
Modification of self-organizing migration algorithm for OpenCL

framework

MICHAL PAVLECH, JAN SECKAR

Faculty of Applied Informatics

Tomas Bata University in Zlin

nam. T.G.Masaryka 5555, 760 01 Zlin

Czech Republic

pavlech@fai.utb.cz, seckar@fai.utb.cz

Abstract: - This paper deals with modification of self-organizing migration algorithm using the OpenCL

framework. This modification allows the algorithm to exploit modern parallel devices, like central processing

units and graphics processing units. The main aim was to create algorithm which shows significant speedup

when compared to sequential variant. Second aim was to create the algorithm robust and portable to allow its

execution on a range of different devices. Results of tests presented in this paper show that both aims were

successfully fulfilled.

Key-Words:OpenCL, GPGPU, SOMA, optimization, parallel

1 Introduction
General purpose computing on graphics processing

units (GPGPU) offers the advantages of massively

parallel computing with relatively low cost

hardware. Various scientific fields have already

adopted the GPGPU, including the research in

evolutionary computing. There are three different

frameworks which allow the usage of GPUs for

scientific computation: Open Computing Language

(OpenCL), Compute Unified Device Architecture

(CUDA) and DirectCompute. While there have been

quite a lot of research conducted on the matter of

evolutionary algorithms (EAs) for CUDA

framework the other two frameworks are a lot less

common amongst the scientific papers.

The CUDA framework works only on GPUs

made by Nvidia but supports several operating

systems (OS), DirectCompute supports GPUs from

both major manufacturers (Nvidia and AMD) but

only supports Microsoft OS (Windows 7 and

newer). Great advantage of OpenCL is its ability to

run on GPUs from both major manufacturers as well

as on central processing units (CPUs) from both

Intel and AMD, supported operating systems

include 32 and 64bit varieties of MS Window,

Linux, and OS X. Therefore it is our belief that

OpenCL applications may posses higher added

value and do not carry the possibility of vendor

lock-in for neither hardware nor OS.

Previous uses of OpenCL include several

evolutionary algorithms including the genetic

algorithm [1], evolutionary strategies [2] and

particle swarm optimization [3].

Self-organizing migration algorithm (SOMA) is

an optimization method belonging to the group of

evolutionary algorithms. Its nature makes it

especially suitable for parallel implementations as it

has very low requirements for inter-thread

communication.

The paper is divided as follows: the methods part

describes OpenCL framework, SOMA algorithm,

the modifications of SOMA algorithm which were

necessary for its implementation in OpenCL and

methodology of testing. Second part presents results

of tests in graphical format and is followed by the

discussion.

2 Methods

2.1 OpenCL
OpenCL is an open, free framework for

programming of modern parallel computing devices.

The framework is maintained by Khronos group [4]

which is responsible for development and approval

of new features. The current stable version 1.2 is

supported by all relevant hardware vendors and is

available for a broad range of operating systems.

The main difference between OpenCL and CUDA

framework is that OpenCL is not only aiming at

GPUs but at a wider range of devices. Supported

devices include GPUs (Nvidia and AMD), CPUs

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 302

(Intel and AMD) and mobile processors (ARM).

The developers (and consequently the users) are not

bound to specific hardware or vendor and thus the

programs using OpenCL have larger target

audience.

Because OpenCL programs must be able to run on

high number of different devices (which are

frequently incompatible at the binary level) it was

necessary to employ the online compilation. This

means that programs which have OpenCL

components have to load the source code and

compile it specifically for the device which will then

run the component. The newer versions of

framework make it possible to use offline compilers

and compile the source code into libraries and use

them without compilation each time the application

is launched, but these libraries are device specific

and programs loose their portability.

The execution of OpenCL programs is divided into

two parts based on the hardware which runs the

software component: device and host. The device is

a collection of compute units which run special

functions called the kernels which are executed in

parallel on the device. A compute unit is composed

of one or more processing elements and local

Memory. The host is a hardware which interacts

with the device using the OpenCL context.

The kernels are run on the device using the single

instruction multiple data (SIMD) programming

model. This means that high number of kernels is

executed concurrently on numerous computing units

each one with a distinct data but their instruction set

is equal.

The kernels can be further merged into work-groups

which enable more delicate control over their

execution, with each work-group being executed on

a single computing unit and kernels in a work-group

having access to the shared memory. Kernel in a

work-group is called a work-item.

2.2 SOMA
Self-organizing migration algorithm, SOMA, was

first introduced by Zelinka in 2004 [5]. It is an

evolutionary optimization technique which mimics

the behavior of a pack of semi-intelligent

individuals which cooperate in their search for

resources. In this case the resource is represented by

the minima of the function. SOMA maintains

population of solutions like most of the EAs but due

to its different background it uses slightly different

nomenclature, one optimization round is called

migration instead of generation. The basic version

of SOMA, called AllToOne, finds better solutions

by moving individuals in the solution space towards

the individual with the best fitness (the leader). The

movement distance and coarseness of the search is

controlled by several variables:

o PathLength controls how far from the leader

will active individual stop its movement

o Step controls the length of each discrete

step.

o PRT variable defines the stochastic element

of movement

PRT controls the creation of PRTVector, which

defines if a dimension of solution can or cannot be

changed during this migration. PRTVector is

generated for each individual separately according

to equation:

otherwise0

)1,0(randif1 j

=

<= PRTjPRTVector

 (1)

The movement is then performed using

equation:

() j

ML

startji

ML

jL

ML

startji

ML

tji t PRTVectorxxxx ..,,,,,

1

,, −+=+

(2)

where ML is the number of current migration round,

x
ML

i,j,start is position of active individual at the

beginning of current migration, x
ML

L,j is the position

of the leader,];0[pathLengtht∈ , t = 0, Step,

2*Step,... The cost function for each step is

evaluated and the position of an individual for next

migration round is set to the position with the best

value of cost function found during the movement.

2.3 OCLSOMA
Modification of SOMA for OpenCL framework is

implemented using the official C++ bindings for the

OpenCL. The host portion of the source code is

implemented as a standard C++ class with critical

parts calling the OpenCL API. Most of the OpenCL

functions use one thread per individual.

Great disadvantage of OpenCL over the CUDA is

the lack of native package for generation of random

number on the device, like CURAND. Previous

studies overcame this problem by various methods,

for example by generation of random numbers on

the host and copying to the device [1].

OCLSOMA employs random number generator

(RNG) proposed in [6] and is based on source code

provided by Wes Devauld [7]. The generation of

random numbers is implemented as a kernel and is

run entirely on the device. To ensure that different

sequence of random numbers is generated for each

thread (individual) a different state, which consists

of 6 integer numbers, is maintained for each thread.

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 303

The original state is initialized using the C++ rand()

function and copied to device. Only one number per

thread is copied to device, consecutive kernel call

copies each random number into 5 other numbers

and thus creating RNG state.

The population is stored on the device and is copied

to the host only after a given number of migration

rounds finishes. The population consists of float

values and is stored in a one dimensional array,

where genotype values are followed by fitness

value. Access to particular individuals employs

index translation.

Prior to first migration it is necessary to create an

initial population which is implemented on the

device with a separate kernel. The number of

kernels launched is equivalent to population size,

each kernel obtains random values from RNG and

multiplies them into a range defined for each test

function. After the genotype of whole individual is

generated a cost function is computed and all values

are stored in population array.

Before any individual can perform migration it must

know the position of the leader. Search for the

leader is performed on the device before each

migration round and employs the parallel reduction

technique. The index of the leader is stored in global

memory where it can be accessed by all threads.

A separate kernel is employed for migration, with

migration of each individual being run in a separate

thread. In order to store temporary positions of

individuals and temporary best found value there are

2 more arrays in global memory besides the

population. Both arrays have the same size and

dimensions as population. First array is used for

storing the result of each step during the migration,

second stores best found value during this

migration. After all steps are performed the best

value is copied into population. The leader is not

performing migration, so there is no threat of

rewriting the data of individual which is currently in

use by another thread.

OCLSOMA records its runtimes in 3 separate areas:

o Kernel time – time needed for kernels to

finish.

o Data transfer time – time needed to copy the

data to and from device.

o Initialization time – initialization of

OpenCL and arrays.

These times are used to evaluate performance of

OCLSOMA.

2.4 Performance tests
Performance of OCLSOMA was evaluated on 3

standard test functions with aim to measure the

benefits and flexibility of OpenCL modification. All

test functions are implemented as device functions.

These functions are:

De Jong’s function:

12.512.5

)(
1

2

<<−

=∑
=

i

n

i

i

x

x
xf

 (3)

Schwefel’s function

500500

)]sin([)(
1

<<−

−=∑
=

i

n

i

ii

x

xxxf

(4)

Griewangk’s function

600600

,1)cos(
4000

1
)(

1 1

2

<<−

+−= ∑ ∏
= =

i

n

i

n

i

i
i

x

i

x
xxf

 (5)

All the tests were repeated 10 times and their results

were averaged in order to avoid random glitches.

The tests were run on 3 different devices to show

the ability of OpenCL solution to run on a range of

devices. First two devices were GPUs from both

major manufacturers: Nvidia Tesla C2075 and

AMD Radeon HD 7850. Third device was multi-

core CPU Intel Xeon E5607. Serial implementation

of SOMA was run on the Xeon E5607 CPU to

provide a initial values to which OpenCL variant

can be compared.

It was noticed during the development that the size

of work-group has significant influence on the

performance. To test this issue a test was conducted

with different number of work-items in a work-

group on all 3 devices. The population size was set

to a fixed value of 3072 (number divisible by all

tested work-group sizes), the dimension of test

functions was set to 100. The work-group size was

changed in powers of 2 and time needed to finish 10

migration rounds was measured.

The purpose of the next test was to determine how

OCLSOMA scales to an increasing number of

work-items in this case represented by individuals in

population. The dimension of cost function was set

to 100 and population size was changed from 100 to

2100 in steps of 200. The time needed for 10

migration rounds was measured and the results were

compared to serial implementation.

Last set of tests is targeting the ability of the

algorithm to scale to an increase in computational

complexity which is represented by increase in cost

function’s dimension. The population size was set to

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 304

a fixed value of 1000, the dimension was changing

from 25 to 250 with a step of 25. And as in previous

cases time needed for 10 migration rounds was

measured.

3 Test results

3.1 Work-group test

Fig. 1 Work-group test on Nvidia Tesla C2075

Fig. 2 Work-group test on ATI Radeon 7850

Results showed (Fig. 1 – Fig. 3) that work-group

size has substantial impact on the performance of

OCLSOMA. It can be seen that optimal work-group

size depends more on the cost function than on the

device used. All remaining tests in this paper used

work group size of 32 in order to keep the

consistency across tests however in order to achieve

the top performance it is necessary to run tests for

specific [device; cost function] pairs.

Fig. 3 Work-group test on Intel Xon E5607

3.2 Population size test

Fig. 4 Population size test – De’Jong’s function

Fig. 5 Population size test – Schwefel’s function

Fig. 6 Population size test – Griewangk’s function

The population tests showed that OCLSOMA can

scale very well to increase in population size. As

can be seen from comparison to sequential version

(Fig. 4 - 6) the OpenCL version of algorithm is

considerably faster that the sequential variant.

Table 1 shows the speedup of OpenCL variants

(population size 2100) on different devices

compared to sequential implementation.

Instances running on GPUs show the highest

speedup but also an instance running on multi-core

CPU outperforms sequential version by a factor of

at least 8.

Table 1 Speedup values of OCLSOMA – population

test

 De'Jong Schwefel Griewangk

Radeon

HD7850 17.0 23.4 36.0

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 305

Tesla C2075 21.3 47.4 59.6

Xeon E5607 8.8 9.1 10.6

3.3 Cost function’s dimension test

Fig. 7 Dimension test De'Jong's function

Fig. 8 Dimension test Schwefel's function

Fig. 9 Dimension test Griewangk's function

Table 2 Speedup values of OCLSOMA –

dimension test
 De'Jong Schwefel Griewangk

Radeon
HD7850

18.9 23.0 32.6

Tesla C2075 18.8 38.5 50.6

Xeon E5607 9.6 9.3 9.1

Tests with increase in cost function’s dimension

(Fig. 7 – Fig. 9) show that OCLSOMA is capable of

scaling to computationally more complex problems.

As with the population tests, the highest values of

speedup were measured for GPU devices, but multi-

core CPU is also a preferable alternative to

sequential variant.

3.4 Composition of time
As a consequence of online compilation feature of

OpenCL programs the runtime of OCLSOMA is

longer than is needed for actual run of SOMA

algorithm and necessary data transfers. Time

measurements used 3 variables for 3 aspects of

algorithm: initialization time (acquisition of

available context, devices compilation, loading of

kernels and setting their arguments), data transfer

time (copying of arrays to and from the device) and

kernel time (all kernel functions – generation of

initial population, generation of random numbers,

cost functions, evolutionary operators). Fig. 10 and

Fig. 11 show total and relative values for these 3

times on Griewangks function, dimension set to 100

running on Xeon E5607.

Fig. 10 Duration of 3 distinct parts of OCLSOMA

The initialization time remained almost constant

without being influenced by population size or cost

function dimension and changed only with regard to

cost function and device (Table 3). The high relative

amount of initialization time for small population

sizes is much less influential for higher sizes. Data

transfer times were so low that they fell bellow the

recognition threshold of standard C++ time

functions.

Fig. 11 The time ratios of 3 distinct parts of

OCLSOMA

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 306

Table 3 Average initialization times

Radeon

HD7850

Tesla

C2075

Xeon

E5607

Initialization

time [ms]

203.9 ±

42.17

64.7 ±

28.00

284 ±

3.40

4 Conclusion
Great advantage of OpenCL framework when

compared to CUDA is its ability to run on broader

range of devices. Thus we were able to test

OCLSOMA on devices from 3 different vendors

and 2 hardware groups.

Tests with 3 artificial functions showed the

performance of OCLSOMA with comparison to

sequential SOMA.

We examined the influence of work-group size on

the algorithm’s performance prior to other tests.

OCLSOMA scaled extremely well to the increase in

population size with the highest recorded speedup of

59.6. The increase in cost function’s dimension

yielded similar, although slightly worse speedup

values.

OpenCL showed promising results on all 3 devices.

It is of no surprise that best speedups were achieved

on a dedicated compute card - Tesla C2075, but the

Radeon offered satisfying results for only a fraction

of priors card’s price. The only CPU in our tests –

Xeon E5607 shows that OpenCL programs can also

utilize multi-core CPUs with profit.

The only notable drawback of OpenCL framework

is the need for online compilation. We examined the

influence of this feature on runtime and conclude

that initialization time remains the roughly the same

for all observed population sizes and thus its

influence decreases as the computational complexity

grows.

Our further work will examine the performance of

SOMA algorithm under both CUDA and OpenCL

frameworks in order to compare their benefits for

parallel evolutionary computation.

Acknowledgements

The research described in this paper was supported

by funding from European Regional Development

Fund under project CEBIA-Tech No.

CZ.1.05/2.1.00/03.0089 and by the internal grant

agency project IGA/FAI/2012/033.

References:

[1] Puzniakowski T, Bednarczyk M. A., Towards

an OpenCL Implementation of Genetic

Algorithms on GPUs, Lecture Notes in

Computer Science, 2012, Volume 7053,

Security and Intelligent Information Systems,

Pages 190-203.

[2] Lırentz I, Andonie R, Malita M, An

Implementation of Evolutionary Computation

Operators in OpenCL, Studies in

Computational Intelligence, 2012, Volume

382/2012, pp. 103-113.

[3] Cagnoni S, Bacchini A, Mussi L, OpenCL

Implementation of Particle Swarm

Optimization: A Comparison between Multi-

core CPU and GPU Performances, Lecture

Notes in Computer Science, 2012, Volume

7248/2012, pp. 406-415.

[4] OpenCL - The open standard for parallel

programming of heterogeneous systems,

[online] Available at:

http://www.khronos.org/opencl/.

[5] Zelinka I, SOMA—self organizing migrating

algorithm, In: New optimization techniques in

engineering, Berlin: Springer 2004.

[6] L'ecuyer P, Simard R, Chen EJ, Kelton WD,

An object-oriented random-number package

with many long streams and substreams,

INFORMS, 2002, Vol. 50, No. 6, pp. 1073-

1075.

[7] Devauld W, Heston-opencl-monte-carlo,

[online] Available at:

https://github.com/wdevauld/heston-opencl-

monte-carlo

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 307

