
Increasing the performance of AllToAll variant of self-organizing

migration algorithm using CUDA

MICHAL PAVLECH, JAN SECKAR

Faculty of Applied Informatics

Tomas Bata University in Zlin

nam. T.G.Masaryka 5555, 760 01 Zlin

Czech Republic

pavlech@fai.utb.cz, seckar@fai.utb.cz

Abstract: - Modern graphics processing units offer general purpose parallel computing capabilities. Thus they

have become a relatively low cost alternative for applications requiring extensive parallel computations.

Evolutionary algorithms are especially well suited for parallel SIMD architecture. This paper deals with the

modification of AllToAll variation of self-organizing migration algorithm, which has high computational

demand for one round of algorithm, using the CUDA framework. The main goal is to speedup performance of

the algorithm in comparison to CPU implementations.

Key-Words: - GPGPU, CUDA, SOMA, optimization

1 Introduction
Optimization by means of evolutionary algorithms

(EAs) requires high amount of computational

power. Therefore every possible speedup of the

process is a welcome addition for the scientific

community.

The introduction of general purpose computing

frameworks for graphics processing units (GPUs)

opened new possibilities as GPUs are devices with

high number of processors capable of performing

SIMD computations. Probably the best well-known

and widely used framework is Compute Unified

Device Architecture (CUDA) which only runs on

GPUs from nVidia.

There were several previous works which used

CUDA to increase performance of numerous EAs,

some of them are: genetic algorithm [1], particle

swarm optimization [2] and differential evolution

[3].

The AllToAll variant of self-organizing migration

algorithm (SOMA) is an EA which has very high

computational demands per one algorithm round,

due to high number of cost function evaluations

needed. The aim of this paper is to create a suitable

modification of this algorithm for GPUs so that its

runtimes are lowered to more acceptable values.

All tests in this paper were repeated 5 times and

results averaged in order to avoid random glitches

influencing the results.

c-CUDA extends C programming language by

allowing the programmer to define C functions,

called kernels, that, when called, are executed N

times in parallel by N different CUDA threads, as

opposed to only once like regular C functions. The

CUDA programming model assumes that the

CUDA threads execute on a physically separate

device that operates as a coprocessor to the host

running the C program. This is the case, for

example, when the kernels execute on a GPU and

the rest of the C program executes on a CPU. The

CUDA programming model also assumes that both

the host and the device maintain their own separate

memory spaces, referred to as host memory and

device memory, respectively [4].

2 Methods

2.1 SOMA and its variations
SOMA was first introduced by Zelinka in 2004 [5].

It is an evolutionary optimization technique which

mimics the behavior of a cooperative pack of

animals looking for food. It maintains population of

solutions like most of the EAs but due to its

different background it uses slightly different

nomenclature, one round is called migration instead

of generation. The basic version of SOMA, called

AllToOne, finds better solutions by moving

individuals in the solution space towards the one

with the best fitness (the leader). The movement

distance and coarseness of searching the space is

controlled by two variables: PathLength controls

how far from the leader will active individual stop

its movement and Step controls the length of each

discrete step. In order to introduce stochastic

element into movement a third variable called PRT

is present. PRT controls the creation of PRTVector,

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 296

which defines if a dimension of solution can or

cannot be changed during this migration. PRTVector

is generated for each individual separately according

to equation:

otherwise0

)1,0(randif1 j

=

<= PRTjPRTVector

 (1)

The movement is then performed using equation:

() j

ML

startji

ML

jL

ML

startji

ML

tji t PRTVectorxxxx ..,,,,,

1

,, −+=+

(2)
Where ML is the number of current migration

round, x
ML

i,j,start is position of active individual at

beginning of current migration, x
ML

L,j is the position

of the leader, t ∈ [0; pathLength], t = 0, Step,

2*Step,... The cost function for each step is

evaluated

Apart from this version of SOMA there are two

others which require higher computational power

per migration round, but their convergence should

be faster. First variant is called AllToAll.

Individuals are not moving towards single leader,

but to all remaining individuals in population. After

moving to one individual the active individual is

returned to its starting position and starts moving

towards next one. After performing all the steps its

position is set to the best position found during

migrating. Second variant, AllToAllAdaptive is

essentially the same as AllToAll, but after moving

towards an individual the active individual is not

restored to its starting position, but is set to best

position found during the movement and from this

position starts its new movement.

2.2 CUSOMA2A
The modification of SOMA for CUDA framework

was named CUSOMA2A and is implemented as a

C++ class with its parts written in c-CUDA.

In order to find the best adaptation of AllToAll

algorithm for CUDA 3 different variants were

programmed which differ in the way in which the

CUDA threads are utilized for migration. All these

variants share some common characteristics.

2.2.1 Population scheme

Population is in form of one dimensional array of

float values and is a member of a C++ class. It has

to be copied to the GPU prior to the migration and

after a preset number of migrations is finished it is

copied back to host memory where it can be further

analysed. The internal scheme of population is

depicted in Fig. 1 and it contains genotype of each

individual followed by its fitness value.

Fig. 1 Scheme of population in global memory

2.2.2 Population initialization

The initialization of population to random values

and the first evaluation of all individuals is realized

by CUDA kernels.

The random numbers are generated using the

cuRAND from CUDA SDK, which allows the

generation of random numbers with various

characteristics from within the kernels. If each

kernel should generate unique sequence of random

numbers a separate state must be initialized and

stored for each. These states are stored inside the

C++ class in one dimensional array and copied to

device prior to migration. In order to speedup the

initialization of states a kernel responsible for this is

launched before the first call of cuRAND generators

which does this in parallel. The seed of these

generators is obtained using the standard C++

random numbers generator.

Generation of initial values and evaluation of

individuals requires launch of populationSize

kernels with each kernel generating the whole

genotype of an individual, evaluates it and stores in

global population.

Fig. 2 shows schematic view of initialization phase.

Fig. 2 Scheme of population initialization, k is equal to

number of migration kernels, n to populationSize

2.2.3 Variant A

The CPU is only responsible for memory copies and

launching of a number of kernels equal to a

population size. Each CUDA thread is responsible

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 297

for migration of one individual towards all the other

individuals in population.

This variant puts a lot of load on each thread

resulting in long running kernels. If the program is

run on a device which also serves as an output

device for GUI, long running kernels may be

terminated by system watchdog timer. Therefore the

most complex problems should be solved without

GUI or another GPU should be present for

displaying the GUI.

2.2.4 Variant B

This variant shifts a part of load from GPU to the

CPU. The CPU loops over all individuals in the

population and launches populationSize kernels.

Each CUDA thread computes migration of one

individual towards one target individual and stores

the best found solution in a global array. After the

kernels finish, another kernel is launched which

finds the best individual among the kernels and

writes it into temporary population. To speedup the

operation, the search for the best individual is imp-

lamented as a parallel reduction. After the migration

of all individuals ends, the individuals from the

temporary population are copied into population and

new round can begin.

The logic behind this variant is that CUDA streams

are running at lower clock speeds than CPUs and

single streams should be used for tasks which are

computationally less demanding that those running

on CPU. Thus kernels in this variant run only

migration of one individual to another one.

2.2.5 Variant C

The last variant fully utilizes the ability of GPUs to

run high numbers of thread simultaneously. This

variant launches the highest number of kernels equal

to populationSize × populationSize. Each kernel

computes migration of one individual towards

another one, as in variant B, but migration of the

whole population is not implemented via CPU loop,

but by utilizing high number of kernel launches. ker

Each kernel performs migration of an individual

towards another individual and writes best found

position and fitness value into global memory. The

index of active individual is computed according to

equation:

SizepopulationxkernelInde / (3)

And the index of target individual according to:

SizepopulationxkernelInde mod (4)

If active individual is the same as target individual

kernel only copies values from active individual into

temporary population.

After the kernels finish, another kernel is launched

which searches for the best value of the active

individual using parallel reduction. These best

values are copied into population and become the

basis for next migration round. The schematic

representation of migration is in Fig. 3.

The nature of this variant means that it requires high

amount of memory – array of size of an individual

for temporary storage and an array of the same size

plus 1 for the best position and fitness for each

kernel.

The amount of memory needed for the run of

variant C is defined by equation:

)(

)]1(dim

dim[

floatsizeOf

popSizepopSize

popSizepopSize

×+××

+××

 (5)

These requirements may prove restricting for

optimization with big populations on GPUs with

low amount of RAM.

Fig. 3 The scheme of variant C migration, n is equal to

populationSize

2.2.6 Performance of variants

In order to determine which variant offers the best

performance a simple test was conducted with 3

artificial test functions.

De Jong’s function:

12.512.5

)(
1

2

<<−

=∑
=

i

n

i

i

x

x
xf

 (6)

Schwefel’s function

500500

)]sin([)(
1

<<−

−=∑
=

i

n

i

ii

x

xxxf

(7)

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 298

Griewangk’s function

600600

,1)cos(
4000

1
)(

1 1

2

<<−

+−= ∑ ∏
= =

i

n

i

n

i

i
i

x

i

x
xxf

 (8)

Dimension of test functions was set to 100 and each

algorithm had to perform 10 migrations. The

population size varied from 50 to 450 with a step of

100. The settings of SOMA variables were Step

=0.11, PRT =0.8, pathLength = 3, the threads per

block was set to 256. Time needed for 10 migrations

was measured using the cudaEvents from CUDA

SDK.

Fig. 4 Comparison of 3 variants, De Jong’s

function

Fig. 5 Comparison of 3 variants, Schwefel’s function

As can be seen in Fig. 4, Fig. 5 and Fig. 6 variant C

consistently outperformed the other variants and

thus offers the best performance in tested range. The

rest of the tests in this article will be run with

variant C exclusively.

Fig. 6 Comparison of 3 variants, Griewangk’s function

2.2.7 Memory consumption

Although being the fastest of 3 variants, variant C

requires the highest amounts of GPU memory which

can be limiting for older and lower end GPUs.

The exact amount of required memory with relation

to increase in population size was tested with De

Jong’s function, dimension set to 200 and

population size changing from 100 to 500 with a

step of 50. Other functions were not tested, because

selection of one of the 3 test functions had none

effect on memory consumption.

Fig. 7 Memory consumption of all 3 variants

Figure Fig. 7 show the difference between the

amounts of memory needed to sustain all 3 variants

of CUSOMA2A. And Table 1 shows amounts of

memory for selected population sizes. It can be seen

that variant C has much larger memory needs than

previous variants and this fact should be taken into

consideration when running optimization problems

with high number of individuals in population.
Table 1 Memory consumption in mega bytes of all 3

variants

Pop. size A B C

100 187.33 187.33 202.83

500 188.33 194.33 581.45

1,000 189.33 208.33 1,766.57

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 299

2.2.8 Choosing the number of threads per block

Number of threads per CUDA block can have

significant influence on program performance. This

issue was tested for all 3 test functions, dimension

of 200 and population size 400. Time needed for 10

migration rounds was measured.

Fig. 8 Time needed for 10 migration rounds with relation

to threads per block.

As can be seen in Fig. 8, the optimal number of

threads per block is dependent on the cost function.

However the best setting for these 3 functions can

be chosen between 16 and 32 threads. The

performance tests were run with 32 threads for all

functions in order to maintain consistency between

tests.

2.3 Testing the performance of CUSOMA2A

The main drive behind the modification of SOMA

AllToAll for GPUs was the promise of speedup over

the CPU version of algorithm.

The CUSOMA2A was tested with 3 artificial test

functions and with varying dimensions and

population sizes. Dimension was changing from 25

to 225 with a step of 50, the population size was

changing from 100 to 500 individuals with a step of

100. The test was run for all combinations of

population size / dimension with CUSOMA2A and

CPU version of SOMA. The speedup over the CPU

version was measured and used to model a 3D

graphs.

3 Results

Fig. 9 Speedup over CPU version, De Jong’s function

Fig. 10 Speedup over CPU version, Schwefel’s function

Fig. 11 Speedup over CPU version, Griewangk’s

function

Fig. 9, Fig. 10 and Fig. 11 show the speedup of

CUSOMA2A over the CPU version of SOMA. The

speedup is significant and is in range from 26 to

190. Table 2and Table 3 show the lowest and highest

speedups for each test function.

Table 2 The highest values of speedup

 De Jong Schwefel Griewangk

Speedup 190.64 84.55 67.23

Dimensions 25 25 25

Pop. size 500 400 500

Table 3 The lowest values of speedup

 De Jong Schwefel Griewangk

Speedup 26.68 55.6 51.63

Dimensions 225 225 225

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 300

Pop. size 400 500 500

Two conclusions can be made from the results.

Firstly, CUSOMA2A scales very well to increase in

population size and tests show consistent results

across different population sizes with the same

dimensions. Secondly, CUSOMA2A struggles with

functions with high dimensionality, Table 3 shows

that lowest values of speedup were achieved for the

highest dimensions. Both characteristics of

CUSOMA2A are linked to the nature of GPU. It

excels at problems which require high number of

parallel yet computationally undemanding

operations, but lower clock speed of CUDA cores

may have problems with complex operations. Good

example is comparison of De Jong’s and

Griewangk’s functions. The lower complexity of De

Jong’s function allowed for much higher speedups

in comparison to later. Even with these

performance obstacles, the performance

CUSOMA2A is superior to CPU implementation.

4 Conclusion
The AllToAll variant of self-organizing migration

algorithm was successfully modified for CUDA

framework. 3 different modifications were proposed

and the one with the lowest run times was selected

for further testing against the CPU version. Tests of

the selected variant showed that number of CUDA

threads per block can significantly influence

performance and therefore should be tested prior to

running time-critical applications. The biggest

drawback of the proposed variant is its high memory

usage which can be limiting for older GPUs.

The tests with 3 artificial test functions showed

speedups ranging from 26.68 to 190.64 depending

on test function and dimensions / population size

combination. These results show that CUSOMA2A

is an improvement over the CPU implementation in

terms of run speed and can significantly lower times

needed for optimization purposes.

Acknowledgements

The research described in this paper was supported

by funding from European Regional Development

Fund under project CEBIA-Tech No.

CZ.1.05/2.1.00/03.0089 and by the internal grant

agency project IGA/FAI/2012/033.

References:

[1] Pospichal P, Jaros J, Schwarz J, Parallel

Genetic Algorithm on the CUDA Architecture,

Applications of Evolutionary Computation,

Springer Berlin / Heidelberg, 6024, 2010, 442-

451

[2] Zhou Y, Tan Y (2009) GPU-based parallel

particle swarm optimization. Proc. IEEE

Congress Evolutionary Computation CEC

'09, 1493-1500

[3] de Veronese LP, Krohling RA, Differential

evolution algorithm on the GPU with C-

CUDA, Proc. IEEE Congress Evolutionary

Computation (CEC), 1-7, 2010
[4] NVIDIA CUDA C Programming Guide,

[online] Available at:

http://developer.download.nvidia.com/compute

/DevZone/docs/html/C/doc/CUDA_C_Progra

mming_Guide.pdf (Accessed 20 March 2012)

[5] Zelinka I, SOMA—self organizing

migrating algorithm, In: New optimization

techniques in engineering, Berlin: Springer

2004

Advances in Mathematical and Computational Methods

ISBN: 978-1-61804-117-3 301

