Implementation of Mobile Robot by Using Double-Scroll Chaotic Attractors

CHRISTOS K. VOLOS AND N.G. BARDIS
Faculty of Mathematics and Engineering Studies
Department of Military Sciences
Univ. of Military Education - Hellenic Army
Academy
Athens, GR-16673
GREECE
chvolos@gmail.com, bardis@ieee.org

IOANNIS M. KYPRIANIDIS AND IOANNIS N. STOUBOULOS
Department of Physics
Aristotle University of Thessaloniki
Thessaloniki, GR-54124
GREECE
imkypr@auth.gr, stouboulos@physics.auth.gr

Abstract: - In the present work, the chaotic motion control of a mobile robot is studied, in order to cover a terrain with unpredictable way. The proposed control strategy is based on a chaotic path planning generator. As a chaotic generator, we have used three different nonlinear dynamical systems, the Chua oscillator, the Lorenz system, and a nonlinear circuit with a nonlinear resistor having an i-v characteristic based on a saturation function. The comparative results show that the third system has significantly bigger terrain coverage, among the proposed dynamical systems.

Key-Words: - Mobile robot, motion control, chaos, Chua circuit, Lorenz system, double-scroll chaotic attractors.

1 Introduction
In the last decades the research field of autonomous mobile robots has become a topic of great interest because of its ever-increasing applications in various activities. Industrial transportation, floor-cleaning devices and fire fighting devices have been developed accenting autonomous mobile robots as very useful tools in industrial and civil life [1,2]. Also, many military activities, which put human integrity in risk, such as the surveillance of terrains, the terrain exploration for explosives or dangerous materials and the patrolling for intrusion in military facilities, have driven to the development of intelligent robotic systems [3-5].

Especially, in these military missions robotic systems must have some very important features such as the perception and identification of the target, the positioning of the robot on the terrain and the updating of the terrain’s map. However, the most useful feature, determining the success of these military missions, is the path planning. For this reason many research teams try to find the way to generate a trajectory, which will guarantee the surveillance of the entire terrain or the finding of the explosives. Furthermore, in the case of patrolling for intrusion, the path of the robot must be as much difficult to be predicted by the intruder as possible. So, the mission of patrolling a terrain with a mobile robot is an issue that has to do with finding a plan which must satisfy three major targets: the unpredictability of the trajectory, the scan of the entire terrain and the fast scanning of the robot’s workplace. These are the basic requirements for selecting the most suitable autonomous mobile robots for the specific kind of missions.

These characteristics were the beginning of using nonlinear dynamical systems in the development of autonomous mobile robots, especially in the last decade [6-8]. As it is known, nonlinear systems have a very rich dynamic behavior, showing a variety of chaotic phenomena. This chaotic behavior is the reason for which nonlinear systems have been used in many other engineering fields such as communications, cryptography, random bits generators and neuronal networks [9-12].

The aim of using nonlinear systems in autonomous robots is achieved by designing controllers, which ensure chaotic motion. Signals, which are produced by chaotic systems or circuits, are used to guide autonomous robots for exploration of a terrain for vigilance, search or de-mining tasks. The main feature of chaotic systems, which is the unpredictability, is a necessary condition in the previous mentioned tasks. In the literature very known chaotic systems, such as Arnold dynamical system, Standard or Taylor-Chirikov map, Lorenz system and Chua circuit, have been used [3,4,13-16].
In this work, the driving strategy of a mobile robot is studied, in order to generate the most unpredictable trajectory. This is implemented by using different chaotic path planning generators. The common feature of the used chaotic generators is the produced double-scroll chaotic attractors. The comparative study accentuates the chaotic system with the better results in regard to unpredictability of the trajectory and the coverage rate of the robot’s workplace.

The rest of the paper is organized as follows. In the next section the basic features of chaotic systems are presented. The mathematical model of the nonlinear systems, which is adopted as robot’s driver and the proposed model for the robot are described in Section 3. The simulation results and their analysis are presented in Section 4. Finally, Section 5 includes the conclusions of this work.

2 Chaotic Systems

The basic components of the chaotic robotic systems, which are developed nowadays, are microcontrollers or CPUs for controlling their chaotic motion [4]. Many researchers are trying to impart the main feature of chaotic systems to robots, which is the great sensitivity on initial conditions, so as to show unpredictable trajectories.

A nonlinear dynamical system, in order to be considered as chaotic, must fulfill the following three conditions [17]. It must be topologically mixing, its chaotic orbits must be dense and it must be very sensitive on initial conditions.

Firstly, the term topologically mixing means that the chaotic dynamical system, especially chaotic mobile robot, will move over time so that each designated area of the trajectory will eventually cover part of any particular region. This property of chaotic systems guarantees a complete scan of the entire working space environment.

The second feature of chaotic systems is that its chaotic orbits have to be dense. This means that, the trajectory of a dynamical system is dense, if it comes arbitrarily close to any point in the domain.

Finally, the most important feature of chaotic systems, as it is mentioned, is the sensitivity on initial conditions. This means that a small variation on a system’s initial conditions will produce a totally different chaotic trajectory. This is the feature, which is contributed to the desired robot’s unpredictable trajectory and makes the long-term prediction of this trajectory, based on finite-time measurements, practically impossible.

Therefore, based on these features of chaotic systems, a chaotic trajectory, from the perspective of an intruder, presents a complicated behavior, that does not exhibit any recurrent pattern and seems to be completely random. Nevertheless, these two approaches, chaotic and random, have a very important difference. The chaotic motion is based on determinism, which in the case of mobile robots is an advantage. This happens because the behavior of a robot can be predicted in advance by the system designer. So, an autonomous chaotic mobile robot, with such characteristics, may be used successfully in many missions such as a patrol robot or as a de-mining device.

3 The Mobile Robot Model

Many works on kinematic control of chaotic robots is based on a typical differential motion with two degrees of freedom, composed by two active, parallel and independent wheels and a third passive wheel [3,18]. The active wheels are independently controlled on velocity and rotation sense. A very known commercial model of this type of mobile robots is the mini-robot Khepera (Fig.1).

The proposed mobile robot’s motion is described by the linear velocity \(v(t) [m/s] \), the angle \(\theta(t) [rad] \) describing the orientation of the robot, and the angular velocity \(\omega(t) [rad/s] \). The linear velocity provides a linear motion of the medium point of the wheels axis, while the direction velocity provides a rotational motion of the robot over the same point. In Fig.2 the description of the robot motion on a plane is shown.

Fig.1. The mobile robot Khepera.
The robot’s motion control is described by the following system equation (1).

\[
\begin{pmatrix}
 x(t) \\
 y(t) \\
 \theta(t)
\end{pmatrix} =
\begin{pmatrix}
 \cos \theta(t) & 0 \\
 \sin \theta(t) & 0 \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 v(t) \\
 \omega(t)
\end{pmatrix}
\]

(1)

where, \(\{x(t), y(t)\}\) is the robot’s position on the plane and \(\theta(t)\) is the robot’s orientation. Also, it must be mentioned that in the case in which the robot reaches the borders of the terrain, the robot stops and waits the next direction order to move.

Furthermore, in many cases, robots move in spaces with boundaries like walls or obstacles. So, many robots have sensors, like sonar or infrared devices (like Khepera), which provide the capability to detect the presence of obstacles or even more the recognition of the searched objects or intruders. In this work, for a better understanding of the robot’s kinematic behavior we assume that the robot, by using the proposed control scheme, works in a smooth state space without any sensor.

3 The Double-Scroll Systems

It has been known, that many nonlinear functions can generate chaos. Typical examples are piecewise-linear functions (e.g. Chua’s circuit) [19], the smooth cubic function (e.g. the Duffing oscillator) [20], the smooth quadratic function (e.g. the Lorenz system) and the piecewise-quadratic function [21]. Among them Chua’s circuit is a paradigm for chaos, being a simple nonlinear electrical circuit that exhibits double-scroll chaotic attractors (Fig.3). An alternative way for generating double-scroll like behavior was proposed by means of a simple circuit implementation [22].

Since there are many chaotic systems, which pattern is a good candidate to be chosen for use as a chaotic path planning generator? In general the criterion in many works is the largest possible coverage area through computer simulation.

In this work three of the most well-known double-scroll systems are used. These are the Chua and Lorenz systems, because they were used in previous works, as such a double-scroll chaotic system based on a saturated function proposed by Volos, Kyprianidis and Stouboulos (VKS) [23].

As it is mentioned, the first one is the dimensionless dynamical system (2), which describes the most studied nonlinear circuit, the Chua circuit.

\[
\begin{align*}
\frac{dx}{d\tau} &= \alpha(y - x - f(x)) \\
\frac{dy}{d\tau} &= x - y + z \\
\frac{dz}{d\tau} &= -\beta y
\end{align*}
\]

(2)

where,

\[
f(x) = bx + \frac{1}{2}(a - b)\left|x + 1\right|\left|x - 1\right|
\]

(3)

is the \(i-v\) characteristic of the nonlinear resistor of the circuit.
The Lorenz system (4) is a well-known nonlinear dynamical system introduced by the meteorologist E. N. Lorenz. In this system the control parameters are the Rayleigh number r, the Prandtl number σ, and the geometric factor b.

\[
\begin{align*}
\frac{dx}{d\tau} &= \sigma(-x + y) \\
\frac{dy}{d\tau} &= rx - y - xz \\
\frac{dz}{d\tau} &= -bz + xy
\end{align*}
\]

Finally, the third dynamical system (VKS) is described by the dimensionless system (5).

\[
\begin{align*}
\frac{dx}{d\tau} &= y \\
\frac{dy}{d\tau} &= z \\
\frac{dz}{d\tau} &= -\alpha \cdot (x + y + z) + b \cdot f(x)
\end{align*}
\]

Function $f(x)$ in system’s equation (5) is a saturation function, which is calculated in such a way that the saturation plateaus are ± 1 and the slope of the intermediate linear region is k.

\[
f(x) = \begin{cases}
1, & \text{if } x \geq \frac{1}{k} \\
-kx, & \text{if } -\frac{1}{k} < x < \frac{1}{k} \\
-1, & \text{if } x \leq -\frac{1}{k}
\end{cases}
\]

4 Numerical Simulations

In this work for integrating the three dynamical systems into the proposed robot’s controller a known strategy is used. In all systems the parameter z will be the angular position θ. So, the angular velocity of the robot will be:

\[
\omega = \frac{d\theta}{d\tau} = \frac{dz}{d\tau}
\]

Also, by adding into systems (2), (4) and (5) the two following equations, which correspond to mobile robot’s motion, three five-dimension systems are created.

\[
\begin{align*}
\frac{dX}{d\tau} &= v \cos(nz) \\
\frac{dY}{d\tau} &= v \sin(nz)
\end{align*}
\]

In the above system (X, Y) are the coordinates of the robot’s position on terrain and v is a constant velocity of the mobile robot. Furthermore, n is a factor of normalization so parameter z of each system has the same magnitude. With this technique the three control dynamical systems give comparable results.

To test the proposed control strategy of a mobile robot the results of the numerical simulations are presented in details in this paragraph. For this reason the terrain coverage, using the known coverage rate (C), which represents the effectiveness, as the amount of the total surface covered by the robot running the algorithm, is used. The coverage rate (C) is given by the following equation

\[
C = \frac{1}{M} \sum_{i=1}^{M} I(i)
\]

where, $I(i)$ is the coverage situation for each cell in which the terrain has been divided [24]. This is defined by the following equation

\[
I(i) = \begin{cases}
1, & \text{when the cell } i \text{ is covered} \\
0, & \text{when the cell } i \text{ is not covered}
\end{cases}
\]

where, $i = 1, 2, ..., M$. The robot’s workplace is supposed to be a square terrain with dimensions $M = 20m \times 20m = 400m^2$ in normalized unit cells. Furthermore, a second interesting evaluation criterion is the coverage time of the system, which is the total time for the system to cover the entire terrain.

In this work, the three proposed dynamical systems were solved numerically by using the fourth order Runge-Kutta algorithm. Searching for sets of optimal parameters for the three dynamical systems for generating the best possible patterns is very time-consuming task. Therefore, for convenience,
we retain their original parameters of these systems as used in the literature. So, the parameters, the initial conditions and the factor n of each system, which were chosen in order to appear double-scroll chaotic attractors, are:

- for Chua circuit: \{α, β, a, b\} = \{10, 17.092, 1.364, 0.734\}, (x₀, y₀, z₀) = (0.8, -0.2, 0.4) and n = 4.4,

- for Lorenz system: \{σ, r, b\} = \{5, 28, 0.375\}, (x₀, y₀, z₀) = (1, -1, 2), n = 1 and

- for the VKS system: \{α, b, k\} = \{0.5, 1, 0.5\}, (x₀, y₀, z₀) = (0.5, 0.2, 0.1) and n = 14.7.

Also, in this work the initial position and velocity of the robot were chosen to be: (X, Y) = (10, 10) and v = 1 m/sec. Duration for run-time for simulation in this paper was 1000 sec.

Comparison results of the three proposed dynamical systems, are shown in Figs.4(a)-(c). In these figures simulations of the mobile robot’s behavior of each system are presented. Also, in Table 1 the coverage rate for the three systems are compared. As it is shown, Chua circuit appears the smaller value of coverage rate among the systems. Lorenz system has two times the coverage rate of Chua circuit. Finally, VKS system shows significantly higher value of coverage rate as regards to the other systems. So, from the three proposed dynamical systems, VKS has the better performance, which is obvious in Fig.4(c) where the 40% of the terrain shows to be covered by the robot. This happens because the VKS system produces a mobile robot’s orbit which is constituted by spiral curves that abstain longer distances concerning the other two systems, as it appears in Fig.4(c).

<table>
<thead>
<tr>
<th>System</th>
<th>Coverage Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chua</td>
<td>11.5 %</td>
</tr>
<tr>
<td>Lorenz</td>
<td>23.0 %</td>
</tr>
<tr>
<td>VKS</td>
<td>40.0 %</td>
</tr>
</tbody>
</table>

5 Conclusion
In this paper the driving strategy of a mobile robot is presented, in order to generate the most unpredictable trajectory, as well as the trajectory with the higher coverage rate of a specific terrain. The Chua’s circuit and the Lorenz system, which have been used in previous works [2,4,16], as well as the VSK system, which is based on a saturation function, are compared. The comparison results show that VSK system has significantly higher terrain coverage, which is the criterion of success of such robot’s mission, among the proposed dynamical systems. This is due to the nature of the double scroll chaotic attractors produced by the VSK system.
References: