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Abstract: - This paper deals with modification of self-organizing migration algorithm using the OpenCL 

framework.  This modification allows the algorithm to exploit modern parallel devices, like central processing 

units and graphics processing units. The main aim was to create algorithm which shows significant speedup 

when compared to sequential variant. Second aim was to create the algorithm robust and portable to allow its 

execution on a range of different devices. Results of tests presented in this paper show that both aims were 

successfully fulfilled. 
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1 Introduction 
General purpose computing on graphics processing 

units (GPGPU) offers the advantages of massively 

parallel computing with relatively low cost 

hardware. Various scientific fields have already 

adopted the GPGPU, including the research in 

evolutionary computing. There are three different 

frameworks which allow the usage of GPUs for 

scientific computation: Open Computing Language 

(OpenCL), Compute Unified Device Architecture 

(CUDA) and DirectCompute. While there have been 

quite a lot of research conducted on the matter of 

evolutionary algorithms (EAs) for CUDA 

framework the other two frameworks are a lot less 

common amongst the scientific papers.  

The CUDA framework works only on GPUs 

made by Nvidia but supports several operating 

systems (OS), DirectCompute supports GPUs from 

both major manufacturers (Nvidia and AMD) but 

only supports Microsoft OS (Windows 7 and 

newer). Great advantage of OpenCL is its ability to 

run on GPUs from both major manufacturers as well 

as on central processing units (CPUs) from both 

Intel and AMD, supported operating systems 

include 32 and 64bit varieties of MS Window, 

Linux, and OS X. Therefore it is our belief that 

OpenCL applications may posses higher added 

value and do not carry the possibility of vendor 

lock-in for neither hardware nor OS. 

Previous uses of OpenCL include several 

evolutionary algorithms including the genetic 

algorithm [1], evolutionary strategies [2] and 

particle swarm optimization [3].  

Self-organizing migration algorithm (SOMA) is 

an optimization method belonging to the group of 

evolutionary algorithms. Its nature makes it 

especially suitable for parallel implementations as it 

has very low requirements for inter-thread 

communication.  

The paper is divided as follows: the methods part 

describes OpenCL framework, SOMA algorithm, 

the modifications of SOMA algorithm which were 

necessary for its implementation in OpenCL and 

methodology of testing. Second part presents results 

of tests in graphical format and is followed by the 

discussion. 

 

 

2 Methods 
 

2.1 OpenCL 
OpenCL is an open, free framework for 

programming of modern parallel computing devices. 

The framework is maintained by Khronos group [4] 

which is responsible for development and approval 

of new features. The current stable version 1.2 is 

supported by all relevant hardware vendors and is 

available for a broad range of operating systems. 

The main difference between OpenCL and CUDA 

framework is that OpenCL is not only aiming at 

GPUs but at a wider range of devices. Supported 

devices include GPUs (Nvidia and AMD), CPUs 
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(Intel and AMD) and mobile processors (ARM). 

The developers (and consequently the users) are not 

bound to specific hardware or vendor and thus the 

programs using OpenCL have larger target 

audience. 

Because OpenCL programs must be able to run on 

high number of different devices (which are 

frequently incompatible at the binary level) it was 

necessary to employ the online compilation. This 

means that programs which have OpenCL 

components have to load the source code and 

compile it specifically for the device which will then 

run the component. The newer versions of 

framework make it possible to use offline compilers 

and compile the source code into libraries and use 

them without compilation each time the application 

is launched, but these libraries are device specific 

and programs loose their portability. 

The execution of OpenCL programs is divided into 

two parts based on the hardware which runs the 

software component: device and host. The device is 

a collection of compute units which run special 

functions called the kernels which are executed in 

parallel on the device. A compute unit is composed 

of one or more processing elements and local 

Memory.  The host is a hardware which interacts 

with the device using the OpenCL context. 

The kernels are run on the device using the single 

instruction multiple data (SIMD) programming 

model. This means that high number of kernels is 

executed concurrently on numerous computing units 

each one with a distinct data but their instruction set 

is equal. 

The kernels can be further merged into work-groups 

which enable more delicate control over their 

execution, with each work-group being executed on 

a single computing unit and kernels in a work-group 

having access to the shared memory.  Kernel in a 

work-group is called a work-item. 

 

2.2 SOMA 
Self-organizing migration algorithm, SOMA, was 

first introduced by Zelinka in 2004 [5]. It is an 

evolutionary optimization technique which mimics 

the behavior of a pack of semi-intelligent 

individuals which cooperate in their search for 

resources. In this case the resource is represented by 

the minima of the function. SOMA maintains 

population of solutions like most of the EAs but due 

to its different background it uses slightly different 

nomenclature, one optimization round is called 

migration instead of generation. The basic version 

of SOMA, called AllToOne, finds better solutions 

by moving individuals in the solution space towards 

the individual with the best fitness (the leader). The 

movement distance and coarseness of the search is 

controlled by several variables:  

o PathLength controls how far from the leader 

will active individual stop its movement  

o Step controls the length of each discrete 

step.  

o PRT  variable defines the stochastic element 

of movement 

PRT controls the creation of PRTVector, which 

defines if a dimension of solution can or cannot be 

changed during this migration. PRTVector is 

generated for each individual separately according 

to equation: 
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equation: 
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where ML is the number of current migration round, 

x
ML

i,j,start is position of active individual at the 

beginning of current migration,  x
ML

L,j is the position 

of the leader, ];0[ pathLengtht∈ , t = 0, Step, 

2*Step,... The cost function for each step is 

evaluated and the position of an individual for next 

migration round is set to the position with the best 

value of cost function found during the movement. 

 

2.3 OCLSOMA 
Modification of SOMA for OpenCL framework is 

implemented using the official C++ bindings for the 

OpenCL. The host portion of the source code is 

implemented as a standard C++ class with critical 

parts calling the OpenCL API. Most of the OpenCL 

functions use one thread per individual. 

Great disadvantage of OpenCL over the CUDA is 

the lack of native package for generation of random 

number on the device, like CURAND. Previous 

studies overcame this problem by various methods, 

for example by generation of random numbers on 

the host and copying to the device [1]. 

OCLSOMA employs random number generator 

(RNG) proposed in [6] and is based on source code 

provided by Wes Devauld [7]. The generation of 

random numbers is implemented as a kernel and is 

run entirely on the device. To ensure that different 

sequence of random numbers is generated for each 

thread (individual) a different state, which consists 

of 6 integer numbers, is maintained for each thread. 
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The original state is initialized using the C++ rand() 

function and copied to device. Only one number per 

thread is copied to device, consecutive kernel call 

copies each random number into 5 other numbers 

and thus creating RNG state. 

The population is stored on the device and is copied 

to the host only after a given number of migration 

rounds finishes. The population consists of float 

values and is stored in a one dimensional array, 

where genotype values are followed by fitness 

value. Access to particular individuals employs 

index translation. 

Prior to first migration it is necessary to create an 

initial population which is implemented on the 

device with a separate kernel. The number of 

kernels launched is equivalent to population size, 

each kernel obtains random values from RNG and 

multiplies them into a range defined for each test 

function. After the genotype of whole individual is 

generated a cost function is computed and all values 

are stored in population array. 

Before any individual can perform migration it must 

know the position of the leader. Search for the 

leader is performed on the device before each 

migration round and employs the parallel reduction 

technique. The index of the leader is stored in global 

memory where it can be accessed by all threads. 

A separate kernel is employed for migration, with 

migration of each individual being run in a separate 

thread. In order to store temporary positions of 

individuals and temporary best found value there are 

2 more arrays in global memory besides the 

population. Both arrays have the same size and 

dimensions as population. First array is used for 

storing the result of each step during the migration, 

second stores best found value during this 

migration. After all steps are performed the best 

value is copied into population. The leader is not 

performing migration, so there is no threat of 

rewriting the data of individual which is currently in 

use by another thread.  

OCLSOMA records its runtimes in 3 separate areas: 

o Kernel time – time needed for kernels to 

finish. 

o Data transfer time – time needed to copy the 

data to and from device. 

o Initialization time – initialization of 

OpenCL and arrays. 

These times are used to evaluate performance of 

OCLSOMA. 

 

2.4 Performance tests 
Performance of OCLSOMA was evaluated on 3 

standard test functions with aim to measure the 

benefits and flexibility of OpenCL modification. All 

test functions are implemented as device functions. 

These functions are: 

De Jong’s function: 
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Griewangk’s function 
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All the tests were repeated 10 times and their results 

were averaged in order to avoid random glitches. 

The tests were run on 3 different devices to show 

the ability of OpenCL solution to run on a range of 

devices. First two devices were GPUs from both 

major manufacturers: Nvidia Tesla C2075 and 

AMD Radeon HD 7850. Third device was multi-

core CPU Intel Xeon E5607. Serial implementation 

of SOMA was run on the Xeon E5607 CPU to 

provide a initial values to which OpenCL variant 

can be compared. 

It was noticed during the development that the size 

of work-group has significant influence on the 

performance. To test this issue a test was conducted 

with different number of work-items in a work-

group on all 3 devices. The population size was set 

to a fixed value of 3072 (number divisible by all 

tested work-group sizes), the dimension of test 

functions was set to 100. The work-group size was 

changed in powers of 2 and time needed to finish 10 

migration rounds was measured.  

The purpose of the next test was to determine how 

OCLSOMA scales to an increasing number of 

work-items in this case represented by individuals in 

population. The dimension of cost function was set 

to 100 and population size was changed from 100 to 

2100 in steps of 200. The time needed for 10 

migration rounds was measured and the results were 

compared to serial implementation. 

Last set of tests is targeting the ability of the 

algorithm to scale to an increase in computational 

complexity which is represented by increase in cost 

function’s dimension. The population size was set to 
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a fixed value of 1000, the dimension was changing 

from 25 to 250 with a step of 25. And as in previous 

cases time needed for 10 migration rounds was 

measured. 

 

 

3 Test results 

 
3.1 Work-group test 

 

Fig. 1 Work-group test on Nvidia Tesla C2075 

 

Fig. 2 Work-group test on ATI Radeon 7850 

 

Results showed (Fig. 1 – Fig. 3) that work-group 

size has substantial impact on the performance of 

OCLSOMA. It can be seen that optimal work-group 

size depends more on the cost function than on the 

device used. All remaining tests in this paper used 

work group size of  32 in order to keep the 

consistency across tests however in order to achieve 

the top  performance it is necessary to run tests for 

specific [device; cost function] pairs. 

Fig. 3 Work-group test on Intel Xon E5607 

 

3.2 Population size test 

Fig. 4 Population size test – De’Jong’s function 

 

Fig. 5 Population size test – Schwefel’s function 

 

Fig. 6 Population size test – Griewangk’s function 

 

The population tests showed that OCLSOMA can 

scale very well to increase in population size. As 

can be seen from comparison to sequential version 

(Fig. 4 - 6) the OpenCL version of algorithm is 

considerably faster that the sequential variant. 

Table 1 shows the speedup of OpenCL variants 

(population size 2100) on different devices 

compared to sequential implementation. 

Instances running on GPUs show the highest 

speedup but also an instance running on multi-core 

CPU outperforms sequential version by a factor of 

at least 8. 

Table 1 Speedup values of OCLSOMA – population 

test 

 De'Jong Schwefel Griewangk 

Radeon 

HD7850 17.0 23.4 36.0 
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Tesla C2075 21.3 47.4 59.6 

Xeon E5607 8.8 9.1 10.6 

 

 

3.3 Cost function’s dimension test 

Fig. 7 Dimension test De'Jong's function 

 

Fig. 8 Dimension test Schwefel's function 

 

Fig. 9 Dimension test Griewangk's function 

 

Table 2 Speedup values of OCLSOMA – 

dimension test 
 De'Jong Schwefel Griewangk 

Radeon 
HD7850 

18.9 23.0 32.6 

Tesla C2075 18.8 38.5 50.6 

Xeon E5607 9.6 9.3 9.1 

 

Tests with increase in cost function’s dimension 

(Fig. 7 – Fig. 9) show that OCLSOMA is capable of 

scaling to computationally more complex problems. 

As with the population tests, the highest values of 

speedup were measured for GPU devices, but multi-

core CPU is also a preferable alternative to 

sequential variant. 

 

3.4 Composition of time 
As a consequence of online compilation feature of 

OpenCL programs the runtime of OCLSOMA is 

longer than is needed for actual run of SOMA 

algorithm and necessary data transfers.  Time 

measurements used 3 variables for 3 aspects of 

algorithm: initialization time (acquisition of 

available context, devices compilation, loading of 

kernels and setting their arguments), data transfer 

time (copying of arrays to and from the device) and 

kernel time (all kernel functions – generation of 

initial population, generation of random numbers, 

cost functions, evolutionary operators). Fig. 10 and 

Fig. 11 show total and relative values for these 3 

times on Griewangks function, dimension set to 100 

running on Xeon E5607. 

Fig. 10 Duration of 3 distinct parts of OCLSOMA 

 

The initialization time remained almost constant 

without being influenced by population size or cost 

function dimension and changed only with regard to 

cost function and device (Table 3). The high relative 

amount of initialization time for small population 

sizes is much less influential for higher sizes. Data 

transfer times were so low that they fell bellow the 

recognition threshold of standard C++ time 

functions. 

 

Fig. 11 The time ratios of 3 distinct parts of 

OCLSOMA 
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Table 3 Average initialization times 

 
Radeon 

HD7850 

Tesla 

C2075 

Xeon 

E5607 

Initialization 

time [ms] 

203.9 ± 

42.17 

64.7 ± 

28.00 

284 ± 

3.40 

 

4 Conclusion 
Great advantage of OpenCL framework when 

compared to CUDA is its ability to run on broader 

range of devices. Thus we were able to test 

OCLSOMA on devices from 3 different vendors 

and 2 hardware groups. 

Tests with 3 artificial functions showed the 

performance of OCLSOMA with comparison to 

sequential SOMA. 

We examined the influence of work-group size on 

the algorithm’s performance prior to other tests. 

OCLSOMA scaled extremely well to the increase in 

population size with the highest recorded speedup of 

59.6. The increase in cost function’s dimension 

yielded similar, although slightly worse speedup 

values. 

OpenCL showed promising results on all 3 devices. 

It is of no surprise that best speedups were achieved 

on a dedicated compute card - Tesla C2075, but the 

Radeon offered satisfying results for only a fraction 

of priors card’s price. The only CPU in our tests – 

Xeon E5607 shows that OpenCL programs can also 

utilize multi-core CPUs with profit. 

The only notable drawback of OpenCL framework 

is the need for online compilation. We examined the 

influence of this feature on runtime and conclude 

that initialization time remains the roughly the same 

for all observed population sizes and thus its 

influence decreases as the computational complexity 

grows. 

Our further work will examine the performance of 

SOMA algorithm under both CUDA and OpenCL 

frameworks in order to compare their benefits for 

parallel evolutionary computation. 
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