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Abstract: - In this paper, the probability density functions (PDFs) of dual branch Switch and Stay Combiner 
(SSC) output signals time derivatives at two time instants in the presence of Weibull fading are determined. 
The second order characteristics as level crossing rate and average fade duration, for complex combiners which 
decide based on sampling at two time instants, can be calculated by using the form of single integral for 
probability density functions, obtained in this paper.  
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1 Introduction 
One of the main causes of signal degradation in 
wireless telecommunication systems is fading [1]. 
Multipath fading, or short term fading, has been 
modelled as Rayleigh, Rice, Nakagami–m and 
Weibull. Empirical studies have shown that Weibull 
distribution model is an effective model in both 
indoor [2] and outdoor [3] environments. 

One of the most efficient method to reduce 
fading influence and improve system’s quality of 
service, without enlarging channel capacity or signal 
power, is to use diversity reception [4] with 
different combining techniques [5] in order to 
acquire as larger as possible signal to noise ratio at 
the output. They are diversity systems with different 
complexities and amounts of channel information 
necessary at the receiver. 

For example, maximal ratio combining (MRC) 
[6] and equal gain combining (EGC) [7] require all 
or some of the channel state information of received 
signal. Because separate receiver chain is needed for 

each branch of diversity system, the system 
complexity and price are increased. Less 
complicated and expensive combining technique is 
selection combining (SC) [8] because SC combiner 
processes only one of diversity branches. Because 
SC receiver processes only one of the diversity 
branches, it is simpler for practical realization. 
There is type of selection combining that chooses 
the branch with highest signal and noise sum [4] and 
in fading environments where the level of the 
cochannel interference is sufficiently high 
comparing with the thermal noise, SC selects the 
branch with the highest signal-to-interference ratio 
(SIR-based selection diversity) [8].  

Finally, SSC is the simplest diversity method but 
with loss in performances. SSC receiver selects one 
antenna until its quality falls below a predetermined 
threshold. After this, receiver switches to second 
antenna whereas the signal from this antenna is 
below or above the threshold [9]. 
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The expressions for probability density functions 
and joint probability density functions for SSC 
combiner output signals at two time instants in the 
presence of different fading distributions are 
determined and then, these expressions are used for 
design of systems with better performances, such as 
the bit error rate and the outage probability. 
Performance analysis of SSC/SC combiner in the 
presence of Rayleigh and log-normal fading are 
given in [10] and [11], respectively. 

The level crossing rate and the average fade 
duration are also very often used in designing of 
wireless communication systems as measures for 
their quality. Channel capacity and second order 
statistics in Weibull fading  are derived in [12]. To 
obtain second order system characteristics we need 
the expressions for signal derivatives [13]. 

Because of this, the probability density functions 
of derivatives in two time instants for SSC combiner 
in Rician, Rayleigh and Nakagami-m fading 
channels are determined in [14]-[16], and the 
probability density functions (PDFs) of the signal 
derivative of dual switch and stay combining (SSC) 
combiner output signals at two time instants in the 
presence of Weibull fading will be derived in this 
paper. 

 
 

2 System Model and Problem 

Formulation 
The system model of dual brunch SSC combiner at 
two time moments is shown in Fig.1. At the first 
time moment the input signals are r11 and r21, but r12 
and r22 at the second time moment. The output 
signals are r1 and r2. The derivatives are 11rɺ  and 21rɺ  

at the first time instant, and 12rɺ  and 22rɺ  at the 
second time instant. The derivatives at the SSC 
combiner outputs are 1rɺ  and 2rɺ . 

The first index represents the branch ordinal 
number and the other time moment observed. At 
output signal the indices correspond to the time 
moments considered. 
 

 
Fig.1. Dual SSC combiner at two time moments 

The probabilities that combiner examines first 
the signal from the first, i.e. second branch are P1, 

i.e. P2. The values of P1 and P2 for SSC combiner 
are obtained in [1]. 

The four different cases depending on the size of 
the input signal with respect to the threshold are 
discussed here: 

I   r1<rT, r2<rT     

In the first case all signals are less then threshold rT, 
i.e.: r11<rT, r12<rT  r21<rT, and r22<rT. Let combiner 
considers first the signal r11. Because of r11<rT, then 

1rɺ = 21rɺ , and because of r22<rT, then 2rɺ = 12rɺ . The 
probability of this advent is P1. If combiner 
examines first the signal r21, then r21<rT, 1rɺ = 11rɺ , 

also r21<rT, 2rɺ = 22rɺ . The probability of this advent is 
P2. 
The possible combinations for this case are 
presented in : 

 r11≥rT,  r12<rT, r22<rT,  1rɺ = 11rɺ  2rɺ = 22rɺ  P1 

 r11<rT, r21≥rT,  r22<rT, r12<rT, 1rɺ = 21rɺ  2rɺ = 12rɺ  P1 

r21≥rT,  r22<rT, r12<rT,  1rɺ = 21rɺ  2rɺ = 12rɺ  P2 

r21<rT, r11≥rT,    r12<rT, r22<rT, 1rɺ = 11rɺ  2rɺ = 22rɺ  P2 

III   r1<rT, r2≥rT     

Now, the possible combinations are: 

 r11<rT, r21<rT,   r22≥rT,   1rɺ = 21rɺ  2rɺ = 22rɺ  P1 

 r11<rT, r21<rT,   r22<rT, r12≥rT,  1rɺ = 21rɺ  2rɺ = 12rɺ  P1 

 r21<rT, r11<rT,   r12≥rT, 1rɺ = 11rɺ  2rɺ = 12rɺ   P2 

 r21<rT, r11<rT,   r12<rT, r22≥rT, 1rɺ = 11rɺ  2rɺ = 22rɺ   P2 

IV r1≥rT, r2≥rT  

In the last case the possible combinations are: 

 r11≥ rT,  r12≥rT,   1rɺ = 11rɺ  2rɺ = 12rɺ   P1 

 r11≥ rT,  r12<rT, r22≥rT  1rɺ = 11rɺ  2rɺ = 22rɺ   P1 

 r11<rT, r21≥rT, r22≥rT,   1rɺ = 21rɺ  2rɺ = 22rɺ   P1 

 r11<rT, r21≥rT, r22<rT, r12<rT 1rɺ = 21rɺ  2rɺ = 12rɺ   P1 

 r21≥rT, r22≥rT,    1rɺ = 21rɺ  2rɺ = 22rɺ  P2 

 r21≥rT, r22<rT, r12≥rT,                   1rɺ = 21rɺ  2rɺ = 12rɺ   P2 

 r21<rT, r11≥rT, r12≥rT,  1rɺ = 11rɺ  2rɺ = 12rɺ   P2 

 r21<rT, r11≥rT,   r12<rT, r22≥rT, 1rɺ = 11rɺ  2rɺ = 22rɺ  P2 
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3 Probability Density Functions of  

Derivatives 
The joint probability density functions of signals 
and derivatives are: 

r1<rT, r2<rT     
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The probability density functions (PDFs) of the 
signals at the combiner input channels in the 
presence of Weibull fading, ri,j, are [17]: 
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where i=1,2, j=1,2, β is the Weibull fading 
parameter where (β≥0) which expresses the severity 
of fading and Ω=E(r

β
). With increasing the value of 

β, the severity of the fading decreases, while for the 
special case of β = 2, Weibull distribution reduces 
to the Rayleigh. 

The probability density functions of signal 
derivatives at the combiner input in the presence of 
Weibull fading have a normal distribution with zero 
mean value and are conditioned on signals [18]: 

2
,

22
, ,

1
( ) ,

2

i j

i

i

r

r i j i j

i

p r e r
σ

πσ

−

= −∞ < < ∞

ɺ

ɺ

ɺ
ɺ ɺ

ɺ

      (6) 

with ββπσ −−Ω= 22222 2 rfmi
ɺ  as variance.  

The joint probability densities of the combiner 
input signals ri,j and their derivatives jir ,ɺ in the 

presence of Weibull fading, are obtained using (5) 
and (6) [18,19]: 
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where fm is the maximum Doppler frequency shift. 

The joint PDF of derivatives at the output can be 
obtained after integrating of the whole range of 
signal values and some mathematical manipulations 
assuming that input signals from different branches 
in the same time moment and from different time 
moments in one branch are independent. 

The signal derivative’s PDFs can be found from 
joint PDF based on [20]: 
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PDF of the signal derivatives are: 
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single integral and are suitable for calculating of the 
level crossing rate and average fade duration. 
 

The signal's CDF can be replaced with [17]: 
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where i=1, 2. 

 
Fig.2. The probability density functions of 

derivatives at the SSC combiner output at two time 
instants 

 
The PDFs of signal derivatives are presented in 

Fig. 2 for different values of parameter iσɺ ,where 
ββπσ −−Ω= 22222 2 rfmi

ɺ , in the case of channels 

with identical distributions. 
 
 

4 Conclusion 
The expressions for probability density functions of 
the signal time derivatives in two time instants are 
introduced in this paper for dual branch SSC 
combiner output signals and for the presence of 
Weibull fading at the input branches. The 
expressions obtained in this paper can be used for 
obtaining the second order characteristics as the 
average level crossing rate and the average fade 
duration for complex SSC/SC and SSC/MRC 
combiners at two time instants.  
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