Advances in Data Networks, Communications, Computers and Materials

VHDL code generation based on a hierarchical node structure

ALIN BADEA, EMIL POP, FLORIN BADEA
University of Petrosani
Str. Universitatii nr. 20, Petrosani, HD
ROMANIA
alin.badea@omnisource.com, emilpop2001@yahoo.com, flo_badea@yahoo.com

Abstract — This paper presents a VHDL code generation algorithm based on a hierarchical structure of elements
provided by a graphical design tool that allows the design and simulation of VLSI dedicated microcontrollers.
The control algorithm is designed visually using a software application based on the concept of logic neural
networks [1]. Once the algorithm is implemented using the design tool, structured VHDL code [4] is generated
using the same application based on the algorithm described in this paper. The generated code can then be

downloaded into a dedicated VLSI device.

Key-Words: VHDL, VLSI, MVVM, logic neuron, code generation, design tool.

1 Introduction

1.1 Hierarchical structure

The hierarchical structure used to generate
the VHDL code is based on the concept of node [7].
A node is an element with multiple inputs and
outputs and it can implement a variety of logic
functions. In this particular case it implements the
logic function of a logic neuron [7].

— % *
y=u*x,+u*x

(M

A node is represented as the concrete

implementation of the INode interface. This
interface is presented in fig.1a.
INode IConnector
Id Id
Name Hame
List<Connector> Inputs ParentNode IEvaluator
List<Connector> Cutputs Value Function
Network ParentHetwork IsConnected ExpressionEvaluator
a) b) c)
INetwork
List«<INetwork> Subnets
Dictionary<IConnector, IConnector> Connections
)

Fig.1 a) INode interface b) IConnector interface c)
[Evaluator interface d) INetwork interface

The INode interface uses the IConnector
interface (figl.b) to represent the node inputs and
outputs. An input or output can be seen as the
concrete implementation of the IConnector
interface.

The implementation of INode is based on
another interface named IEvaluator (fig.1.c). This
interface allows the implementation of the logic

ISBN: 978-1-61804-118-0

132

function specific of each node and provides an
algorithm to evaluate this function to produce the
node output.

The VHDL code generator will read the
Function property to determine the architecture of
each individual node in the care of simple nodes. In
the case of nodes that represent complex structures
like a whole network the generation algorithm will
be recursively called for each node contained in the
network.

The nodes along with their connections to
each other will be stored in a network which is an
implementation of the INetwork interface (fig.1.d).
As can be seen from the previous figure a network
can also contain one or more networks and the
connections between them. This implementation
detail will be used by the code generator to generate
the signals that connect the design components
inside a network.

1.2 VHDL code generation based on the
hierarchical structure

The class that encapsulates the code
generation algorithm is called VHDLCodeGenerator
and has the following structure.

VHDLCodeGenerator a) |
Class public string Parse()
| {
root.RemoveAll();
InitializeXMLStructure();
Parse(_net, MainEntityName, false);
return ParseXML{root);

=l Properties
% MainEntityName [

= Methods }
% Parse (+ 1 overload)
% VHDLCodeGenerator

a) ' b)
Fig.2 a) Structure of the VHDLCodeGenerator class
b) Parse method implementation

Advances in Data Networks, Communications, Computers and Materials

This class exposes 2 public members, the
MainEntityName property and the Parse method.
The property allows getting and setting the name of
the main entity. The Parse method implements the
code generation algorithm.

The code generation algorithm has 2 steps.
In the first step the structure of the network is read
and an intermediary XML file is generated. In the
second step the XML file is read and the VHDL
code is generated. This code can then be compiled
using the various tools available and downloaded
into the dedicated VLSI device.

From the implementation of the Parse
method (fig.2.b) we can see that the method is based
on 2 private methods to run the 2 steps of the
algorithm(Parse and ParseXML).

In the code above, root represents the root of the
XML structure generated by the algorithm. This
XML structure is reset each time the algorithm is
run. The InitializeXMLStructure method initializes
this structure as follows:

e [t sets the name of the main entity;

e [t sets up the inner structure of the main
entity and its architecture, generating XML
elements for the entity and its ports, the
architecture, components, signals, constants,
signal mappings and outputs.

The private Parse method generates an
intermediary XML structure using the following
algorithm.

GetEntity

CreateStringGenerator

| CreateMappingDictionary

AssignSignalNames

Get signals
from dictionary

False, .
i=signals.Count

architecture. AddSignal(signals [i])l

ProcessNode

Fig.3 Logic diagram of the ProcessNetwork method

The AssignSignalNames and ProcessNode
methods implement the following algorithms.

ISBN: 978-1-61804-118-0 133

[i=0]

False /i nodes.CountHIme

False True

Stop lodes[i]=input_nod:

False

Nodes[i] :mler(I\Tn'P ntity. AP ort(nodes[i])

False Tiue

entity. Exists(nodes[i]),

AddEnticy(nodes[i])

component.Existsmodes[i)yIrue

AddComponent(nodesi])
A

|A(l(lSignalL-Iapping(no(le s[i])|

Talse nodes[i]=network

entity. AddOutP ort(nodes|i])
entity. Arch. AddOutput(nedes[i])|

False,

i+=1

Fig.4 Logic diagram AssignSignalNames method

False

False

i< connections.Clount YL

signal Exists(connections[i])} True

[ReadMapping(signal)
AddMapping(connections[i])

AddConstant(connection.Parent)

. - Trne
F"1’_<q { conmection.Parent=constant)—\I/

signal.Name=connection.Parent.Name|
signalMapping. Add(signal)
T

i+=1

Fig.5 Logic diagram ProcessNode method

VHDL code generation based on the XML
structure is done using the following algorithm.

Fals .
"% entities[i] IsMain

GenerateEntityCode

GetMainEntity

GenerateEntityCode
GeneratePortCode
GenerateArchitectureCode

(GenerateArchitectureCodel

Fig.6 Logic diagram of the generation algorithm

Advances in Data Networks, Communications, Computers and Materials

2 The design application

2.1 Principles of design

This section describes a design tool used to
design and simulate various algorithms that are to be
programmed in VLSI dedicated microcontrollers.
The application was implemented using the
principles of OOP design and was architected using
the MVVM pattern[5][6]. The design tool allows
algorithms to be designed based on the concept of
logic neurons. The GUI for the application is
presented in the following figure.

Pointer g =8 Edit View
k Painter MNew
Open 1
Inputs D}_ I.
Save
m Constant Save As
O Generate Net
m Generate VHDL
| Exit
| Outputs
Display
Out
Logic

LogicGate

£
L

;

D-FlipFlop

Neural

¢

Neuron

=T

SubNet

‘ Timers

.

Fig.7 Designer tool main window

The design tool allows the user to place the
various elements available in the toolbox onto a
design surface and then to connect these elements
together in order to create a more complex design.

The elements in the toolbox are based on
the logic neuron element which is also present in the
toolbox and can be used as it is. By connecting
several elements together one can create a logic
neural network that can then be simulated right in
the designer.

After the logic neural network has been
created, the application can be used to generate
structured VHDL code based on this network, code
that can be used to program any VLSI device.

2.2 Practical application

In order to demonstrate the code generation
algorithm a control and monitoring algorithm for the
extraction mining machine was designed and
implemented using the design tool described

ISBN: 978-1-61804-118-0

previously. This application will then be used to
generate the VHDL code based on the designed
algorithm.

The logic diagram of the algorithm is
presented in the following figure. Then the
algorithm was implemented using the designed
application.

Choose
control

mods

mverter

e,

Acceleration
| Stop | routine
1
Close Deceleration
breaks roubme
! !
Close breaks Stop motor
Close main switc! Close breaks

Fig.8 Algorithm logic diagram

The control algorithm’s block diagram and
the implementation of the algorithm using the
designed application are presented in the following
figures.

clk
ce ot—ce cycle on cyelel <0
on e1— on_signal y_on mod \0 | ;1
mod s1—{mod y_mod [— up ‘1 | o
sens s-—{ sens y_sens dun i o
inc e—inc y_inc Irl“ll ljl“" left efwd
dec s1+— dec y_dec ’V data_box '\f,“'\ right H-erev
extf r } ° ir b- - —eef
mput_box e ‘L IEON '_—ccllf
clk | | -
—1G
on #_. H
i ey mod y_ms rd r b‘ﬂf y_bl—eB
clrf & sens yv_h |_ I g
SRR Hens = N
il ol hexs T ef 34’ ai break_box R
chf y_mnv NV
IG- ms_m y_run (4
H h_m
B b_m
INV inv_m
Run un_m
control box

clk

Fig.9 Algorithm block-diagram

Advances in Data Networks, Communications, Computers and Materials

C (cnfuf
File Edit View

Fig.10 Algorithm implementation

The above block diagram describes an
algorithm that allows both manual and automatic
control of the extraction mining machine. In the
following paragraphs a short description of the
containing blocks is made.

The input_box block determines, based on
the input signals, if the circuit is active, the control
mode and the direction. When manual control is
chosen the outputs y inc and y_dec will be used to
send the speed of the motor to the data box. This
block is active only if the “ce” signal has a value of
logic 1. The implementation of this block is
presented next.

W EditSubNetView B
[+
i
=
. m
[N
3 ces
R B
3
5} el
b and3pe| e ut
Lefreset
El g
7] A
II— and3
. L]
b and3|

Fig.11 input_box block implementation box

The dir_box block determines the direction
of the motor. This block is implemented as follows.

W EditSubNe View CEX

ELL

Fig.12 dir_box block implementation

ISBN: 978-1-61804-118-0

The ef clrf box block determines the values
of the External fault and Clear external fault signals
based on the input signals. This block is
implemented as follows.

W ECISUDNEView’ w1}]
1
s
[g]
R

cep'
-
]

Fig.13 ef clrf box block implementation

The data_box block implements the control
tahogram. If manual control is chosen then the up
and dn inputs will be used to send the motor speed
to the inverter (0-7 in binary coding). If automatic
control is chosen the cycle output will determine the
direction and the opening and closing of the breaks
each time the tahogram terminates.

W ETTSubNetView (rwfi=ifr.)
oy ,
[+ T E ands . |
— Ir— Bl
\—j:e b][J 51[
. |
’
= o
]

Fig.14 data box implementation

As can be seen from the above figure this
block is made up of 3 sections. The upper section is
used when automatic control is chosen and allows
the speed of the motor to be based on the imposed
tahogram. This section is made up of an n-bit
counter (left) and a block that implements the
desired tahogram(right).

The lower section is used when manual
control is chosen and allows setting the speed of the
motor manually using the inc and dec inputs. This
section is composed of a 3-bit reversible counter.

The section in the lower right part is used to
determine which of the two blocks described above
will be used to set the speed of the motor.

The control block is implemented as
follows.

Advances in Data Networks, Communications, Computers and Materials

3]
[E]
X

W EditSubNetView

Fig.15 control_box block implementation

This block is made up of two sub-blocks as
follows. One sub-block for when manual control is
chosen (bottom part) and one block for when
automatic control is chosen (top part). These are
implemented as follows.

W EdiSubNE Y iew: SIEFS

e

7 FTFRRS
EI

Fig.16 Manual control sub-block

' EditSubNetView

o

Al

l

' EditSubNetView

Fig.17 Automatic control sub-block

3 Simulation and results

Based on this algorithm the structured
VHDL code was generated. The code was compiled
and the following simulation scenarios were
devised.

a) Manual control mode, direction left then
right, the user can specify the speed of the
motor using the inc and dec inputs.

ISBN: 978-1-61804-118-0

136

-
| T
(I
111

CJ

T T o T T
i 20 e "

F1g 18 S1mu1at;0n scenario no.1

b) Automatic control mode, direction right. In
this case the direction changes automatically

when the tahogram terminates.

L -]
1 -
o
o
o
fexts u It
@ fextraction tb/dv h o 1
v&fexummn thjmain_swikch | 0
o
o
o
o
1 T
i 1 I
o I
o I
0 M 1 Ly B
e . o s O N Y s I O
Jextraction tb/sz i 1 1
@ fextraction_thjms_y 1
@ fest o i
1 T 1T L
'
o
o igipiplipipipipinigSninipiaipipiplnll
T T T
s "oons’ rsors’ a0 e’ "t ne 500 ns

F1g 19 Simulation scenario no.2

Automatic control mode, then the
simulation of an external fault, fixing the
fault and restarting the machine.

[T

I

I

o

o

o T

o it I

o

o

o

o

o

o | 1

L |

o [T]

o LI i

o | U T 1

L LT 1

o | —

T — |

o | I 1

L T [T

A

o A i

o Spipipipiniplnll Ay
R o o T
b Tloons 00 e soors o " do0ne

Fig.20 Simulation scenario no.3

After simulation the algorithm was programmed in a
FPGA development kit.

4 Conclusions

This paper presents a VHDL code generation
algorithm that takes a hierarchical structure of nodes
representing a logic neural network as input and
outputs structured VHDL code that can be compiled
and downloaded into a VLSI device.

The paper also presents a short description of the
application that is used to create the hierarchical

Advances in Data Networks, Communications, Computers and Materials

node structure. The application allows the user to
create a network by placing toolbox elements on the
design surface and connecting them. The application
also simulates the network and allows the
generation of VHDL code based on it.

An algorithm was implemented that allows manual
and automatic control of the extraction mining
machine. If the algorithm is in the automatic control
mode and an external fault occurs the algorithm will
stop and default to the manual control mode in order
to allow the human operator the possibility to reset
the system.

References:

(1. E. Pop, M. Leba, Microcontrollere si automate
programabile. Editura Didactica si Pedagogica,
Bucuresti, 2003.

[2]. M. MacDonald, Pro WPF in C# 2010, Apress,
2010.

ISBN: 978-1-61804-118-0

137

(3.

[4].

[5].

[6].

[71.

B. Cohen,
Methodologies
Publishers, 2002.

Pong P. Chu, FPGA Prototyping by VHDL
examples. Wiley Interscience, 2008, chapters 9,
12, 13.

Gossman J. Introduction to
Model/View/ViewModel pattern for building
WPF apps.

Gossman J. Advantages and disadvantages of
M-V-VM

Pop E., Leba M., Pop M., Sochirca B., Badea A.
— Software Based on Logic Neural Networks for
Digital Controllers Design, Proceedings of the
8h WSEAS International Conference on
CIRCUITS, SYSTEMS, ELECTRONICS,
CONTROL AND SIGNAL PROCESSING
(CSECS °09), Puerto de la Cruz, Tenerife,
Canary Islands, Spain, ISBN 978-960-474-139-
7, ISSN 1790-5117, pp. 168 -173, 2009

and
Academic

VHDL Coding Styles
2 ed. Kluwer

