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Abstract: Multihop ad hoc networks were designed assuming trustworthiness and cooperation between all partic-
ipating nodes; nodes in an ad-hoc network rely on one another in packet forwarding, detecting routes, etc. Thus,
the performance of an ad hoc network degrades considerably with the presence of misbehaving nodes. Nodes’
misbehaviour includes, but is not limited to, refusing to relay data packets, control packets or even sending false
information. In this paper we focus on selfish nodes, which are more concerned about saving their resources than
they are about the network’s good. We are proposing a reputation-based technique that punishes selfish nodes, by
probabilistic dropping of packets destined to such nodes based on their reputation. Punishment is done to encour-
age selfish nodes to cooperate in relaying data packets, and thus our technique decreases the overall percentage of
packet loss in the network by saving packets from being selfishly dropped.
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1 Introduction
The field of wireless ad hoc networks has become
more and more popular over years due to the notice-
able improvements in wireless technologies [1]. Mul-
tihop ad hoc networks are infrastructureless and rely
on their nodes to maintain the network and perform
network operations [2]. A source communicates with
a destination, out of its wireless range, through the
forwarding process done by relay nodes, which are
not directly benefiting from this process [3]. Thus,
there are motivations for the existence of misbehaving
nodes. We categorize nodes’ according to their incen-
tives for misbehaving to selfish and malicious nodes.

We define a selfish node as a node that does not
fully cooperate in forwarding data packets aiming to
save its resources. On the other hand, a malicious
node is one that aims to disturb the network’s regu-
lar behaviour causing partial or local damage, without
concern about its resources. In this paper we are fo-
cusing on encouraging selfish nodes to participate in
the forwarding process and decreasing the percentage
of packet loss in the network. We will name our tech-
nique RTC.

The rest of this paper is organized as follows: In

section 2, we discuss briefly the two main coopera-
tion enforcement technique categories and present dif-
ferent techniques in each category. In section 3, we
specify the assumptions we have made, and explain
our strategy in section 4. In section 5, we present our
simulation scenarios and results and we compare RTC
to DARWIN [4]. Finally, in section 6, we give a brief
conclusion that summarizes our technique and results,
as well as, a brief discussion of possible future work.

2 Literature Survey
Generally, cooperation enforcement techniques fall
under two categories: reputation-based and credit-
based techniques[5, 4, 6].

2.1 Reputation-based techniques
The behaviour of a node is monitored and quantified
through a reputation value. A node’s reputation in-
creases, when it participates cooperatively in relaying
packets. Some techniques base their routing decisions
[7, 8] and/or punishing an uncooperative node on the
node’s reputation value. Decisions can be made either
with first-hand reputation information, or first- and
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second-hand reputation information. Nodes that base
their decisions on first-hand information, rely only on
their own observations. While nodes that use first- and
second-hand reputation rely on routing information
messages, that they received from their neighbours,
as well as their own observations.

J. J. Jaramillo et al., in [4], propose a reputation-
based cooperation enforcement technique based on
game theory concepts. They used the Contrite Tit for
Tat [9] to model the reputation game. In order to avoid
retributive actions a node may take against other nodes
if it was falsely identified as selfish, DARWIN does
not rely on perfect estimation of the probability that
a node forwarded a packet or not. DAWRIN was de-
signed to be collusion resistant, whereas SORI [10]
was not. SORI has three basic components:

• Neighbour monitor Each node monitors its
neighbours’ packet forwarding behaviour, and
uses a metric, named, confidence metric to show
how confident it is about its judgment on each
one of its neighbours. In the implementation of
SORI, the confidence metric was the number of
packets the monitored node was asked to relay
by the monitoring node, i.e. the more the node
asks its neighbour to forward packets, the more
confident it is of its judgment of its neighbour.

• Reputation propagation Nodes forward reputa-
tion information to their neighbours, so that a
misbehaving node is punished by all its neigh-
bours, not only the ones who got hurt from its
selfish behaviour.

• Punishment Probabilistic dropping of packets
destined to a selfish node is done when it’s repu-
tation is below a pre-defined threshold.

CONFIDENT [8] is deployed on the network layer,
as opposed to [4] and [10] on the link layer. It is an
extension to the Dynamic Source Routing (DSR) [11]
protocol that aims to making cooperation more attrac-
tive by detecting and isolating misbehaving nodes. It
is considered reputation-based because a node takes
routing decisions based on the routing and forward-
ing behaviour of other nodes. CONFIDENT has the
following components (on each node):

• Monitor A node employs neighbourhood watch
to detect anomalies.

• Reputation system Each node maintains a list
of local node ratings for each one of its neigh-
bours, which could be exchanged with its altru-
istic neighbours.

• Path manager It is responsible for deleting paths
that contain misbehaving nodes, re-ranking paths
according to the reputation of nodes in the path,
and deciding what should be done when a mis-
behaving node requests a path, or an altruistic re-
quests a path containing misbehaving nodes.

• Trust manager It is responsible for sending warn-
ing of misbehaving nodes.

2.2 Credit-based techniques
Packet forwarding is treated as a commercial deal,
with a form of virtual money. Every time a nodes
forwards a packet it receives payment, which it could
later spend when sending its own packets. These tech-
niques require a form of tamper-resistant hardware or
a virtual bank (trusted third party).

SMART [12] was developed for delay-tolerant
networks, where intermediate nodes should perform
opportunistic data forwarding for bundles of in-transit
messages. It does not need a tamper-proof hardware,
as it relies on a virtual bank. It uses a multilayer coin,
where the sender indicates, for example, the credit
value on the base layer. Intermediate nodes append
their digital signatures on other layers. When the vir-
tual bank receives collected layer coins from nodes,
it calculates the credit for each node and charges the
bundle senders, thus SMART does not require the
sender to take part in the transferring or distribution
of credit. SMART’s security aspect is to secure the
coin.

Luzi Anderegg et al. proposed a game theoretic
approach for routing that works on top of DSR that
tries to find the most efficient route based on energy
efficiency in [13]. They calculate the total energy of
a path by summing up the emission levels used at the
source and the intermediate nodes in that path. [13]
uses the cost-of-energy as the cost parameter. A node
receives payments for every watt it consumes in the
forwarding process. If a node cannot get paid enough,
it is free to refuse forwarding the packet. Ad hoc VCG
technique may fail if the network contains more than
one misbehaving node and in the presence of collud-
ing nodes.

To sum up, reputation-based techniques perform
punishment, or routing decisions in case it was a net-
work layer technique, based on the node’s reputa-
tion. The more a node participates in the network,
the better reputation it has. Thus, in order to avoid
being punished, nodes are motivated to participate in
network operations. On the other hand, credit-based
techniques, consider communication in the network
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as a business deal. Whenever a node wants to send
a message to a destination outside its wireless range,
it pays relay nodes some kind of virtual currency or
points. A relay node is motivated to forward packets
in order to get points that it could later use when it
wants to send a packet to a certain destination. Ac-
cordingly, since reputation-based techniques perform
punishment, they enforce cooperation, while on the
other hand, credit-based techniques are motivational
techniques. In credit-based systems, a node could
simply declare that it would not participate in the for-
warding process if it considers the payment less that it
needs.

3 Assumptions
The following assumptions were made in developing
RTC:

• Selfish nodes are uncooperative when it comes
to relaying data packets, as long as they do not
directly benefit from such packets.

• A node may be selfish in terms of saving its re-
sources, but it is not malicious.

• There are no colluding nodes.

• All nodes in the network have the desire to com-
municate, thus they care about not being isolated
from the network.

• Nodes operate in promiscuous mode in order to
perform behavioural watch.

• Nodes are able to send information about selfish
nodes to their neighbours.

We also assume that selfish nodes are detected via
a detection algorithm [14], and we use this as an input
to RTC for correcting the behaviour of these nodes.

4 Proposed Strategy
4.1 TCP congestion control

Since, RTC is based on TCP congestion control algo-
rithm, we will present a brief background on it and
shed the light on how our technique’s concept map
to those of TCP congestion control algorithm. TCP
employs congestion control to avoid congested links
and to provide fairness in distributing the bandwidth,
of a shared link, among different TCP connections
[15]. TCP congestion control is referred to as an

Table 1: Mapping RTC’s concepts to TCP congestion
control

Point of
compari-
son

TCP conges-
tion control RTC

On oc-
currence
of loss/
dropping

Decrease send-
ing rate multi-
plicatively

Decrease self-
ish node’s
reputation
multiplicatively

On pos-
sible
improve-
ment

Increase send-
ing rate multi-
plicatively

Increase selfish
node’s reputa-
tion additively

Indication
of im-
prove-
ment

Congestion win-
dow reaches a
threshold

% of dropped
packets reaches
a Threshold
βi,e ≥ Ω ∗ βiC

On
reaching
the indi-
cation of
improve-
ment

Increase send-
ing rate addi-
tively

Fast recovery
by increas-
ing node’s
reputation
multiplicatively

additive-increase, multiplicative-decrease (AIMD) al-
gorithm. The sender increases its sending rate linearly
when the end-to-end path is congestion free. When
a loss event occurs, it implies that the path is con-
gested, the sender, then, decreases its rate multiplica-
tively. This behaviour develops a sawtooth pattern.
After a loss event perceived through timeout, when
the sender perceives that the network has recovered
and has the capability of sending at least some seg-
ments, TCP Reno [16] increases the sending rate mul-
tiplicatively. Whereas, if the loss event was perceived
through three duplicate acknowledgments, it increases
the sending rate additively. Table 1 shows the map-
ping of RTC’s concepts to TCP congestion control,
especially TCP Reno [16]. In RTC, possible improve-
ment is when an a selfish node cooperatively relays
a packet. While, possible improvement in TCP con-
gestion control is indicated by receiving an acknowl-
edgment for a packet that was already sent. (Variables
used in this table are explained in details later in this
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section.)

4.2 RTC
Because the cooperation between nodes in an ad hoc
network highly affects the network’s performance, it
is important to encourage selfish nodes to participate
in the forwarding process. We advocate the punish-
ment approach to achieve this goal. First, a node is
identified as selfish, then it is punished for behaving
selfishly. Our contribution is in the punishment of
selfish nodes. However, punishment should be con-
fined by two conditions:

• Selfish nodes react positively when punished and
become active participants in the forwarding pro-
cess.

• Network performance is not negatively affected
by punishment-based packet dropping done by
altruistic nodes.

We propose a reputation-based technique that
punishes selfish node i by probabilistic drop-
ping of packets destined to node i, based on its
ReputationFactor (αi). On the occurrence of an
event e, where a selfish node is asked to relay data
packets, we monitor the behaviour of the selfish
nodes. Inspired by the Additive Increase Multiplica-
tive Decrease (AIMD) behaviour of TCP congestion
control algorithms [17, 16], on the occurrence of e, an
altruistic node updates the ReputationFactor of the
selfish node based on the following:

• Multiplicative Decrease When selfish node i
selfishly drops a packet, it’s ReputationFactor
is decreased multiplicatively by a rate ωdm,
where ωdm < 1 (1).

• Additive Increase When selfish node i is start-
ing to behave properly and participate in the for-
warding process, it’s ReputationFactor is in-
creased additively by a rate ωil, where ωil < 1
(2).

• Multiplicative Increase When a selfish
node i continues to behave altruistically, it’s
ReputationFactor is increased multiplicatively
by a rate ωim, where ωim < 1 (3).

αi,e = ωdm ∗ αi,e−1 (1)

αi,e = ωil + αi,e−1 (2)

αi,e = ωim ∗ αi,e−1 (3)

At each event e involving selfish node i, altru-
istic nodes calculate the % of packets dropped by
node i (βi,e) (4). When i starts to behave properly
and participates in forwarding data packets, altruis-
tic nodes save the value of (βi,e) at the current event
e, where selfish node i started to cooperate in relay-
ing data packets. Node i is continuing to behave
properly when its βi,e reaches the previously stored
βiC multiplied by a correctingFactor (Ω). This the
Threshold (5) for beginning the fast recovery phase,
where altruistic nodes reward node i by increasing its
ReputationFactor multiplicatively (3) for faster re-
covery of reputation.

βi,e =
# of packets dropped by i (di)

total # of packets i was supposed to relay (Ni)
(4)

Threshold = Ω ∗ βiC , where Ω < 1 (5)

The flowchart for RTC, shown in Figure 1, men-
tions a correctingF lag, this is Set when node i
starts to forward data packets, and is Reset if it be-
haves selfishly again. A node that performs relatively
small number of droppings will almost not be pun-
ished by our technique. Such infrequent dropping will
be deemed as noise. One advantage of such feature is
taking into consideration droppings due to any other
factors that are irrelevant to deliberate dropping due
to selfishness, such as network layer dropping. How-
ever, if network layer droppings were extremely large,
it could negatively affect the decisions of our tech-
nique, increasing the number of false positives.

RTC, relies on first- and second-hand reputa-
tion information, and assumes that nodes exchange
reputation information about selfish nodes with their
neighbours. The aim of this paper is to introduce a
reputation-based punishing technique that efficiently
encourages selfish nodes to cooperate in forwarding
data packets. Accordingly, we consider the exchange
of reputation information between nodes a separate
problem that does not directly affect the main aim of
RTC. The frequency of exchanging reputation infor-
mation messages and the overhead this incurs on the
network will be studied in future extension to RTC.
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Figure 1: RTC flowchart

5 Simulation
In this section, we present the results obtained from
employing RTC on a multihop wireless ad hoc net-
work, where selfish nodes exist. Our aim is to encour-
age selfish nodes to cooperate in the packet forward-
ing process, and hence to decrease the percentage of
packet loss, due to selfishness, in the network. We
also compare RTC to DARWIN [4].

5.1 Settings
We implemented our technique on OMNeT++ v2.4
[18]. DSR [11] was used on the network layer, while
at the link layer IEEE 802.11 Distributed Coordina-
tion Function (DCF) was used. We simulated a net-
work of 100 nodes and performed simulations accord-
ing to 9 scenarios, each scenario had a different per-
centage of selfish nodes in the network. We started the
first scenario with 5% selfish nodes, and increased the
percentage of selfish nodes by 5% in each scenario, to
reach 45% selfish nodes. Each scenario was run 10
times for 5 simulation seconds each, with a different
set of selfish nodes in each run.

In RTC, we assume, supported by simulation re-
sults, that network layer packet loss is much less than
packet loss due to selfishness. Recall that relatively
small number of droppings will not disturb the smooth
operation of RTC.

5.2 Results
Figure 2, shows the similarity of the behaviour of the
ReputationFactor, of a randomly picked example
selfish node 6, to the TCP congestion control saw-
tooth pattern [17, 16]. Recall that with RTC, when a
node selfishly drops a packet, its ReputationFactor
is decreased multiplicatively. Whereas, it is increased
cautiously with an additive rate, when it participates
in relaying packets. Upon reaching a certain thresh-
old (ΩβiC), a fast recovery phase begins. During
this phase, as long as the selfish node is continu-
ing to relay packets, its ReputationFactor is in-
creased multiplicatively. Eventually, the selfish node’s
ReputationFactor would reach 1, and would re-
main as such, as long as packet relaying continues.
If the node returns back to its selfish behaviour and
drops a packet, it will be punished by decreasing its
ReputationFactor multiplicatively.

Figure 3, is a plot of the percentage of packets
dropped by an example selfish node 6, with and with-
out employing RTC. From this figure it is clear that
selfish nodes react positively to our punishment tech-
nique and are encouraged to participate in the for-
warding process. The percentage of packets dropped
by selfish node 6 is decreased by, approximately, 33%.
Accordingly, RTC showed to be successful in encour-
aging selfish nodes to be more cooperative while com-
plying to the rules of punishment mentioned in section
4.

Figure 4, shows the relation between the
node’s ReputationFactor and the percentage of
packets dropped by this node. Notice that the
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Figure 2: Behaviour of ReputationFactor

Figure 3: % of dropped packets, with and without
RTC

Figure 4: Relation between a node’s
ReputationFactor and the % of packets it drops

ReputationFactor of selfish node 6 remains fluctu-
ating as long as it is not 100% cooperative. A node’s
ReputationFactor does not reach 1 except when it
is fully cooperative, i.e. it does not perform selfish
dropping of packets.

Figure 5: Relation between the % of selfish nodes and
the % of packet loss in the network

Figure 5, shows the relation between the percent-
age of selfish nodes in the network and the percentage
of packets lost due to selfishness. As the percentage
of selfish nodes increases, the percentage of packet
loss increases. The overall percentage of packet loss
due to selfishness is calculated before and after em-
ploying RTC. Figure 5, shows that although altruistic
nodes perform packet dropping for the sake of punish-
ing selfish nodes, the overall percentage of packet loss
is improved when employing RTC. Again, this com-
plies with the rules of punishment we set in section
4.

To have an insight on the improvement in packet
forwarding we plotted Figure 6 to show the total num-
ber of packets relayed in the presence of selfish nodes,
with and without employing RTC. An interesting ob-
servation is that as the percentage of selfish nodes in-
creases, the difference between the number of packets
relayed without employing RTC and with employing
it increases. Our explanation is that as the percentage
of selfish nodes increases, their negative effect on the
network increases, and the number of packets lost due
to selfishness increases. Employing our strategy en-
courages selfish nodes to behave more cooperatively,
thus a number of packets are forwarded (that would
have been selfishly dropped without RTC) relatively
proportional to the percentage of selfish nodes in the
network. Thus, as the percentage of selfish nodes in-
creases, the amount of packets salvaged from selfish-
ness increases. R gives acceptable results in the pres-
ence of both a small and a relatively large number of
selfish nodes in the network.

We measure the effect of increasing the percent-
age of selfish nodes in a network on the percentage of
packets forwarded. Figure 7 shows the percentage of
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Figure 6: Relation between the number of packets de-
livered and the % of selfish nodes

Figure 7: Comparing RTC to DARWIN [4]

packets forwarded by selfish and cooperative nodes,
and compares them to those obtained by DARWIN.
RTC showed better improvement for both cooperative
and selfish nodes than DARWIN’s. With RTC, the
percentage of packets forwarded by altruistic nodes
remains above 90% in a network with up to 30% self-
ish nodes. In a network with more than 30% of its
nodes acting selfishly, the percentage of packets for-
warded by altruistic and selfish nodes converges with
the increase in the percentage of selfish nodes. This
implies that altruistic nodes are not overused and that
our technique provides fairness in the usage of re-
sources between nodes.

6 Conclusion and Future Work
In this paper we introduce a reputation-based coop-
eration enforcement technique for wireless multihop
ad hoc networks. RTC punishes selfish nodes to en-
courage them to cooperate in the forwarding process.
Punishment is done, based on the selfish node’s rep-
utation, by probabilistic dropping of packets destined
to the selfish node. Although altruistic nodes perform
packet dropping to punish selfish nodes, the overall
percentage of packet loss in the network is decreased.
This implies that our technique successfully motivates
selfish nodes to act more cooperatively in forwarding
data packets. When comparing RTC to DARWIN [4],
it is shown that RTC is more effective in punishing
selfish nodes, while at the same time it does not de-
grade the percentage of packets forwarded by altruis-
tic nodes as much as DARWIN does.
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