
Parallelization of the Firefly Algorithm

for Unconstrained Optimization Problems

Milos SUBOTIC, Milan TUBA, Nadezda STANAREVIC

Faculty of Computer Science

University Megatrend Belgrade

Bulevar umetnosti 29

SERBIA
 milos.subotic@gmail.com, tuba@ieee.org, srna@stanarevic.com

Abstract: - Bio-inspired metaheuristics for hard optimization problems are very commonly parallelized. In this

paper a parallelization of firefly algorithm is introduced. Firefly algorithm is one of the latest bio-inspired

algorithms and this is the first attempt of its parallelization. We used a set of well-known unconstrained

continuous functions for benchmark purposes. Two approaches were implemented here - one aiming to faster

execution and the other one aiming to better results. In the first approach, one run of the algorithm is presented

as one thread, while in the second approach that we call multiple colony approach, two colonies of fireflies run

simultaneously, and after certain number of generations the process of exchanging fireflies among them occurs.

In this way we managed to obtain better results than the original algorithm.

Key-Words: - Firefly algorithm, Metaheuristics, Unconstrained optimization, Parallelization

1 Introduction
Optimization is certainly one of the most interesting

scientific fields. Many methods have been

developed for solving real-life optimization

problems. These methods can roughly be divided

into two groups [1]: rigorous and approximation

methods.

Rigorous methods such as linear programming,

integer programming, dynamic programming and

branch-and-bound are usually applied to medium-

size problems. For these kinds of problems they

obtain satisfying results.

However, real-life optimization problems are

often large scaled, and the process of finding

optimal solution for these problems can be

challenging for rigorous techniques. Optimization of

such complex systems requires exponential amount

of computing power and time with increase of

number of decision variables. Approximation

methods have been proposed for solving these kinds

of problems [2].

Representative of approximation methods are

nature inspired algorithms. As other methods from

this group, they find near optimal solution in

reasonable amount of computation time. Nature

inspired algorithms adopted some of well-known

features of natural systems which evolved though

This research is supported by Ministry of Education and

Science, Republic of Serbia, Project No. III-44006

selection mechanism over millions of years. Two

important features of natural systems which were

incorporated into computer algorithms are selection

of the fittest and adaptation to the surrounding. In

nature inspired algorithms they manifest as [3]:

intensification and diversification. Intensification is

search process around current solutions in the

population and it is known as exploitation. On the

other hand, diversification maintains exploration of

the search space and prevents algorithm of being

stuck in local optimum.

Swarm intelligence algorithms are among the

latest nature inspired metaheuristics. These are

complex computational systems which mimic

behavior of species such as ants, birds, fish, bees,

cuckoos, frogs, etc. These animals (insects) have

very finite individual capability, but when they act

as a group (swarm), they can perform many com-

plex tasks in order to survive. Using analogy with

real swarm systems, swarm intelligence algorithms

consist of many intelligent agents with complex

interactions among them and without centralized

supervision component. Each agent responds to

local stimuli independently, but also, they all

cooperate in order to accomplish global task.

Many swarm intelligence algorithms were

developed and enhanced over the time. Particle

swarm optimization (PSO) is well-known swarm

intelligence algorithm which simulates collective

behavior of fish or birds. It was developed by

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 264

Eberhard and Kennedy [4] for optimizing nonlinear

functions in multidimensional space.

Ant colony optimization (ACO) simulates

foraging behavior of ants which use pheromone

substance to find the shortest path between their

nests and food source [4]. This algorithm, as well its

modifications, found wide-spread use in many

practical applications [6].

Karaboga was inspired by behavior of honey bee

swarms and devised artificial bee colony (ABC)

algorithm [7]. ABC algorithm uses three kinds of

artificial bees: employed, onlooker and scout.

Employed bees and onlookers are exploiting search

space, while scout maintain diversification through

exploration. There are also other approaches which

model bee’s behavior [8].

Cuckoo search (CS) algorithm is relatively

new metaheuristics for continuous optimization

problems [9]. CS uses Lévy flights search pattern

and shows very promising performance.

Firefly (FF) algorithm is a novel metaheuristic

which mimics flashing behavior of light bugs [10].

As the primary purpose of firefly’s flash is to act as

a signal system to attract other fireflies, researches

have been attracted to incorporate such behavior

into computation algorithm.

Very similar to FF algorithm is glow-worm

swarm algorithm which has been used in many

practical fields including robotics [11].

Besides above mentioned, there are also

other swarm intelligence algorithms are often

used with other evolutionary computation (EC)

algorithms [12], and applied to wide variety of

practical problems [12], [13].

This paper is devoted to FF algorithm. Our

objective is to describe implementation of the

parallelized FF algorithm and to examine how

multithreaded algorithm’s execution influences

results. Parallelized FF algorithm was adapted

for solving unconstrained continuous optimiza-

tion problems. These optimization problems can

be formulated as minimization or maximization

of D-dimensional function:

 Min (or max) f(x), x=(x1,x2,x3,…xD) (1)

where D is the number of parameters to be

optimized.
The search space is usually limited to n-

dimensional hyper-rectangular space in R
n

defined by lower and upper variables’ bounds:

 lbi ≤ xi ≤ ubi, 1 ≤ i ≤ n (2)

This paper is organized as follows. After introduc-

tion in Section 1, detailed description of FF

algorithm in Section 2 is introduced. Section 3

describes parallelization of the FF algorithm. In

subsequent Section 4 testing results on standard

unconstrained benchmark functions are presented.

Finally, Section 5 includes conclusion and final

remarks.

2 Firefly Algorithm

2.1. Fireflies in nature

Fireflies are also known as lighting bugs. Many

people use terms firefly and glow-worm

interchangeably. Both are beetles that can emit light

and are mostly of the family of Lampyridae. But,

there is substantial difference between glow-worms

and fireflies – glow-worms belong to the group of

flightless species of Lampyridae, while fireflies are

recognized as species that have the ability to fly.

These insects can generate light inside of their

bodies owing to a special chemical reaction. The

process of generating light happens in unique organs

in firefly’s lower abdomen called light-emitters.

Lighting system was used for sending warning

signals among firefly population and to attract the

potential victim, but now it has evolved that its

primary purpose is in mate selection. It is said that

these organisms use bioluminescence for sexual

selection [14].

The pattern of flashes depends on particular

species of fireflies. Both sexes of fireflies are

brought together via the rhythmic flash, the rate of

flashing and the amount of time form part of the

signal system. Groups of fireflies have the ability to

synchronize their flashes and this appearance is

known as phase synchronization [14].

Male’s unique pattern of flashing attracts female

from the same species for mating. But, in some

species, female can set up a decoy by mimicking the

mating flashing pattern in order to eat males.

As the distance from the lighting source

increases, the light intensity decreases. So, light

intensity follows the inverse square law:

 I ~

 (3)

where I is light intensity, and r is distance. Besides

that, the air also absorbs part of the light, and the

light becomes even weaker.

Two mentioned factors affect the communicating

abilities of fireflies. Residual light intensity is

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 265

usually good enough for fireflies to communicate

with each other.

These properties of lightening communication of

fireflies can be translated into objective function to

be optimized and that is exactly what makes FF

algorithm possible to implement.

2.2. Algorithm Details
In firefly algorithm, the main goal of light signal

system is to attract other fireflies. Whole system is

complex and it must be simplified due to

incorporation into evolutionary algorithm. The most

important issues are flushing characteristic of

fireflies which must be idealized.

There are three simplification rules which guide

the construction of the FF algorithm. Rules are

summarized in bullet points below:

 First rule emphasis that each firefly attracts all

other fireflies with weaker flashes [15].

Therefore, all fireflies must be idealized in a

way that they have only one sex and are

attracted with each other.

 Second rule notes that attractiveness of fireflies

is proportional to their brightness. On the other

side, brightness is reverse proportional to the

distance from the light source. That means that

the less bright firefly will relocate towards the

brighter one. If the particular firefly is the

brightest one in the population, it will move in a

random manner because there is no other bug to

attract it.

 Finally, the third rule highlights that the

brightness of a firefly is affected or determined

by the distribution of the objective function.

According to rules presented above, pseudo code

for the FF algorithm is:

 Generate initial population of fireflies xi (i =1,2…, n)
 Light intensity Ii at xi point is defined by f(x)
 Define light absorption coefficient γ
 Define numberOfGeneration
while (t < numberOfGeneration) do
 for (i = 1 to numberOfAllFireflies) do
 for (j = 1 to i) do
 If (Ij < Ii) then
 Move firefly j towards i in d dimension
 Attractiveness depends on distance r

and absorption property of surroundings
γ via the function exp – γr.

 Evaluate new solutions and update light
intensity

 end if

 end for
 end for
 Rank the fireflies, find the current best and

move it in a random fashion
end while

 For complete understanding of the algorithm

few sentences about attractiveness of firefly and its

movement should be added. First thing that comes

to mind is to use an objective function f(x) to encode

the brightness of a given firefly. Actually, it

represents the light intensity at location x as I(x) =

f(x). Yet, there are some issues with the distance,

point of view and the fact that the environment

absorbs part of emitted light. At the source, the

brightness is higher than at some distant point. Also,

the brightness decreases while environment absorbs

the light while it is travelling. It can be concluded

that the attractiveness of firefly β is relative. It is

known that the light intensity I(r) varies following

the inverse square law:

 I(r) =

 (4)

where I0 represents the light intensity at the source.

If light absorption coefficient γ is added to Equation
(4) it transforms to:

 I(r) =

 (5)

Constant 1 is added to denominator to avoid

singularity of the term at the source (r=0).

Eq. 6 can also be used because of the fact that

attractiveness β is proportional to intensity:

 β (r) =

 (6)

Eq. 6 can be further approximated with Gaussian

form [16] :

 β (r) = β0 exp
–γr2

 (7)

Fireflies movement is based on the principles of

attractiveness: when firefly j is more attractive than

firefly i the movement is determined by the

following equation:

 xi = x + β0 exp
–γr2

xi

(xj – xi) + α (rand -

) (8)

Third term is randomization term, where α

[0,1] and rand is pseudo-random number between 0

and 1. Distance rij between fireflies i and j is

calculated using Cartesian distance form:

 rij = √∑
 , ,

 (9)

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 266

3 Parallelized FF Algorithm
We are witnessing a dramatic change in compu-

ter architecture due to the multicore paradigm

shift. In general, a system of n parallel processors,

each of speed k is less efficient than one processor

of speed n * k. However, the parallel system is

usually much cheaper to build and its power

consumption is significantly lower.

Parallelization of algorithms has been proven to

be a very powerful method in the case of population

based algorithms [17]. There are several approaches

in parallelization of bio-inspired heuristics, but they

can be divided into two groups. Methods that are

trying to reduce the execution time belong to the

first group, while methods that are aiming on better

results are in the second group. Here, one method

from each group is applied to the FF algorithm and

presented.

The methods that are trying to improve CPU

utilization are commonly making function evalua-

tion calls to run simultaneously. Some of them are

running evaluation of every population individual as

a separate thread. In most cases, this is not the best

solution. Population based algorithm often have

between 20 and 100 individuals in the colony. The

evaluation function usually does not require much

CPU time, so extensive use of CPU time for crea-

ting threads and their synchronization exceeds

the benefits of parallel execution of each

evaluation. Creating and synchronizing such large

number of threads can be slower by far than

using a serial execution of evaluations.

It is desirable to run population based heuristics

many times, because they do not provide exact

result but rather give approximation as final result.

It is quite useful to run all iterations simultaneously

in order to save time. This is most common method

of parallelization of bio-inspired heuristics - one run

of the algorithm is presented as one thread. In this

approach threads have no communication between

themselves at all. Every thread runs the same

sequential FF algorithm with different random

seeds. The final solution is the best one of all the

independent runs. The speed increases almost as

many times as there are execution cores in system.

Independent parallel runs approach is too coarse

grained and there are no speed gains for one single

runtime. On single core system this implementation

can be slower than serial execution of all runs. This

can be explained by high cost of switching CPU

between threads.

Methods that are aiming for better results are

usually dividing population into certain number of

sub-populations and then exchanging the results

among them after certain number of generations.

The idea was to use more than one colony on

same search space. Multiple colonies can find more

useful solutions and narrow the search space.

Trapping in local optimum can be avoided by using

numerous colonies.

In this paper, the emphasis is on multiple

colonies approach where the question of number of

colonies arises. In our tests we empirically found

that best results are obtained when the main colony

of fireflies is divided into two sub-colonies. There is

also an issue of frequency of communication

between two colonies. The period between two

communications can be determined by the number

of cycles or by the time unit. In our experience, it is

better to use the number of cycles rather than time

unit. Since on different systems various amounts

of computational work can be done in the same

time, only a few communications can occur on the

faster systems, while during the same algorithm

execution on the slower system, number of

communications can be significantly greater.

When algorithm starts execution, after certain

number of cycles a new population is created.

According to our experiments, the best results are

obtained when the creation of new population is

done after every 1000 cycles. New population is

created in the following way: half of individuals in

new population are copied from one sub-colony and

half from the other. Before creating new population,

the fireflies are sorted by their light intensity, and

then the half with greater light intensity is copied

into new population. As a result, new population

contains best fireflies from both sub-colonies. After

that, sub-colonies are replaced with new population

and search process is continued.

4 Numerical Experiments
In this section, we show experimental results which

validated our parallelized FF algorithm.

For testing purposes, we used following well-

known unconstrained benchmark functions:

 Ackley

 Griewank

 Rastrigin

 Sphere

Because of the fact that these are standard

benchmark functions, their definition is omitted.

All of the parallelization approaches have been

implemented using Java programming language. In

the Java programming language, concurrent pro-

gramming is mostly concerned with threads.

Threads are sometimes called lightweight processes.

Both processes and threads provide an execution

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 267

environment, but creating a new thread requires

fewer resources than creating a new process. For

test purposes, we created test application in Java

programming language based on Lukasik and Zak

software in Matlab. Tests were done on Intel I7-

2600k processor with 8GB of RAM on Windows 7

Ultimate Edition x64 Operating System and

NetBeans 7.0.1 Integrated Development Environ-

ment (IDE). In order to make the comparison

clearer, values below E-12 were assumed to be 0.

The parameters of algorithm are given in Table 1.

Parameter Value

Number of function evaluation calls 1000000

Colony size 40

β0 1

α 0.01

ϒ 1

Number of runs with different seeds 30

Number of function parameters 5, 10, 50, 500

Table 1: Parameter settings

In the first series of our tests speed comparison is

performed. It was our purpose to illustrate speed

gains when every run of algorithm is separate

thread. Comparison is done for different number of

parameters of objective function. The results of

speed test are shown in Table 2.

It is shown that speed gains are substantial for

almost all combinations of number of parameters

and benchmark functions. As the number of

parameters increase, speed gains also increase.

The largest speed gains are obtained for 500

parameters. When test are done with small number

of parameters, algorithm uses more CPU cycles for

creating and synchronizing threads than for actual

computation of objective functions. That explains

small increase or even decrease in some cases, when

5 or 10 parameters are used. Since the Sphere

function is a simple function, it requires small

amount of CPU time when serial runs are used.

More CPU time is used for creating and maintaining

threads then for calculating Sphere function. The

Sphere function is not so eligible for parallelization

when the number of parameters is smaller than 500.

Since this method of parallelization has no impact

on quality of results, comparison of results are

omitted.

Function Number of

parameters

Serial

runs

(seconds)

Parallel

runs

(seconds)

Speed

increase

Ackley

5 21.1 22.0 0.957447

10 30.4 19.1 1.588235

50 121.3 21.3 5.704225

500 1167.5 224.3 5.204082

Griewank

5 98.7 80.2 1.230769

10 165.3 100.8 1.639344

50 773.1 121.8 6.346154

500 6913.9 1143.1 6.048387

Rastrigin

5 96.9 69.6 1.391753

10 164.3 105.2 1.5625

50 711.2 132.2 5.37931

500 6873.5 1200.4 5.726141

Sphere

5 39.5 269.9 0.146341

10 69.0 170.2 0.405405

50 629.8 1053.9 0.59761

500 6084.4 4502.5 1.351351

Table 2: Speed test results

Second part of our experiments aims for better

results. We compared the results obtained when

standard implementation of FF algorithm is run with

multiple colony approach of the FF algorithm.

These results are shown in Table 3.

Function

NP = 5 NP = 10 NP = 50

Standard MC Standard MC Standard MC

Ackley Best

Mean

Worst

Stdev.

8.2387E-9

1.1714E-8

2.0125E-8

2.9338E-10

0

0

0

0

4.4215E-7

7.2289E-7

3.7141E-6

6.7591E-8

2.4354E-9

6.5691E-9

4.2323E-7

5.4301E-10

3.4563E-4

7.0238E-4

5.7440E-3

3.1484E-5

8.1938E-6

2.7645E-6

4.1034E-5

3.8367E-7

Griewank Best

Mean

Worst

Stdev.

1.1481E-7

5.7307E-7

4.0935E-6

1.4143E-8

2.5786E-10

5.0548E-9

1.1812E-8

3.3066E-9

4.0202E-6

4.2994E-6

4.3398E-6

3.1103E-10

2.5454E-8

8.1149E-8

4.8359E-7

3.1484E-11

1.5263E-2

7.4780E-2

3.3232E-1

6.5210E-3

2.6657E-4

9.2438E-4

3.5610E-3

5.2509E-5

Rastrigin Best

Mean

Worst

Stdev.

3.4877E-7

4.1457E-7

1.2723E-6

4.2175E-8

2.0572E-9

4.6498E-9

3.1846E-8

2.3252E-10

3.2354E-6

2.6799E-5

5.5293E-5

8.3706E-7

5.1643E-8

2.1728E-7

3.5197E-7

4.1392E-9

4.6401

5.7742

7.8927

6.8899E-1

3.1751E-2

4.3045E-2

2.1609E-2

4.2373E-4

Sphere Best

Mean

Worst

Stdev.

0

0

0

0

0

0

0

0

8.0673E-12

3.6363E-11

1.9867E-10

0

0

0

0

0

7.7761E-10

5.3148E-9

2.3559E-9

9.2001E-11

2.0149E-11

3.3036E-11

7.5783E-11

8.2987E-12

Table 3: Quality of results test

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 268

As we can see from Table 3, results obtained by

multi-colony approach are always better than results

generated by standard FF Algorithm.
Ratio between exploitation and exploration is

more balanced in parallel implementation of FF

algorithm than in its standard implementation.

4 Conclusion
In this paper parallelized the FF algorithm for

unconstrained continuous optimization problems is

introduced. The performance of this algorithm was

measured through four tests on standard benchmark

functions. We examined speed improvement, as

well the quality of results improvement.

As we can from the comparative analysis

between single threaded and multiple threaded FF

algorithms, the multiple threaded one substantially

outscored the traditional one. Parallelized FF

algorithm obtained much better results in much less

execution time. Parallelization overcomes deficien-

cies of single threaded execution.

As a plan for further research, we will try to

enhance the original FF algorithm and parallelize it

in the same way we did with the original one. Also,

we will test our algorithm on more standard and less

standard unconstrained functions, as well on

constrained ones.

References:

[1] Fletcher R., Practical Methods of optimization

2nd Edition, Wiley, 2001, p.430.

[2] Cohen H., Numerical approximation methods,

Springer, 2011, p. 485.

[3] Blum C., Roli A., Metaheuristics in

combinatorial optimization: Overview and

conceptual comparison, ACM Comput. Surv.,

Vol. 35, Issue 3, 2003, pp. 268-308.

[4] Kennedy J., Eberhart R., Particle Swarm

Optimization, Proceedings of IEEE

International Conference on Neural Networks,

1995, pp. 1942–1948.

[5] Dorigo M, Maniezzo, Ant Colony system:

Optimization by a colony of cooperating

agents, IEEE Transactions on Systems, Man

and Cybernetics - Part B, Vol. 26, Issue 1,

1996, pp. 29-41

[6] Kwee L., Yew-Soon O., Meng L., Xianshun C.,

Agarwal A., Hybrid ant colony algorithms for

path planning in sparse graphs, Soft

Computing, Vol. 12, Issue 10, 2008, pp. 981-

994.

[7] D. Karaboga, An idea based on honey bee

swarm for numerical optimization, Technical

Report TR06, Computer Engineering,

Department, Erciyes University, Turkey, 2005.

[8] Jiann-Horng L., Li-Ren H., Chaotic bee swarm

optimization algorithm for path planning of

mobile robots, Proceedings of the 10th WSEAS

international conference on evolutionary

computing, 2009, pp. 84-89.

[9] Yang, X. S. and Deb, S., Cuckoo search via
Lévy flights, in: Proc. of World Congress on

Nature & Biologically Inspired Computing

(NaBIC 2009), 2009, pp. 210-214.

[10] Lukasik S., Zak S., Firefly Algorithm for

Continuous Constrained Optimization Tasks,

Computational Collective Intelligence.

Semantic Web, Social Networks and

Multiagent, LNCS, Vol. 5796, 2009, pp. 97–

106.

[11] Krishnanand K., Ghose D., Glowworm swarm

based optimization algorithm for multimodal

optimization functions with collective robotics

applications, Multiagent and Grid Systems,

Vol. 2, Issue 3, 2006, pp.209–222.

[12] Cecilia R., Tenreiro Machado J. A., Crossing

Genetic and Swarm Intelligence Algorithms to

Generate Logic Circuits, WSEAS Transactions

on computers, Vol. 8, Issue 9, 2009, pp. 1419-

1428.

[13] Zhuang X., Mastorakis N.E., Edge Detection

Based on the Collective Intelligence of

Artificial Swarms, in: Proceedings of the 4th

WSEAS International Conference on Electro-

nic, Signal Processing and Control, 2005, pp.

25-27.

[14] Stanger H. K. F., Lloyd J. E., Hillis D. M.,

Phylogeny of North American fireflies

(Coleoptera: Lampyridae): Implications for the

evolution of light signals, Molecular Phylo-

genetic sand Evolution, Vol. 45, Issue 1, 2007,

pp. 33–49.

[15] Zang H., Zhang S., Hapeshi K., A Review of

Nature-Inspired Algorithms, Jour. of Bionic

Engineering, Vol. 7, Issue 3, 2010, pp. 232–

237.

[16] X.S. Yang, Nature-Inspired Metaheuristic

Algorithms, Luniver Press, 2008, p. 116.

[17] Pedemonte M., Nesmachnow S., Cancela H., A

survey of parallel ant colony optimization,

Applied Soft Computing, Vol 11., Issue 8,

2011, pp. 5181-5197.

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 269

http://www.engr.iupui.edu/~shi/Coference/psopap4.html
http://www.engr.iupui.edu/~shi/Coference/psopap4.html

