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Abstract: - In this paper, we consider steady state heat conduction for double wall with double fins in 2D 

geometry. The stationary heat conduction problem is examined, when assigning third type linear boundary 

conditions. An approximate analytical solution is constructed by using conservative averaging method for L-

type domains. Finally, the numerical results are presented. 
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1 Introduction 
There have been numerous studies on systems with 

extended surfaces where the entire structure is made 

of the same material. In many research areas, e.g., 

on modern computers, more complex elements have 

to be employed. Here, the element (see Fig.1), we’ll 

call it a double wall with double fins, consists of a 

plain surface, that is roughened by adding densely 

distributed vertical nanowires, and then covered 

with some kind of coating, e.g., fluorine carbon. 

 
Fig.1: 2D system with fins 

Such micro/nano structures are often developed to 

enhance the performance of boiling heat transfer, 

(see, e.g., [6], [7]). 

With this article we are beginning a new series of 

publications on systems with double wall and 

double fins. These types of mathematical models are 

new and have not been considered in the literature, 

e.g., [1] - [5], [8] - [10]. 

In this paper we focus on the simplest case when 

the process is stationary. Here the assembly is 2D 

and it has constant properties. And the process is 

linear and there are no heat sources or sinks present. 

As part of future work, we intend to consider 

transient problems where both linear and non-linear 

(when boiling process is present) conditions are 

examined, and to propose a different kind of 3D 

geometry (wall with pin fins of uniform cross-

section). 
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2 Problem Formulation in 2D 
Since the given system (see Fig.1) can be divided 

into several symmetrical parts, we will describe the 

problem for only one of those L-shaped parts (see 

Fig.2). 

 
Fig.2: L-type domain 

We are going to represent the original L-type 

domain as a finite union of canonical subdomains 

with appropriate conjugation conditions along the 

lines connecting two neighbour domains. We may 

therefore suppose that this L-shaped sample is made 

up from five rectangles (see Fig.3). 

 
Fig.3: Definition of geometrical parameters for the 

sample 

Let’s assume that ),( yxVi  denotes the temperature 

in the domain iC  with thermal conductivity ik , and 

ih  is heat transfer coefficient. Here 0kk =  and 

132 kkk == . 

 

The temperature fields are described by 
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Besides the equations, the following boundary 

conditions are imposed. We have a heat flux at 

δ−=x : 
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where n  denotes the exterior normal to the 

boundary of the domains 
iC . But at the other sides 

of the sample there is a heat exchange with the 

surrounding medium: 
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Assuming that there is no contact resistance 

between the connected parts, we also add 

conjugation conditions: 
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3 Approximate Solution of Problem 
As the upper layer is quite thin, from now on we are 

going to assume that the temperature is uniform 

across the layer thickness. Hence from appropriate 

conjugation conditions we get these expressions: 

 ),0()(),( 022 yVyvyxV == , (1) 

 ),()(),( 11 bxVxvyxV == , (2) 

 ),()(),( 33 ylVyvyxV == . (3) 

Because of that, we only need to solve the problem 

defined for the basic layer. So, we have the Laplace 

equations 
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with boundary conditions at the six sides. As we 

know from Section 2, 
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But to get boundary conditions at 0=x , lx = , and 

by = , we use appropriate conjugation conditions 

Advances in Data Networks, Communications, Computers and Materials

ISBN: 978-1-61804-118-0 261



and expressions (1) – (3). For example, at 0=x  we 

have 
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at lx = , by = . 

We also add conjugation conditions that state 

continuity of temperature and heat flux at the 

interface 0=x : 
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Using conservative averaging method (see [3], etc.), 

we are going to construct an approximate solution 

for the given problem. 

3.1 Solution for the Fin 
Let’s use an exponential approximation in the y -

direction for the 2D temperature field ),( yxV  in 

the fin. The general form of the function is given by 

=),( yxV  

 ( ) ( ) )(1)(1)( 210 xfexfexf yy ρρ −−+−+= , (14) 

where 
1−= bρ . 

From symmetry condition (8) we find that 

)()( 12 xfxf −= . So, (14) assumes the following 

form: 

 ( )( ) )(1cosh2)(),( 10 xfyxfyxV −+= ρ . (15) 

Defining the function )(xv  as integral average 

value 
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and integrating the expression (15) with respect to 

y , we can find the function )(1 xf : 
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Applying the boundary condition (11), we have 

( )( )
( )( ) .0)()1cosh()1sinh()1sinh(

)(1)1cosh()1sinh(

0

1

0

1

0

=−+−+

+−+

xf

xv

βρ

βρ
 

And hence 

 )()(0 xvxf ψ=  (18) 

with 
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It follows immediately from (18) that 

 )()(),( yxvyxV Φ= , (19) 

where 
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Now the expression (14) (or (19)) contains only 

one unknown function – )(xv . In order to 

determine it, we use the definition (16) and from the 

partial differential equation (4) obtain an ordinary 

one for the unknown function: 
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The difference of the derivatives may be found via 

the boundary conditions (8) and (11), and (19): 
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Applying the same operator (16) to (10) we get a 

boundary condition 
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A solution to the problem (21), (22) is hence found 

to be 
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and 1c  is an unknown constant. 

Therefore 

 ( ) )(),( 1 yeecyxV xx Φ+= −λλ µ . (24) 
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3.2 Solution for the Wall 
We act almost equally for the wall, and approximate 

the 2D temperature field ),(0 yxV  using exponential 

approximation in the x  – direction: 

=),(0 yxV  

 ( ) ( ) )(1)(1)( 210 ygeygeyg dxdx −+−+= −
, (25) 

with 
1−= δd . 

Once again we use the properties of the function to 

solve for the unknown functions )(yg i , 2,1,0=i . 

We obtain average value function by the integral 
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Finally, we conclude from (28) and (29) that 
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3.2.1 Solution for the Right Part of the Wall 

Here we examine the part of the base that occupies 

the domain ( )0,δ−∈x , ( )0, lby∈ . 

Applying the boundary condition (9) to (30), 








 ++− 21

00
2

1

2

1
)( dedyg β  








 −+ 2

0
2

1

2

1
)( dedyv  

0
2

1

2

1
)( 2

0 =






 +−−+ eeyQ . 

We can rewrite this identity as 

 00000 )()()( byQayvyg += , (31) 

where 
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Substituting (31) into the representation (30), yields 

=),(0 yxV  

( )( )

( )( ) 

















−−+

+−−+
=

−

dx

dx

eae

eaa

yv

11
2

1

11
2

1

)(

0

2

00

0
 

 

( )( )

( ) ( )

















−






 +−+

+−++

+

−

dx

dx

ebee

ebb

yQ

1
2

1

1
2

1

)(

0

2

00

0

δδ

δ
. (32) 

This shows that the function now depends only on 

one unknown - function )(0 yv . 

Let’s integrate the main equation (5) in the x -
direction 
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The first addend can be found directly from the 

boundary condition (6), and (32). So (33) results in 

an ordinary differential equation 
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For simplicity reasons we henceforth assume the 

function )(0 yQ  to be constant, that is, 00 )( QyQ = . 

Integrating (72), we obtain a boundary condition: 

 0)( 00 =′ lv . (35) 

The solution of (34), (35) is 
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with 

 02

0

l
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and 2c  as an unknown constant. 

3.2.2 Solution for the Left Part of the Wall 

To find the equation for the left part of the base, 

where ( )by ,0∈ , let us remind you that for 0=x  

the functions ),(0 yxV , ),( yxV  satisfy the 
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conjugation conditions (12), (13). So, from (13) and 

(24) it follows that 

=
∂

∂

−= 0

0

x
x

V
d  

 ( ) )(11

0

ydc
x

V
d

x

Φ−=
∂
∂

=
+=

µλ . (37) 

If we now use (37) and the boundary condition (6), 

then equation (33) becomes 
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Let us rewrite it as 
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From (71) we get a boundary condition: 
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So, the solution of the problem (38), (39) is 
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When finding temperature for the left part of the 

base, one should take into account, that the function 

)(0 yg  is still unknown. We find that from the 

conjugation condition (12). Indeed, putting 0=x  in 

(30) and (24), we get that 

 ( ) )(1)( 10 ycyg Φ+= µ . (41) 

3.2.3 Conjugation of Solutions 

We have just found solution to the given problem. 

But we are still left with finding the unknown 

constants in the formulas (23), (36) and (40). To 

determine those, we will need several requirements 

to be fulfilled. First, the temperatures ),(0 yxV , 

),( yxV  must coincide at the contact point 

byx == ,0  between the fin and the right part of 

the wall, so 
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Second, the mean temperature values in the wall 

have continuity at by = : 
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Third, we claim that the mean fluxes also coincide 

at by = : 
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All the constants can be found from the system (42), 

(43), and (44). So, the approximate analytical 

solution to the problem is uniquely determined. 

5 Numerical Results 
To get numerical results for temperature distribution 

in the sample (see Fig.4 – 6), we used the following 

geometrical parameters: 

mµδ 500=  

ml µ1=  

mb µ2105 −⋅=  

ml µ10 101 −⋅=  

But for the termophysical properties we chose: 
124

1 10085.11 −−−⋅= KmWh µ  
116

0 109 −−−⋅= KmWk µ  

1

0 50 −= mKQ µ  

although these are not quite precise. 

 
Fig.4: Temperature distribution in the fin 
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Fig.5: Temperature distribution in the left side of the base 

 
Fig.6: Temperature distribution in the right side of the 

base 

6 Conclusion 
We have given a formulation of a problem for 

stationary heat conduction in 2D double wall with 

double fins. And have constructed approximate 

analytical solution by using conservative averaging 

method for L-type domains. 
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