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Abstract: - Modern graphics processing units offer general purpose parallel computing capabilities. Thus they 

have become a relatively low cost alternative for applications requiring extensive parallel computations. 

Evolutionary algorithms are especially well suited for parallel SIMD architecture. This paper deals with the 

modification of AllToAll variation of self-organizing migration algorithm, which has high computational 

demand for one round of algorithm, using the CUDA framework. The main goal is to speedup performance of 

the algorithm in comparison to CPU implementations. 
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1 Introduction 
Optimization by means of evolutionary algorithms 

(EAs) requires high amount of computational 

power. Therefore every possible speedup of the 

process is a welcome addition for the scientific 

community. 

The introduction of general purpose computing 

frameworks for graphics processing units (GPUs) 

opened new possibilities as GPUs are devices with 

high number of processors capable of performing 

SIMD computations. Probably the best well-known 

and widely used framework is Compute Unified 

Device Architecture (CUDA) which only runs on 

GPUs from nVidia.  

There were several previous works which used 

CUDA to increase performance of numerous EAs, 

some of them are: genetic algorithm [1], particle 

swarm optimization [2] and differential evolution 

[3]. 

The AllToAll variant of self-organizing migration 

algorithm (SOMA) is an EA which has very high 

computational demands per one algorithm round, 

due to high number of cost function evaluations 

needed. The aim of this paper is to create a suitable 

modification of this algorithm for GPUs so that its 

runtimes are lowered to more acceptable values. 

All tests in this paper were repeated 5 times and 

results averaged in order to avoid random glitches 

influencing the results. 

c-CUDA extends C programming language by 

allowing the programmer to define C functions, 

called kernels, that, when called, are executed N 

times in parallel by N different CUDA threads, as 

opposed to only once like regular C functions. The 

CUDA programming model assumes that the 

CUDA threads execute on a physically separate 

device that operates as a coprocessor to the host 

running the C program. This is the case, for 

example, when the kernels execute on a GPU and 

the rest of the C program executes on a CPU. The 

CUDA programming model also assumes that both 

the host and the device maintain their own separate 

memory spaces, referred to as host memory and 

device memory, respectively [4]. 

 

2 Methods 

 
2.1 SOMA and its variations 
SOMA was first introduced by Zelinka in 2004 [5]. 

It is an evolutionary optimization technique which 

mimics the behavior of a cooperative pack of 

animals looking for food. It maintains population of 

solutions like most of the EAs but due to its 

different background it uses slightly different 

nomenclature, one round is called migration instead 

of generation. The basic version of SOMA, called 

AllToOne, finds better solutions by moving 

individuals in the solution space towards the one 

with the best fitness (the leader). The movement 

distance and coarseness of searching the space is 

controlled by two variables: PathLength controls 

how far from the leader will active individual stop 

its movement and Step controls the length of each 

discrete step. In order to introduce stochastic 

element into movement a third variable called PRT 

is present. PRT controls the creation of PRTVector, 
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which defines if a dimension of solution can or 

cannot be changed during this migration. PRTVector 

is generated for each individual separately according 

to equation: 
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The movement is then performed using equation: 
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Where ML is the number of current migration 

round, x
ML

i,j,start is position of active individual at 

beginning of current migration,  x
ML

L,j is the position 

of the leader, t ∈ [0; pathLength], t = 0, Step, 

2*Step,... The cost function for each step is 

evaluated 

Apart from this version of SOMA there are two 

others which require higher computational power 

per migration round, but their convergence should 

be faster. First variant is called AllToAll. 

Individuals are not moving towards single leader, 

but to all remaining individuals in population. After 

moving to one individual the active individual is 

returned to its starting position and starts moving 

towards next one. After performing all the steps its 

position is set to the best position found during 

migrating. Second variant, AllToAllAdaptive is 

essentially the same as AllToAll, but after moving 

towards an individual the active individual is not 

restored to its starting position, but is set to best 

position found during the movement and from this 

position starts its new movement. 

 

2.2 CUSOMA2A  
The modification of SOMA for CUDA framework 

was named CUSOMA2A and is implemented as a 

C++ class with its parts written in c-CUDA. 

In order to find the best adaptation of AllToAll 

algorithm for CUDA 3 different variants were 

programmed which differ in the way in which the 

CUDA threads are utilized for migration. All these 

variants share some common characteristics.  

 

2.2.1 Population scheme 

Population is in form of one dimensional array of 

float values and is a member of a C++ class. It has 

to be copied to the GPU prior to the migration and 

after a preset number of migrations is finished it is 

copied back to host memory where it can be further 

analysed. The internal scheme of population is 

depicted in Fig. 1 and it contains genotype of each 

individual followed by its fitness value. 

 
Fig. 1 Scheme of population in global memory 

 
2.2.2 Population initialization 

The initialization of population to random values 

and the first evaluation of all individuals is realized 

by CUDA kernels.  

The random numbers are generated using the 

cuRAND from CUDA SDK, which allows the 

generation of random numbers with various 

characteristics from within the kernels. If each 

kernel should generate unique sequence of random 

numbers a separate state must be initialized and 

stored for each. These states are stored inside the 

C++ class in one dimensional array and copied to 

device prior to migration. In order to speedup the 

initialization of states a kernel responsible for this is 

launched before the first call of cuRAND generators 

which does this in parallel. The seed of these 

generators is obtained using the standard C++ 

random numbers generator. 

Generation of initial values and evaluation of 

individuals requires launch of populationSize 

kernels with each kernel generating the whole 

genotype of an individual, evaluates it and stores in 

global population. 

Fig. 2 shows schematic view of initialization phase. 

 
Fig. 2 Scheme of population initialization, k is equal to 

number of migration kernels, n to populationSize 

 
2.2.3 Variant A 

The CPU is only responsible for memory copies and 

launching of a number of kernels equal to a 

population size. Each CUDA thread is responsible 
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for migration of one individual towards all the other 

individuals in population. 

This variant puts a lot of load on each thread 

resulting in long running kernels. If the program is 

run on a device which also serves as an output 

device for GUI, long running kernels may be 

terminated by system watchdog timer. Therefore the 

most complex problems should be solved without 

GUI or another GPU should be present for 

displaying the GUI. 

 

2.2.4 Variant B 

This variant shifts a part of load from GPU to the 

CPU. The CPU loops over all individuals in the 

population and launches populationSize kernels. 

Each CUDA thread computes migration of one 

individual towards one target individual and stores 

the best found solution in a global array. After the 

kernels finish, another kernel is launched which 

finds the best individual among the kernels and 

writes it into temporary population. To speedup the 

operation, the search for the best individual is imp-

lamented as a parallel reduction. After the migration 

of all individuals ends, the individuals from the 

temporary population are copied into population and 

new round can begin. 

The logic behind this variant is that CUDA streams 

are running at lower clock speeds than CPUs and 

single streams should be used for tasks which are 

computationally less demanding that those running 

on CPU. Thus kernels in this variant run only 

migration of one individual to another one. 

 

2.2.5 Variant C 

The last variant fully utilizes the ability of GPUs to 

run high numbers of thread simultaneously. This 

variant launches the highest number of kernels equal 

to populationSize × populationSize. Each kernel 

computes migration of one individual towards 

another one, as in variant B, but migration of the 

whole population is not implemented via CPU loop, 

but by utilizing high number of kernel launches. ker 

Each kernel performs migration of an individual 

towards another individual and writes best found 

position and fitness value into global memory. The 

index of active individual is computed according to 

equation: 

SizepopulationxkernelInde /  (3) 

And the index of target individual according to: 

SizepopulationxkernelInde mod  (4) 

If active individual is the same as target individual 

kernel only copies values from active individual into 

temporary population. 

After the kernels finish, another kernel is launched 

which searches for the best value of the active 

individual using parallel reduction. These best 

values are copied into population and become the 

basis for next migration round. The schematic 

representation of migration is in Fig. 3. 

The nature of this variant means that it requires high 

amount of memory – array of size of an individual 

for temporary storage and an array of the same size 

plus 1 for the best position and fitness for each 

kernel.  

The amount of memory needed for the run of 

variant C is defined by equation: 
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These requirements may prove restricting for 

optimization with big populations on GPUs with 

low amount of RAM. 

 
Fig. 3 The scheme of variant C migration, n is equal to 

populationSize 

 

2.2.6 Performance of variants 

In order to determine which variant offers the best 

performance a simple test was conducted with 3 

artificial test functions. 

De Jong’s function: 
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Schwefel’s function 
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Griewangk’s function 
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Dimension of test functions was set to 100 and each 

algorithm had to perform 10 migrations. The 

population size varied from 50 to 450 with a step of 

100. The settings of SOMA variables were Step 

=0.11, PRT =0.8, pathLength = 3, the threads per 

block was set to 256. Time needed for 10 migrations 

was measured using the cudaEvents from CUDA 

SDK. 

Fig. 4 Comparison of 3 variants, De Jong’s 

function

 
Fig. 5 Comparison of 3 variants, Schwefel’s function 

As can be seen in Fig. 4, Fig. 5 and Fig. 6 variant C 

consistently outperformed the other variants and 

thus offers the best performance in tested range. The 

rest of the tests in this article will be run with 

variant C exclusively. 

 

 
Fig. 6 Comparison of 3 variants, Griewangk’s function  

 
2.2.7 Memory consumption 

Although being the fastest of 3 variants, variant C 

requires the highest amounts of GPU memory which 

can be limiting for older and lower end GPUs. 

The exact amount of required memory with relation 

to increase in population size was tested with De 

Jong’s function, dimension set to 200 and 

population size changing from 100 to 500 with a 

step of 50. Other functions were not tested, because 

selection of one of the 3 test functions had none 

effect on memory consumption. 

 
Fig. 7 Memory consumption of all 3 variants 

Figure Fig. 7 show the difference between the 

amounts of memory needed to sustain all 3 variants 

of CUSOMA2A. And Table 1 shows amounts of 

memory for selected population sizes. It can be seen 

that variant C has much larger memory needs than 

previous variants and this fact should be taken into 

consideration when running optimization problems 

with high number of individuals in population. 
Table 1 Memory consumption in mega bytes of all 3 

variants  

Pop. size A B C 

100 187.33 187.33 202.83 

500 188.33 194.33 581.45 

1,000 189.33 208.33 1,766.57 
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2.2.8 Choosing the number of threads per block 

Number of threads per CUDA block can have 

significant influence on program performance. This 

issue was tested for all 3 test functions, dimension 

of 200 and population size 400. Time needed for 10 

migration rounds was measured. 

 
Fig. 8 Time needed for 10 migration rounds with relation 

to threads per block. 

As can be seen in Fig. 8, the optimal number of 

threads per block is dependent on the cost function. 

However the best setting for these 3 functions can 

be chosen between 16 and 32 threads. The 

performance tests were run with 32 threads for all 

functions in order to maintain consistency between 

tests. 

 

2.3 Testing the performance of CUSOMA2A 

The main drive behind the modification of SOMA 

AllToAll for GPUs was the promise of speedup over 

the CPU version of algorithm. 

The CUSOMA2A was tested with 3 artificial test 

functions and with varying dimensions and 

population sizes. Dimension was changing from 25 

to 225 with a step of 50, the population size was 

changing from 100 to 500 individuals with a step of 

100. The test was run for all combinations of 

population size / dimension with CUSOMA2A and 

CPU version of SOMA. The speedup over the CPU 

version was measured and used to model a 3D 

graphs. 

 

 

 

 

 

 

 

 

 

 

3 Results 

 
Fig. 9 Speedup over CPU version, De Jong’s function 

 
Fig. 10 Speedup over CPU version, Schwefel’s function 

 
Fig. 11 Speedup over CPU version, Griewangk’s 

function 

Fig. 9, Fig. 10 and Fig. 11 show the speedup of 

CUSOMA2A over the CPU version of SOMA. The 

speedup is significant and is in range from 26 to 

190. Table 2and Table 3 show the lowest and highest 

speedups for each test function. 

Table 2 The highest values of speedup 

 De Jong Schwefel Griewangk 

Speedup 190.64 84.55 67.23 

Dimensions 25 25 25 

Pop. size 500 400 500 

Table 3 The lowest values of speedup 

 De Jong Schwefel Griewangk 

Speedup 26.68 55.6 51.63 

Dimensions 225 225 225 
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Pop. size 400 500 500 

Two conclusions can be made from the results. 

Firstly, CUSOMA2A scales very well to increase in 

population size and tests show consistent results 

across different population sizes with the same 

dimensions. Secondly, CUSOMA2A struggles with 

functions with high dimensionality, Table 3 shows 

that lowest values of speedup were achieved for the 

highest dimensions. Both characteristics of 

CUSOMA2A are linked to the nature of GPU. It 

excels at problems which require high number of 

parallel yet computationally undemanding 

operations, but lower clock speed of CUDA cores 

may have problems with complex operations. Good 

example is comparison of De Jong’s and 

Griewangk’s functions. The lower complexity of De 

Jong’s function allowed for much higher speedups 

in comparison to later.  Even with these 

performance obstacles, the performance 

CUSOMA2A is superior to CPU implementation. 

 

4 Conclusion 
The AllToAll variant of self-organizing migration 

algorithm was successfully modified for CUDA 

framework. 3 different modifications were proposed 

and the one with the lowest run times was selected 

for further testing against the CPU version. Tests of 

the selected variant showed that number of CUDA 

threads per block can significantly influence 

performance and therefore should be tested prior to 

running time-critical applications. The biggest 

drawback of the proposed variant is its high memory 

usage which can be limiting for older GPUs. 

The tests with 3 artificial test functions showed 

speedups ranging from 26.68 to 190.64 depending 

on test function and dimensions / population size 

combination. These results show that CUSOMA2A 

is an improvement over the CPU implementation in 

terms of run speed and can significantly lower times 

needed for optimization purposes. 
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