greater than predefined accuracy ε, then we 

start new iteration going to step 2. In general while 

iteration i , we have matrix  
( ) ( 1)

( )

( ) ( )

, 2 1

, 2

k k

j

k k

a b j k
w

a b j k

− ⊗ = −
= 

⊗ =
. 

At the end of each iteration we check 

inequality
2

( 1) ( )j j
w w ε− − ≤ . If it holds we have to 

stop iterations and this is the end of current cycle 

and denote matrix w
(i)

 as H(1). Note that H(1) is the 

first component in SVD of matrix X.   

To start next cycle we calculate X- H(1)= X(2). 

The matrix defines new system of type (3), then we 

apply all above mentioned iteration to the system 

and so on till we get matrix X(r) .  

So we will get X=H1+H2 +...+Hr+Xn where Xn 

is very small which can be neglect able. So as a 

result  

∑∑∑ ⊗=⊗==
==

,
11

iiii

r

i

i

r

i

i vubaHX λ   (8) 

where iii ua λ= and iii vb λ= . The latter 

follows that left and right singular vectors can be 

represented as  

i
i

i

a
u

a
=  and i

i

i

b
v

b
=      

and taking into account (8) singular values 

can be represented as  

i i ia bλ = .  

Thus, the represented algorithm solves the 

inverse problem defined above: define singular 

values and both types of singular vectors, using 

matrix X and decomposition 

∑∑
==

==
r

i

ii

r

i

i HXX
11

λ . 
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4. Numerical Example  
Below we represent result of application of 

suggested algorithm to computation of singular 

values and both (left and right) singular values of 7 

x 9 singular matrix X (Table 1). Corresponding 

procedures were written in MatLab   

programming language. 
 

7 x 9 singular matrix X                    Table 1 

91 56 28 41 70 47 53 39 87 

84 69 61 95 21 50 49 80 47 

22 90 67 91 57 90 5 95 74 

89 39 99 68 4 78 7 11 27 

39 96 27 96 78 99 95 9 37 

30 80 22 33 21 22 81 98 99 

10 100 95 22 2 53 5 94 43 

 

All results of computations are 

represented in below Tables. 
 

First four left singular vectors.  Table 2 

Vector 1 Vector 2 Vector 3 Vector 4 

-0.3557 -0.3059 -0.2090 0.4682 

-0.4095 -0.0077 0.1119 0.3138 

-0.4477 0.2461 0.0682 -0.3997 

-0.3127 -0.0969 0.7104 0.3154 

-0.4126 -0.6178 -0.0791 -0.5697 

-0.3551 0.2047 -0.6447 0.2434 

-0.3336 0.6425 0.1121 -0.1981 

 

 

 

 

Last three left singular 

vectors.                        Table 3              

Vector 5 Vector 6 Vector 7 

0.5038 -0.3850 0.3390 

-0.3163 0.6646 0.4238 

0.6403 0.3451 -0.2134 

-0.1101 -0.2063 -0.4837 

-0.3067 -0.1478 0.0356 

-0.2748 -0.0153 -0.5305 

-0.2332 -0.4759 0.3785 

 

First five right singular vectors.                      Table 4 

Vector1  Vector3 Vector3 Vector4 Vector5 

-0.2916 -0.3114 0.2578 0.7500 0.0168 

-0.4380 0.1586 -0.1380 -0.3240 -0.2463 

-0.3177 0.3366 0.5353 0.0826 -0.1586 

-0.3775 -0.2585 0.2301 -0.1780 -0.0370 

-0.2180 -0.3641 -0.1909 -0.2300 0.5661 

-0.3647 -0.1641 0.3146 -0.3702 0.1334 

-0.2449 -0.3958 -0.4533 0.0526 -0.6383 

-0.3522 0.6099 -0.2917 0.0943 0.0386 

-0.3393 0.0983 -0.3860 0.3041 0.4066 
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Last four right singular vectors.          Table 5                     

Vector 6 Vector 7 Vector 8 Vector 9  

-0.0182 0.3276 -0.2030 -0.1999 

-0.2955 0.3698 -0.5787 0.1984 

-0.3216 -0.0651 0.4746 0.3666 

0.7447 -0.1607 -0.0908 0.3406 

-0.1309 0.4495 0.4070 0.1589 

-0.1901 -0.3244 -0.0322 -0.6663 

-0.0983 -0.1404 0.3668 -0.0608 

0.3972 0.2240 0.2462 -0.3741 

-0.1834 -0.5905 -0.1690 0.2397 

 It easy verify that the same results could be 

obtained by means of corresponding MatLab 

software. 

5. Conclusion.  
A new method of computation of singular values 

and left and right singular vectors of arbitrary non-

square matrices has been proposed. The method 

permits to avoid solutions of high rank systems of 

linear equations of singular value decomposition 

problem. On the base of Eckart-Young theorem, it 

was shown that each second order r-rank tensor can 

be represent as a sum of the first rank r-order 

“coordinate” tensors.  

 

 

 

 

 

 

 

 

 

 

 

 

A new system of equations for “coordinate” tensor’s 

generators vectors was obtained. An iterative 

method of solution of the system was elaborated. 

Results of the method were compared with classical 

methods of solutions of singular value 

decomposition problem.   
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