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Abstract: Various methods can be used for nonlinear, dynamic-system identification and Gaussian process (GP)
model is a relatively recent one. The GP model is an example of a probabilistic, nonparametric model with
uncertainty predictions. It possesses several interesting features like model predictions contain the measure of
confidence. Further, the model has a small number of training parameters, a facilitated structure determination and
different possibilities of including prior knowledge about the modelled system. The framework for the identifi-
cation of dynamic systems with GP models are presented and an overview of recent advances in the research of
dynamic-system identification with GP models and its applications are given.
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1 Introduction

This paper provides an overview of recent devel-
opments and applications of Gaussian process (GP)
models for experimental modelling of dynamic sys-
tems.

GP models provide a probabilistic, nonparamet-
ric modelling approach for black-box identification
of nonlinear dynamic systems. They can highlight
areas of the input space where prediction quality is
poor, due to the lack of data or its complexity, by
indicating the higher variance around the predicted
mean. GP models contain noticeably less coefficients
to be optimised than commonly used parametric mod-
els. This approach to modelling is not considered
as a replacement to any existing system-identification
method, but rather as a complementary approach to
modelling. The drawback of GP models is their con-
siderable computational burden. This burden may be
perceived as an obstacle for GP models in dynamic-
systems modelling.

The structure of the paper is as follows. Principles
of GPaussian process modelling are briefly described
in the next section. Survey of recent advances of dy-
namic GP models is given in the third section. Recent
applications of dynamic GP models are presented in
the fourth section. Trends, challenges and research
opportunities are given in the fifth section.

2 Systems modelling with Gaussian
processes

A GP model is a probabilistic, nonparametric model
for the prediction of output-variable distributions. Its
use and properties for modelling are thoroughly de-
scribed in [1]. Here, only a brief description is given.

A Gaussian process is a collection of random vari-
ables which have a joint multivariate Gaussian distri-
bution. Assuming a relationship of the form y = f(x)
between input x and output y, we have y1, . . . , yn ∼
N (0,Σ), where elements of the covariance matrix Σ,
namely, Σpq = Cov(yp, yq) = C(xp,xq) give the co-
variance between output points corresponding to input
points xp and xq. Thus, the mean μ(x) and the covari-
ance function C(xp,xq) fully specify the GP.

The value of covariance function C(xp,xq) ex-
presses the correlation between the individual outputs
f(xp) and f(xq) with respect to inputs xp and xq.
Note that the covariance function C(·, ·) can be any
function that generates a positive semi-definite covari-
ance matrix. It is usually composed of two parts:

C(xp,xq) = Cf (xp,xq) + Cn(xp,xq), (1)

where Cf represents the functional part and describes
the unknown system we are modelling, and Cn rep-
resents the noise part and describes the model of the
noise.
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A frequently chosen covariance function con-
sists of the square exponential covariance function for
functional part Cf and the constant covariance func-
tion for the noise part Cn, and is of the following form:

C(xp,xq) = v1 exp

[
−1

2

D∑
d=1

wd(xdp−xdq)
2

]
+δpqv0

(2)
where wd, v0, v1 are the ’hyperparameters’ of the co-
variance function, D is the dimension of input space,
and δpq = 1 if p = q and 0 otherwise. The
hyperparameters can be written as a vector Θ =
[w1 . . . wD v0 v1]

T . This covariance function is
smooth and continuous. It presumes that the process
is stationary and that the noise is white. Other forms
and combinations of covariance functions suitable for
various applications can be found in [1]. For a given
problem, the hyperparameter values are learned using
the data at hand.

To accurately reflect the correlations present in
the training data, the hyperparameters of the covari-
ance function need to be optimised. Due to the
probabilistic nature of the GP models, a probabilis-
tic approach to the optimisation of the model is used.
Instead of minimizing the model error, the log of
marginal likelihood is maximized.

GP models can be easily utilized for regression
calculation. Consider a set of N D-dimensional input
vectors X = [x1,x2, . . . ,xN ] and a vector of out-
put data y = [y1, y2, . . . , yN ]T . Based on the data
(X,y), and given a new input vector x∗, we wish to
find the predictive distribution of the corresponding
output y∗. Based on training set X, a covariance ma-
trix K of size N×N is determined. The overall prob-
lem of learning unknown parameters from data corre-
sponds to the predictive distribution p(y∗|y,X,x∗) of
the new target y, given the training data (y,X) and
a new input x∗. In order to calculate this posterior
distribution, a prior distribution over the hyperparam-
eters p(Θ|y,X) can first be defined, followed by the
integration of the model over the hyperparameters

p(y∗|y,X,x∗) =
∫

p(y∗|Θ,y,X,x∗)p(Θ|y,X)dΘ.

(3)
The computation of such integrals can be difficult
due to the intractable nature of the nonlinear func-
tions. A solution to the problem of intractable inte-
grals is to adopt numerical integration methods such
as the Monte-Carlo approach. Unfortunately, signifi-
cant computational efforts may be required to achieve
a sufficiently accurate approximation.

An alternative approach based on the Maximum
Likelihood optimisation method has been developed
and is applied to maximize the marginal likelihood. It

can be restated as a cost function that is to be maxi-
mized. For numerical scaling purposes the log of the
marginal likelihood is taken:

L(Θ) = −1

2
log(|K|) − 1

2
yTK−1y − N

2
log(2π).

(4)
The predictive distribution of the GP model out-

put for a new test input x∗ has normal probability dis-
tribution with mean and variance

μ(y∗) = k(x∗)TK−1y, (5)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗), (6)

where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x∗)]T is the

N×1 vector of covariances between the test and train-
ing cases, and κ(x∗) = C(x∗,x∗) is the covariance
between the test input itself.

The above modelling procedure was developed
for modelling static nonlinearities, but it can be read-
ily applied for modelling dynamic systems. A dy-
namic GP model is trained as the nonlinear autore-
gressive model with an exogenous input (NARX) rep-
resentation, where the output at time step k depends
on the delayed outputs y and the exogenous control
inputs u:

y(k) = f(y(k − 1), . . . , y(k − n),

u(k − 1), . . . , u(k −m)) + ε(k) (7)

where f denotes a function, ε(k) is white noise and
the output y(k) depends on the state vector x(k) =
[y(k − 1), y(k − 2), . . . , y(k − n), u(k − 1), u(k −
2), . . . , u(k −m)]T at time step k.

For the validation of obtained dynamic GP model
the nonlinear output-error (NOE), also called parallel,
model is used. This means that the NARX model is
used to predict a further step ahead by replacing the
data at instant k with the data at instant k + 1 and
using the prediction ŷ(k) from the previous predic-
tion step instead of the measured y(k). This is then
repeated indefinitely. The latter possibility is equiva-
lent to simulation. Simulation, therefore, means that
only on the basis of previous samples of a process in-
put signal u(k− i) can the model simulate future out-
puts. Frequently, the mean value of prediction ŷ(k) is
used to replace y(k), which is called ‘naive’ simula-
tion. Other possibilities, where the entire distribution
is used, are described in, e.g., [2].

3 Advances in computation of dy-
namic GP models

3.1 On-line data selection and modelling
A noticeable drawback of system identification with
GP models is the computation time necessary for the
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modelling. Regression based on GP models involves
several matrix computations in which the load in-
creases with the third power of the number of in-
put data, such as matrix inversion and the calculation
of the log-determinant of the used covariance matrix.
This computational greed restricts the amount of train-
ing data, to at most a few thousand cases. To over-
come the computational-limitation issues and to also
make use of the method for large-scale dataset ap-
plications, numerous authors have suggested various
sparse approximations,e.g., [3, 4] as well as on-line
modelling, e.g., [5], [6], which is a special kind of
sparse approximate method. A common property to
all sparse approximate methods is that they try to re-
tain the bulk of the information contained in the full
training dataset, but reduce the size of the resultant
covariance matrix so as to facilitate a less computa-
tionally demanding implementation of the GP model.

A recent method for an on-line adapting of GP
models is named Evolving Gaussian process models
[7],[8]. Evolving systems [9] are self-developing sys-
tems inspired by the idea of system model evolution
in a dynamically changing and evolving environment.

The GP models depend on data and covariance
function. More detailed, data is defined with various
regressors and basis vectors, and covariance function
is defined with the type and hyperparameter values.
Therefore, there are four parts that can evolve: regres-
sors, basis vectors, type of covariance function and
hyperparameter values. To overcome the computa-
tional greed necessary for GP model training only the
subset of most informative data, so called basis vec-
tors set, is used. With a type or a combination of var-
ious types of covariance function a prior knowledge
of the system is included in the model. In dynamic
non-linear systems, where the non-linear mapping be-
tween input and output can not be easily formulated,
frequently the squared exponential covariance func-
tion is used presuming smoothness and stationarity
of the system. That means the covariance function
is fixed and does not need to evolve. With optimi-
sation of hyperparameter values, uninfluential regres-
sors have smaller values and as a consequence have
smaller influence to the result. Therefore, all avail-
able regressors can be used. Consequently, only ba-
sis vectors set and hyperparameter values have left to
be evolved. A general concept of evolving GP mod-
els, presented in [7] contains following steps: add new
data to the set of most informative data, calculate in-
formation gain for all most informative data, remove
worst data, calculate hyperparameter values and up-
date covariance matrix. These basic steps are repeated
for every in-coming sample of data until there is no
more available data or until a requirement to stop the
process is received.

3.2 Stochastic optimisation for initial values
computation

The quality of GP models heavily depends on the co-
variance matrix. To calculate it, a covariance func-
tion needs to be selected according to the user’s prior
knowledge. Then the model can be further adjusted to
data with appropriate tuning of hyperparameters. This
can be done with various optimisation algorithms.
For this purpose a conjugate gradient method is often
used. Due to its deterministic nature, its success heav-
ily depends on the initial values of hyperparameters,
specially for complex systems. In this case stochastic
methods seem appropriate. Three stochastic optimi-
sation methods, i.e., Genetic Algorithm, Differential
Evolution and Particle Swarm Optimisation, from the
domain of evolutionary computation for hyperparam-
eters optimisation were tested on a case study in [10].
The results from experimental work indicate that se-
lected evolutionary algorithms, specially Differential
Evolution and Particle Swarm Optimisation, success-
fully avoid local optima and find near-optimal values.
Therefore, they seem useful, not so much for optimis-
ing multi-dimensional GP models, as for finding good
initial values of hyperparameters.

3.3 Parallel processing for computing accel-
eration

The alternative to fight the computational limitation
issues of GP modelling is to approach the computation
problem from the utilised hardware technology point
of view. Since hardware capabilities are increasing
from day to day, this approach might seem inefficient
when looking over the longer term, but it is undoubt-
edly effective in the short term. The demonstration
and comparisson of the computational efficiency of
Graphical Process Units for GP model identification
that are affordable for most research groups via per-
sonal computer graphic cards is the topic of the paper
[11].

The assessment on the dynamic-system identifi-
cation and simulation case study revealed that using a
Graphical Process Units computing architecture has
benefits in accelerating the GP model identification
and the MCMC simulation. It also demonstrated that
the traditional naive approach to the simulation of a
GP model does not benefit from GPU acceleration as
a result of its sequential nature. As hardware capa-
bilities are improving constantly and research on effi-
cient algorithms is on-going, the presented assessment
might not be of longterm value. However, it offers
a state-of-the-art comparison of affordable hardware
configuration that might help to circumvent the com-
putational issue in an intermediate time frame before
more efficient algorithms or better technology arrive.
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4 Recent applications of dynamic GP
models

4.1 Control systems design
The control design faces the challenge of more and
more complex systems to be controlled. On the other
hand the development of control technology has given
the ability to design control for increasingly uncertain
systems, es- pecially away from typical engineering
fields, e.g., biosys- tems. The control based on GP
models is an approach that may be promising for treat-
ing such systems. A number of publications where GP
models have been used for the control design or as the
part of controller appeared in recent years. A more
thorough overview is given in [12]. These methods
can be roughly divided into following groups:

- Control based on models of inverse process dy-
namics; Beside direct inverse model [13], which
is of more theoretical value, Inverse Dynamics
Control [14] and GP inverse model as feedfor-
ward [15],[14] have found their applications in
robotics.

- Model-based predictive control; There are many
different model-based predictive control struc-
tures that have been tested with GP models.
These are: Internal Model Control [16], Pre-
dictive Functional Control [17], predictive con-
trol with general cost function [18] and approxi-
mate explicit stochastic nonlinear predictive con-
trol [19]. Only some of the references are cited
for this very popular control-method family.

- Gain-scheduling control; A Fixed-Structure GP
model is introduced in [20]. This kind of model
is a model with predetermined linear structure
with varying and probabilistic parameters repre-
sented by GP models. FSGP can be used for the
gain-scheduling control design. In this case local
controllers are designed for selected local model
of the process.

- Adaptive control; Adaptive controller is the con-
troller that continuously adapts to some chang-
ing process. When using the GP model for the
adaptive control, different from gain-scheduling
control, the GP model is identified on-line and
this model is used in the control algorithm. Some
of examples of such control algorithms are pub-
lished in [7], [21], [22] and [23].

4.2 Fault detection
A fault detection approach based on GP model is pro-
posed in papers [24] and [25]. The problem described
is how to deal with insufficiently validated models

during surveillance of nonlinear plants given the fact
that tentative model-plant miss-match in such a case
can cause false alarms. To avoid the risk, a novel
model validity index was suggested in order to quan-
tify the level of confidence associated to the detection
results. This index is based on estimated distance be-
tween the current process data from data employed in
the learning set.

4.3 Bayesian filtering
GP-BayesFilters [26] are a general framework for in-
tegrating GP prediction and observation models into
Bayesian filtering techniques, including particle fil-
ters and extended and unscented Kalman filters. GP-
BayesFilters have been shown to be extremely well
suited for systems for which accurate parametric mod-
els are difficult to obtain. GP-BayesFilters learn non-
parametric models from training data containing se-
quences of control inputs, observations, and ground
truth states. Recent advances in this are can be found
in papers, e.g., [27],[28],[26].

5 Trends, challenges and research
opportunities

Several research topics remain not enough explored
before GP models will become mature technology
ready to use in the engineering practice.

Research opportunities can be roughly divided as
follows: firstly to issues concerning dynamic systems
modelling with GP models, secondly issues concern-
ing the control design based on dynamic GP models
and thirdly some general issues related to the GP mod-
elling. The given list of issues is subjective and heav-
ily based on the available information about on-going
research activities throughout the world.

Modelling trends and issues. The computational
burden that increases with increasing number of
the data contained in the model, caused mainly
by calculation of the inverse covariance matrix,
directs researchers to find more efficient methods
for the inverse covariance matrix calculation or
the input data selection. The issue of automat-
ically polishing data and finding informative
portions is reported as one of key issues in
dynamic system identification in general [29]
and remains one of current challenges also in the
GP modelling research.

The issue of recursive model identification is
the issue that is closely linked to applications
like adaptive control methods. In the machine
learning community this kind of identification is
known as on-line learning, which is not limited
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only to sequentially in-streaming data. The effi-
cient method for recursive identification of the
GP model still remains an unanswered challenge.

Further, methods for developing GP state-space
models [30] still offer a lot of unsolved research
problems.

Control design trends and issues. Most of the re-
ported control methods have not addressed
disturbance rejection, which is crucial in control
systems, but have been more focused on the
set-point tracking. The complete assessment of
control methods requires also the disturbance
rejection analysis, which in many cases still
remain an unexplored issue.

First results that have a potential for control
applications is also modelling of switching
systems, e.g., [31].

If control methods are meant to be used in
engineering practice more results on robust
control design methodologies are necessary. GP
models offer a lot of potential for the robust
control design and offer a lot of research and
application opportunities.

Some general issues that need to be brought-up are
benchmarking of modelling as well as bench-
marking of GP models’ applications like control
design methods, with purpose to assess different
methods properly and fairly. A giant step to
bring research results closer to the engineering
practice is the integration of knowledge and
software upgrade from pieces scattered around,
mainly on the internet, into the user-friendly
integrated software.

Research opportunities lay also in developing
methods and procedures for various kinds anal-
yses of dynamic-system models and closed-loop
systems. Model-simulations stability and closed-
loop stability are only two, very different, but im-
portant and challenging problems among many
to be addressed.

6 Conclusions
The ever-increasing demands of new and existing ap-
plications are the driving factor behind the continued
research into alternative system identification meth-
ods. Further the development of technology triggered
the interest in modelling increasingly uncertain sys-
tems, especially away from typical engineering fields,

e.g., biosystems. The design based on GP models is
an approach that may be promising for treating such
systems.

This paper provides the overview of some recent
applications of GP models used for dynamic system
identification described in various publications. Fur-
ther, it lists some recent applications of dynamic GP
models. These applications are control systems de-
sign, fault detection and Bayesian filtering.

The survey touched also possible trends, chal-
lenges and research opportunities. It was shown that a
number of challenges and research opportunities that
will bring the method to the level of maturity appro-
priate for engineering practice still lie ahead.
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[16] G. Gregorčič and G. Lightbody, “Gaussian pro-
cess internal model control,” International Jour-
nal of Systems Science, pp. 1–16, 2011.

[17] J. Kocijan and R. Murray-Smith, “Nonlin-
ear predictive control with Gaussian process
model,” in Switching and Learning in Feedback
Systems (R. Murray-Smith and R. Shorten, eds.),
vol. 3355 of Lecture Notes in Computer Science,
pp. 185–200, Springer, 2005.

[18] A. Grancharova and J. Kocijan, “Stochastic pre-
dictive control of a thermoelectric power plant,”
in Proceedings of the International Conference
Automatics and Informatics07, (Sofia), pp. I–
13–I–16, 2007.

[19] A. Grancharova, J. Kocijan, and T. A. Johansen,
“Explicit stochastic predictive control of com-
bustion plants based on gaussian process mod-
els,” Automatica, vol. 44, no. 4, pp. 1621–1631,
2008.
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