
VHDL code generation based on a hierarchical node structure

ALIN BADEA, EMIL POP, FLORIN BADEA

University of Petrosani

Str. Universitatii nr. 20, Petrosani, HD

ROMANIA

alin.badea@omnisource.com, emilpop2001@yahoo.com, flo_badea@yahoo.com

Abstract – This paper presents a VHDL code generation algorithm based on a hierarchical structure of elements

provided by a graphical design tool that allows the design and simulation of VLSI dedicated microcontrollers.

The control algorithm is designed visually using a software application based on the concept of logic neural

networks [1]. Once the algorithm is implemented using the design tool, structured VHDL code [4] is generated

using the same application based on the algorithm described in this paper. The generated code can then be

downloaded into a dedicated VLSI device.

Key-Words: VHDL, VLSI, MVVM, logic neuron, code generation, design tool.

1 Introduction

1.1 Hierarchical structure

The hierarchical structure used to generate

the VHDL code is based on the concept of node [7].

A node is an element with multiple inputs and

outputs and it can implement a variety of logic

functions. In this particular case it implements the

logic function of a logic neuron [7].

10 ** xuxuy += (1)

A node is represented as the concrete

implementation of the INode interface. This

interface is presented in fig.1a.

Fig.1 a) INode interface b) IConnector interface c)

IEvaluator interface d) INetwork interface

The INode interface uses the IConnector

interface (fig1.b) to represent the node inputs and

outputs. An input or output can be seen as the

concrete implementation of the IConnector

interface.

The implementation of INode is based on

another interface named IEvaluator (fig.1.c). This

interface allows the implementation of the logic

function specific of each node and provides an

algorithm to evaluate this function to produce the

node output.

The VHDL code generator will read the

Function property to determine the architecture of

each individual node in the care of simple nodes. In

the case of nodes that represent complex structures

like a whole network the generation algorithm will

be recursively called for each node contained in the

network.

The nodes along with their connections to

each other will be stored in a network which is an

implementation of the INetwork interface (fig.1.d).

As can be seen from the previous figure a network

can also contain one or more networks and the

connections between them. This implementation

detail will be used by the code generator to generate

the signals that connect the design components

inside a network.

1.2 VHDL code generation based on the

hierarchical structure
The class that encapsulates the code

generation algorithm is called VHDLCodeGenerator

and has the following structure.

Fig.2 a) Structure of the VHDLCodeGenerator class

b) Parse method implementation

Advances in Data Networks, Communications, Computers and Materials

ISBN: 978-1-61804-118-0 132

This class exposes 2 public members, the

MainEntityName property and the Parse method.

The property allows getting and setting the name of

the main entity. The Parse method implements the

code generation algorithm.

The code generation algorithm has 2 steps.

In the first step the structure of the network is read

and an intermediary XML file is generated. In the

second step the XML file is read and the VHDL

code is generated. This code can then be compiled

using the various tools available and downloaded

into the dedicated VLSI device.

From the implementation of the Parse

method (fig.2.b) we can see that the method is based

on 2 private methods to run the 2 steps of the

algorithm(Parse and ParseXML).

In the code above, root represents the root of the

XML structure generated by the algorithm. This

XML structure is reset each time the algorithm is

run. The InitializeXMLStructure method initializes

this structure as follows:

• It sets the name of the main entity;

• It sets up the inner structure of the main

entity and its architecture, generating XML

elements for the entity and its ports, the

architecture, components, signals, constants,

signal mappings and outputs.

The private Parse method generates an

intermediary XML structure using the following

algorithm.

Fig.3 Logic diagram of the ProcessNetwork method

The AssignSignalNames and ProcessNode

methods implement the following algorithms.

Fig.4 Logic diagram AssignSignalNames method

Fig.5 Logic diagram ProcessNode method

VHDL code generation based on the XML

structure is done using the following algorithm.

Fig.6 Logic diagram of the generation algorithm

Advances in Data Networks, Communications, Computers and Materials

ISBN: 978-1-61804-118-0 133

2 The design application

2.1 Principles of design
This section describes a design tool used to

design and simulate various algorithms that are to be

programmed in VLSI dedicated microcontrollers.

The application was implemented using the

principles of OOP design and was architected using

the MVVM pattern[5][6]. The design tool allows

algorithms to be designed based on the concept of

logic neurons. The GUI for the application is

presented in the following figure.

Fig.7 Designer tool main window

The design tool allows the user to place the

various elements available in the toolbox onto a

design surface and then to connect these elements

together in order to create a more complex design.

The elements in the toolbox are based on

the logic neuron element which is also present in the

toolbox and can be used as it is. By connecting

several elements together one can create a logic

neural network that can then be simulated right in

the designer.

After the logic neural network has been

created, the application can be used to generate

structured VHDL code based on this network, code

that can be used to program any VLSI device.

2.2 Practical application
In order to demonstrate the code generation

algorithm a control and monitoring algorithm for the

extraction mining machine was designed and

implemented using the design tool described

previously. This application will then be used to

generate the VHDL code based on the designed

algorithm.

The logic diagram of the algorithm is

presented in the following figure. Then the

algorithm was implemented using the designed

application.

Fig.8 Algorithm logic diagram

The control algorithm’s block diagram and

the implementation of the algorithm using the

designed application are presented in the following

figures.

Fig.9 Algorithm block-diagram

Advances in Data Networks, Communications, Computers and Materials

ISBN: 978-1-61804-118-0 134

Fig.10 Algorithm implementation

The above block diagram describes an

algorithm that allows both manual and automatic

control of the extraction mining machine. In the

following paragraphs a short description of the

containing blocks is made.

The input_box block determines, based on

the input signals, if the circuit is active, the control

mode and the direction. When manual control is

chosen the outputs y_inc and y_dec will be used to

send the speed of the motor to the data_box. This

block is active only if the “ce” signal has a value of

logic 1. The implementation of this block is

presented next.

Fig.11 input_box block implementation box

The dir_box block determines the direction

of the motor. This block is implemented as follows.

Fig.12 dir_box block implementation

The ef_clrf_box block determines the values

of the External fault and Clear external fault signals

based on the input signals. This block is

implemented as follows.

Fig.13 ef_clrf_box block implementation

The data_box block implements the control

tahogram. If manual control is chosen then the up

and dn inputs will be used to send the motor speed

to the inverter (0-7 in binary coding). If automatic

control is chosen the cycle output will determine the

direction and the opening and closing of the breaks

each time the tahogram terminates.

Fig.14 data_box implementation

As can be seen from the above figure this

block is made up of 3 sections. The upper section is

used when automatic control is chosen and allows

the speed of the motor to be based on the imposed

tahogram. This section is made up of an n-bit

counter (left) and a block that implements the

desired tahogram(right).

The lower section is used when manual

control is chosen and allows setting the speed of the

motor manually using the inc and dec inputs. This

section is composed of a 3-bit reversible counter.

The section in the lower right part is used to

determine which of the two blocks described above

will be used to set the speed of the motor.

The control block is implemented as

follows.

Advances in Data Networks, Communications, Computers and Materials

ISBN: 978-1-61804-118-0 135

Fig.15 control_box block implementation

This block is made up of two sub-blocks as

follows. One sub-block for when manual control is

chosen (bottom part) and one block for when

automatic control is chosen (top part). These are

implemented as follows.

Fig.16 Manual control sub-block

Fig.17 Automatic control sub-block

3 Simulation and results

Based on this algorithm the structured

VHDL code was generated. The code was compiled

and the following simulation scenarios were

devised.

a) Manual control mode, direction left then

right, the user can specify the speed of the

motor using the inc and dec inputs.

Fig.18 Simulation scenario no.1

b) Automatic control mode, direction right. In

this case the direction changes automatically

when the tahogram terminates.

Fig.19 Simulation scenario no.2

c) Automatic control mode, then the

simulation of an external fault, fixing the

fault and restarting the machine.

Fig.20 Simulation scenario no.3

After simulation the algorithm was programmed in a

FPGA development kit.

4 Conclusions

This paper presents a VHDL code generation

algorithm that takes a hierarchical structure of nodes

representing a logic neural network as input and

outputs structured VHDL code that can be compiled

and downloaded into a VLSI device.

The paper also presents a short description of the

application that is used to create the hierarchical

Advances in Data Networks, Communications, Computers and Materials

ISBN: 978-1-61804-118-0 136

node structure. The application allows the user to

create a network by placing toolbox elements on the

design surface and connecting them. The application

also simulates the network and allows the

generation of VHDL code based on it.

An algorithm was implemented that allows manual

and automatic control of the extraction mining

machine. If the algorithm is in the automatic control

mode and an external fault occurs the algorithm will

stop and default to the manual control mode in order

to allow the human operator the possibility to reset

the system.

References:

[1]. E. Pop, M. Leba, Microcontrollere şi automate

programabile. Editura Didactică şi Pedagogică,

Bucureşti, 2003.

[2]. M. MacDonald, Pro WPF in C# 2010, Apress,

2010.

[3]. B. Cohen, VHDL Coding Styles and

Methodologies 2
nd

 ed. Kluwer Academic

Publishers, 2002.

[4]. Pong P. Chu, FPGA Prototyping by VHDL

examples. Wiley Interscience, 2008, chapters 9,

12, 13.

[5]. Gossman J. Introduction to

Model/View/ViewModel pattern for building

WPF apps.

[6]. Gossman J. Advantages and disadvantages of

M-V-VM

[7]. Pop E., Leba M., Pop M., Sochirca B., Badea A.

– Software Based on Logic Neural Networks for

Digital Controllers Design, Proceedings of the

8th WSEAS International Conference on

CIRCUITS, SYSTEMS, ELECTRONICS,

CONTROL AND SIGNAL PROCESSING

(CSECS ’09), Puerto de la Cruz, Tenerife,

Canary Islands, Spain, ISBN 978-960-474-139-

7, ISSN 1790-5117, pp. 168 -173, 2009

Advances in Data Networks, Communications, Computers and Materials

ISBN: 978-1-61804-118-0 137

