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Abstract: - Bio-inspired metaheuristics for hard optimization problems are very commonly parallelized. In this 

paper a parallelization of firefly algorithm is introduced. Firefly algorithm is one of the latest bio-inspired 

algorithms and this is the first attempt of its parallelization. We used a set of well-known unconstrained 

continuous functions for benchmark purposes. Two approaches were implemented here - one aiming to faster 

execution and the other one aiming to better results. In the first approach, one run of the algorithm is presented 

as one thread, while in the second approach that we call multiple colony approach, two colonies of fireflies run 

simultaneously, and after certain number of generations the process of exchanging fireflies among them occurs. 

In this way we managed to obtain better results than the original algorithm. 
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1 Introduction 
Optimization is certainly one of the most interesting 

scientific fields. Many methods have been 

developed for solving real-life optimization 

problems. These methods can roughly be divided 

into two groups [1]: rigorous and approximation 

methods. 

Rigorous methods such as linear programming, 

integer programming, dynamic programming and 

branch-and-bound are usually applied to medium-

size problems. For these kinds of problems they 

obtain satisfying results.  

However, real-life optimization problems are 

often large scaled, and the process of finding 

optimal solution for these problems can be 

challenging for rigorous techniques. Optimization of 

such complex systems requires exponential amount 

of computing power and time with increase of 

number of decision variables. Approximation 

methods have been proposed for solving these kinds 

of problems [2].  

Representative of approximation methods are 

nature inspired algorithms. As other methods from 

this group, they find near optimal solution in 

reasonable amount of computation time. Nature 

inspired algorithms adopted some of well-known 

features of natural systems which evolved though 
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selection mechanism over millions of years. Two 

important features of natural systems which were 

incorporated into computer algorithms are selection 

of the fittest and adaptation to the surrounding. In 

nature inspired algorithms they manifest as [3]: 

intensification and diversification. Intensification is 

search process around current solutions in the 

population and it is known as exploitation. On the 

other hand, diversification maintains exploration of 

the search space and prevents algorithm of being 

stuck in local optimum.  

Swarm intelligence algorithms are among the 

latest nature inspired metaheuristics. These are 

complex computational systems which mimic 

behavior of species such as ants, birds, fish, bees, 

cuckoos, frogs, etc. These animals (insects)  have 

very finite individual capability, but when they act 

as a group (swarm), they can perform many com-

plex tasks in order to survive. Using analogy with 

real swarm systems, swarm intelligence algorithms 

consist of many intelligent agents with complex 

interactions among them and without centralized 

supervision component. Each agent responds to 

local stimuli independently, but also, they all 

cooperate in order to accomplish global task.  

Many swarm intelligence algorithms were 

developed and enhanced over the time. Particle 

swarm optimization (PSO) is well-known swarm 

intelligence algorithm which simulates collective 

behavior of fish or birds. It was developed by 

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 264



Eberhard and Kennedy [4] for optimizing nonlinear 

functions in multidimensional space.   

Ant colony optimization (ACO) simulates 

foraging behavior of ants which use pheromone 

substance to find the shortest path between their 

nests and food source [4]. This algorithm, as well its 

modifications, found wide-spread use in many 

practical applications [6].  

Karaboga  was inspired by behavior of honey bee 

swarms and devised artificial bee colony (ABC) 

algorithm [7]. ABC algorithm uses three kinds of 

artificial bees: employed, onlooker and scout. 

Employed bees and onlookers are exploiting search 

space, while scout maintain diversification through 

exploration. There are also other approaches which 

model bee’s behavior [8]. 

Cuckoo search (CS) algorithm is relatively 

new metaheuristics for continuous optimization 

problems [9]. CS uses Lévy flights search pattern 

and shows very promising performance.  

Firefly (FF) algorithm is a novel metaheuristic 

which mimics flashing behavior of light bugs [10]. 

As the primary purpose of firefly’s flash is to act as 

a signal system to attract other fireflies, researches 

have been attracted to incorporate such behavior 

into computation algorithm.  

Very similar to FF algorithm is glow-worm 

swarm algorithm which has been used in many 

practical fields including robotics [11]. 

Besides above mentioned, there are also 

other swarm intelligence algorithms are often 

used with other evolutionary computation (EC) 

algorithms [12], and applied to wide variety of 

practical problems [12],  [13]. 

This paper is devoted to FF algorithm. Our 

objective is to describe implementation of the 

parallelized FF algorithm and to examine how 

multithreaded algorithm’s execution influences 

results. Parallelized FF algorithm was adapted 

for solving unconstrained continuous optimiza-

tion problems. These optimization problems can 

be formulated as minimization or maximization 

of D-dimensional function: 
 

           Min (or max) f(x),     x=(x1,x2,x3,…xD)      (1) 
 

where D is the number of parameters to be 

optimized.  
The search space is usually limited to n-

dimensional hyper-rectangular space in R
n
 

defined by lower and upper variables’ bounds: 

               lbi ≤ xi ≤ ubi,     1 ≤ i ≤ n           (2) 

This paper is organized as follows. After introduc-

tion in Section 1, detailed description of FF 

algorithm in Section 2 is introduced. Section 3 

describes parallelization of the FF algorithm. In 

subsequent Section 4 testing results on standard 

unconstrained benchmark functions are presented. 

Finally, Section 5 includes conclusion and final 

remarks. 

 

 

2 Firefly Algorithm 
 

 

2.1. Fireflies in nature 

Fireflies are also known as lighting bugs. Many 

people use terms firefly and glow-worm 

interchangeably. Both are beetles that can emit light 

and are mostly of the family of Lampyridae. But, 

there is substantial difference between glow-worms 

and fireflies – glow-worms belong to the group of 

flightless species of Lampyridae, while fireflies are 

recognized as species that have the ability to fly. 

These insects can generate light inside of their 

bodies owing to a special chemical reaction. The 

process of generating light happens in unique organs 

in firefly’s lower abdomen called light-emitters. 

Lighting system was used for sending warning 

signals among firefly population and to attract the 

potential victim, but now it has evolved that its 

primary purpose is in mate selection. It is said that 

these organisms use bioluminescence for sexual 

selection [14].  

The pattern of flashes depends on particular 

species of fireflies. Both sexes of fireflies are 

brought together via the rhythmic flash, the rate of 

flashing and the amount of time form part of the 

signal system. Groups of fireflies have the ability to 

synchronize their flashes and this appearance is 

known as phase synchronization [14]. 

Male’s unique pattern of flashing attracts female 

from the same species for mating. But, in some 

species, female can set up a decoy by mimicking the 

mating flashing pattern in order to eat males.  

As the distance from the lighting source 

increases, the light intensity decreases. So, light 

intensity follows the inverse square law: 
 

                    I ~ 
 

                                                  (3) 

 

where I  is light intensity, and r is distance. Besides 

that, the air also absorbs part of the light, and the 

light becomes even weaker.   

Two mentioned factors affect the communicating 

abilities of fireflies. Residual light intensity is 
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usually good enough for fireflies to communicate 

with each other.  

These properties of lightening communication of 

fireflies can be translated into objective function to 

be optimized and that is exactly what makes FF 

algorithm possible to implement.  

 

 

2.2. Algorithm Details 
In firefly algorithm, the main goal of light signal 

system is to attract other fireflies. Whole system is 

complex and it must be simplified due to 

incorporation into evolutionary algorithm. The most 

important issues are flushing characteristic of 

fireflies which must be idealized.  

There are three simplification rules which guide 

the construction of the FF algorithm. Rules are 

summarized in bullet points below:  

 First rule emphasis that each firefly attracts all 

other fireflies with weaker flashes [15]. 

Therefore, all fireflies must be idealized in a 

way that they have only one sex and are 

attracted with each other. 

 Second rule notes that attractiveness of fireflies 

is proportional to their brightness.  On the other 

side, brightness is reverse proportional to the 

distance from the light source. That means that 

the less bright firefly will relocate towards the 

brighter one. If the particular firefly is the 

brightest one in the population, it will move in a 

random manner because there is no other bug to 

attract it. 

 Finally, the third rule highlights that the 

brightness of a firefly is affected or determined 

by the distribution of the objective function.  
 

According to rules presented above, pseudo code 

for the FF algorithm is: 
 

 Generate initial population of fireflies xi (i =1,2…, n) 
 Light intensity Ii  at xi point is defined by f(x) 
 Define light absorption coefficient γ 
 Define numberOfGeneration  
while (t < numberOfGeneration) do 
     for (i = 1 to numberOfAllFireflies) do 
          for (j = 1 to i) do 
                If (Ij < Ii) then  
                 Move firefly j towards i in d dimension 
                   Attractiveness depends on distance r         

and absorption  property of surroundings 
γ via the function exp – γr. 

                   Evaluate new solutions and update light 
intensity   

               end if  

           end for  
       end for 
       Rank the fireflies, find the current best and  

move it in a random fashion 
end while 
    

  For complete understanding of the algorithm 

few sentences about attractiveness of firefly and its 

movement should be added.  First thing that comes 

to mind is to use an objective function f(x) to encode 

the brightness of a given firefly. Actually, it 

represents the light intensity at location x as I(x) = 

f(x). Yet, there are some issues with the distance, 

point of view and the fact that the environment 

absorbs part of emitted light. At the source, the 

brightness is higher than at some distant point. Also, 

the brightness decreases while environment absorbs 

the light while it is travelling. It can be concluded 

that the attractiveness of firefly β is relative. It is 

known that the light intensity I(r) varies following 

the inverse square law:  
 

                   I(r) = 
  

                                            (4)                   
 

where I0 represents the light intensity at the source. 

If light absorption coefficient γ is added to Equation 
(4) it transforms to:  

 

                   I(r) = 
  

                                          (5)                                  

 

Constant 1 is added to denominator to avoid 

singularity of the term at the source (r=0). 

Eq. 6 can also be used because of the fact that 

attractiveness β is proportional to intensity: 
 

                      β (r) = 
  

                                          (6) 

 

Eq. 6 can be further approximated with Gaussian 

form [16] : 
 

                  β (r) = β0 exp 
–γr2 

                          (7) 
    

Fireflies movement is based on the principles of 

attractiveness: when firefly j is more attractive than 

firefly i the movement is determined by the 

following equation:  
 

     xi = x + β0 exp 
–γr2

xi
 
(xj – xi) + α (rand - 

 

 
)            (8)                                 

 

Third term is randomization term, where α   

[0,1] and rand is pseudo-random number between 0 

and 1. Distance rij between fireflies i and j is 

calculated using Cartesian distance form: 

 

            rij = √∑   
     ,       ,  

                         (9) 
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3 Parallelized FF Algorithm 
We  are  witnessing  a  dramatic  change  in  compu-

ter architecture  due  to  the  multicore  paradigm  

shift. In general, a system of n parallel processors, 

each of speed k  is less efficient than one processor 

of speed n * k.  However,  the  parallel  system  is 

usually  much  cheaper  to  build  and  its  power 

consumption  is  significantly  lower.  

Parallelization of algorithms has been proven to 

be a very powerful method in the case of population 

based algorithms [17]. There are several approaches 

in parallelization of bio-inspired heuristics, but they 

can be divided into two groups. Methods that are 

trying to reduce the execution time belong to the 

first group, while methods that are aiming on better 

results are in the second group. Here, one method 

from each group is applied to the FF algorithm and 

presented.  

The methods that are trying to improve CPU 

utilization are commonly making function evalua-

tion calls to run simultaneously. Some of them are 

running evaluation of every population individual as 

a separate thread. In most cases, this is not the best 

solution. Population based algorithm often have 

between 20 and 100 individuals in the colony. The 

evaluation function usually does not require much 

CPU time, so extensive  use  of  CPU  time for crea-

ting  threads  and  their  synchronization exceeds  

the  benefits  of  parallel  execution  of  each 

evaluation. Creating and synchronizing such large 

number of threads  can  be  slower  by  far  than  

using  a serial execution of evaluations. 

It is desirable to run population based heuristics 

many times, because they do not provide exact 

result but rather give approximation as final result. 

It is quite useful to run all iterations simultaneously 

in order to save time.  This is most common method 

of parallelization of bio-inspired heuristics - one run 

of the algorithm is presented as one thread. In this 

approach threads have no communication between 

themselves at all. Every thread runs the same 

sequential FF algorithm with different random 

seeds. The final solution is the best one of all the 

independent runs. The speed increases almost as 

many times as there are execution cores in system.  

Independent parallel runs approach is too coarse 

grained and there are no speed gains for one single 

runtime. On single core system this implementation 

can be slower than serial execution of all runs. This 

can be explained by high cost of switching CPU 

between threads.  

Methods that are aiming for better results are 

usually dividing population into certain number of 

sub-populations and then exchanging the results 

among them after certain number of generations. 

The  idea  was  to  use  more  than  one colony on  

same search  space. Multiple colonies can find more 

useful solutions and narrow the search space. 

Trapping in local optimum can be avoided by using 

numerous colonies.   

In this paper, the emphasis is on multiple 

colonies approach where the question of number of 

colonies arises. In our tests we empirically found 

that best results are obtained when the main colony 

of fireflies is divided into two sub-colonies. There is 

also an issue of frequency of communication 

between two colonies. The period between two 

communications can be determined by the number 

of cycles or by the time unit.  In our experience, it is 

better to use the number of cycles rather than time 

unit.  Since  on different  systems  various amounts 

of computational work can be done in the same  

time, only a few communications  can  occur on  the 

faster systems, while during the same algorithm  

execution on the slower system, number of  

communications can be significantly greater.  

When algorithm starts execution, after certain 

number of cycles a new population is created. 

According to our experiments, the best results are 

obtained when the creation of new population is 

done after every 1000 cycles. New population is 

created in the following way: half of individuals in 

new population are copied from one sub-colony and 

half from the other. Before creating new population, 

the fireflies are sorted by their light intensity, and 

then the half with greater light intensity is copied 

into new population. As a result, new population 

contains best fireflies from both sub-colonies. After 

that, sub-colonies are replaced with new population 

and search process is continued.  

 

 

4 Numerical Experiments 
In this section, we show experimental results which 

validated our parallelized FF algorithm. 

For testing purposes, we used following well-

known unconstrained benchmark functions: 
 

 Ackley 

 Griewank 

 Rastrigin  

 Sphere 
 

Because of the fact that these are standard 

benchmark functions, their definition is omitted. 

All of the parallelization  approaches  have  been 

implemented using Java programming  language. In 

the Java programming language, concurrent pro-

gramming is mostly concerned with threads.  

Threads are sometimes called lightweight processes.  

Both processes  and  threads  provide  an  execution 
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environment,  but  creating  a  new  thread  requires 

fewer  resources  than creating  a  new  process.  For 

test purposes, we created test  application in Java  

programming  language based  on  Lukasik and Zak  

software in Matlab. Tests were done on Intel I7-

2600k processor with 8GB of RAM on Windows 7 

Ultimate Edition x64 Operating System and 

NetBeans 7.0.1 Integrated Development Environ-

ment (IDE). In order to make the comparison 

clearer, values below E-12 were assumed to be 0. 

The parameters of algorithm are given in Table 1.  
 

 

Parameter Value 

Number of function evaluation calls 1000000 

Colony size 40 

β0 1 

α 0.01 

ϒ 1 

Number of runs with different seeds 30 

Number of function parameters 5, 10, 50, 500 
 

Table 1: Parameter settings 
 

In the first series of our tests speed comparison is 

performed. It was our purpose to illustrate speed 

gains when every run of algorithm is separate 

thread. Comparison is done for different number of 

parameters of objective function. The results of 

speed test are shown in  Table 2. 

It is shown that speed gains are substantial for 

almost all combinations of number of parameters 

and benchmark functions. As the number of 

parameters increase, speed gains also increase. 

The largest speed gains are obtained for 500 

parameters. When test are done with small number 

of parameters, algorithm uses more CPU cycles for 

creating and synchronizing threads than for actual 

computation of objective functions. That explains 

small increase or even decrease in some cases, when 

5 or 10 parameters are used. Since the Sphere 

function is a simple function, it requires small 

amount of CPU time when serial runs are used. 

More CPU time is used for creating and maintaining 

threads then for calculating Sphere function. The 

Sphere function is not so eligible for parallelization 

when the number of parameters is smaller than 500. 

Since this method of parallelization has no impact 

on quality of results, comparison of results are 

omitted. 

 
Function Number of 

parameters 

Serial 

runs 

(seconds) 

Parallel 

runs 

(seconds) 

Speed 

increase 

Ackley 

5 21.1 22.0 0.957447 

10 30.4 19.1 1.588235 

50 121.3 21.3 5.704225 

500 1167.5 224.3 5.204082 

Griewank 

5 98.7 80.2 1.230769 

10 165.3 100.8 1.639344 

50 773.1 121.8 6.346154 

500 6913.9 1143.1 6.048387 

Rastrigin 

5 96.9 69.6 1.391753 

10 164.3 105.2 1.5625 

50 711.2 132.2 5.37931 

500 6873.5 1200.4 5.726141 

Sphere 

5 39.5 269.9 0.146341 

10 69.0 170.2 0.405405 

50 629.8 1053.9 0.59761 

500 6084.4 4502.5 1.351351 
 

Table 2: Speed test results 
 

Second part of our experiments aims for better 

results. We compared the results obtained when 

standard implementation of FF algorithm is run with 

multiple colony approach of the FF algorithm. 

These results are shown in Table 3. 

    

 

Function 

NP = 5 NP = 10 NP = 50 

Standard MC Standard MC Standard MC 

Ackley Best 

Mean 

Worst 

Stdev. 

8.2387E-9 

1.1714E-8 

2.0125E-8 

2.9338E-10 

0 

0 

0 

0 

4.4215E-7 

7.2289E-7 

3.7141E-6 

6.7591E-8 

2.4354E-9 

6.5691E-9 

4.2323E-7 

5.4301E-10 

3.4563E-4 

7.0238E-4 

5.7440E-3 

3.1484E-5 

8.1938E-6 

2.7645E-6 

4.1034E-5 

3.8367E-7 

Griewank Best 

Mean 

Worst 

Stdev. 

1.1481E-7 

5.7307E-7 

4.0935E-6 

1.4143E-8 

2.5786E-10 

5.0548E-9 

1.1812E-8 

3.3066E-9 

4.0202E-6 

4.2994E-6 

4.3398E-6 

3.1103E-10 

2.5454E-8 

8.1149E-8 

4.8359E-7 

3.1484E-11 

1.5263E-2 

7.4780E-2 

3.3232E-1 

6.5210E-3 

2.6657E-4 

9.2438E-4 

3.5610E-3 

5.2509E-5 

Rastrigin Best 

Mean 

Worst 

Stdev. 

3.4877E-7 

4.1457E-7 

1.2723E-6 

4.2175E-8 

2.0572E-9 

4.6498E-9 

3.1846E-8 

2.3252E-10 

3.2354E-6 

2.6799E-5 

5.5293E-5 

8.3706E-7 

5.1643E-8 

2.1728E-7 

3.5197E-7 

4.1392E-9 

4.6401 

5.7742 

7.8927 

6.8899E-1 

3.1751E-2 

4.3045E-2 

2.1609E-2 

4.2373E-4 

Sphere Best 

Mean 

Worst 

Stdev. 

0 

0 

0 

0 

0 

0 

0 

0 

8.0673E-12 

3.6363E-11 

1.9867E-10 

0 

0 

0 

0 

0 

7.7761E-10 

5.3148E-9 

2.3559E-9 

9.2001E-11 

2.0149E-11 

3.3036E-11 

7.5783E-11 

8.2987E-12 
 

Table 3: Quality of results test 
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As we can see from Table 3, results obtained by 

multi-colony approach are always better than results 

generated by standard FF Algorithm.  
Ratio between exploitation and exploration is 

more balanced in parallel implementation of FF 

algorithm than in its standard implementation.  

 

 

4 Conclusion 
In this paper parallelized the FF algorithm for 

unconstrained continuous optimization problems is 

introduced. The performance of this algorithm was 

measured through four tests on standard benchmark 

functions. We examined speed improvement, as 

well the quality of results improvement.    

As we can from the comparative analysis 

between single threaded and multiple threaded FF 

algorithms, the multiple threaded one substantially 

outscored the traditional one. Parallelized FF 

algorithm obtained much better results in much less 

execution time. Parallelization overcomes deficien-

cies of single threaded execution. 

As a plan for further research, we will try to 

enhance the original FF algorithm and parallelize it 

in the same way we did with the original one. Also, 

we will test our algorithm on more standard and less 

standard unconstrained functions, as well on 

constrained ones.  
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