
Identification of Performance Issues in  

Contemporary Black-Box Web Application Scanners in SQLI 
 

HA THANH LE and PETER KOK KEONG LOH 

Computer Security Laboratory 

Nanyang Technological University, Singapore 

lehathanh@ntu.edu.sg 
 

 

Abstract: - We evaluate the performance of seven commercial and open-source black-box scanners in scanning 

for server-side vulnerabilities, particularly for SQL injection. We identify performance issues in black-box Web 

application scanning. We describe our experiments on our test-bed environment. The results are then analyzed 

and revealed important performance issues limiting the scanning capability of the selected scanners. Based on 

these findings, we give suggestions to improve SQLI black-box scanning with improved site discovery as well 

as active, context-aware SQLI vulnerability detection.  

 

Key-Words: - Web application scanner, black box scan, SQLI vulnerability scan, active context-aware 

vulnerability detection. 

 

1 Introduction 
Our research work may partially overlap with other 

existing research (such as [1, 2]). However, in our 

work, we focus on a different set of characteristics 

and measurements used to evaluate and determine 

the strength, weakness and gaps that exist in 

selected black-box scanners. This approach reveals 

new performance issues and suggests new 

approaches in SQLI detection research.  

The paper is organized as follows. In section 2, 

we review recent detection techniques in SQLI 

black-box scanning. We describe the scope and 

methodology of our work in section 3. Next, in 

section 4, we describe our test environment and how 

we conduct the tests. Results and analysis are 

detailed in section 5. In this section, we also present 

findings from evaluation and proposal for Black box 

Web scanning research that need to focus in the next 

stage. Section 6 concludes this paper followed by 

the references. 

 

 

2 Literature Survey 
 

2.1 SQLI Detection Techniques 

SQL injection is a technique for exploiting Web 

applications with malicious client-supplied 

inputs. A characteristic diagnostic feature of 

SQL injection attacks is that they change the 

intended structure of queries issued. When 

testing for SQLI, we need to specify and 

include the various injection types such as 

direct injection, quoted injection, SQL 

command with system commands injected, 

parameter-based injection via Web-based 

forms, and error-prone injection [3]. 
There are many SQLI detection techniques. For 

example, the parsing technique is used to detect 

SQL command injection attacks (Su and Wasseman 

[4]). Tainting technique [5] is used to detect 

vulnerable location and data. Most of these are 

based on traditional signature detection techniques. 

They inspect Web traffic to identify SQL injection-

related request/responses [6]. 

Das, Sharma, and Bhattacharyya [7] pointed out 

that the main issue in most SQLI attack detection 

approaches is developer-dependent. Either trusted 

input strings or unsafe input characters are initially 

generated and validated by developer. Hence, the 

reliability of proposed techniques rely heavily on 

developer’s skill. A new detection technique (DUD) 

for SQL injection based on dynamic adaptive query 

matching was proposed in order to overcome this 

drawback. However, the edit distance threshold 

which is the key parameter of automatic detection of 

injected queries is a user-dependent heuristic. 

Detection efficiency will rely on a tester’s skill in 

selecting an optimum edit distance. 

An attacker can even exploit SQLI 

vulnerabilities to determine if injected SQL 

statements execute even when error messages and 

query results are not returned to the client’s browser 

[8]. The injection strings, in such cases, can be 

customized to the specific database system (SQL 

Server) and target system (IP address and port). The 

detection technique could then be based on selective 

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 211



fuzzing with parameterized queries or non-

alphanumerical characters as user inputs. 

A prototype SQL injection detection system 

(SQL-IDS) reported in [9] employs a detection 

technique that utilizes specifications which define 

the intended syntactic structure of SQL queries that 

are produced and executed by the Web application. 

The application is then monitored for executing 

queries that are in violation of the specification. 

Sunitha and Sridevi [10] proposed a detection 

technique that performs syntax-aware evaluation of 

a query string immediately before the string is sent 

to the database to be executed. Bisht et al. [11] 

proposed a mining technique for detecting SQL 

injection. Their approach is to dynamically mine the 

programmer-intended query structure, and detect 

attacks by comparing against the structure of the 

actual query issued. The system, Caddid, may be 

trained with runs over benign candidate inputs. 

A recent technique presented in [12] is effective 

only for SQL injections that insert a tautology in the 

SQL queries, but cannot detect other types of SQL 

injection attacks. Another technique uses available 

cheat sheets (such as [13-15]) for testing the Web 

applications. Although this is not an adaptive 

solution but if the tester/attacker has done thorough 

analysis of the target application, customized 

injection cheat sheet would be very effective. 

In next section, we will describe our work in 

testing black-box web application scanners. 

 

 

3 Scope and Methodology 
In our investigations, we evaluate the scanning 

capability of selected black-box Web application 

scanners. The evaluation includes: 

- The overall functionality of the scanners (a.k.a. 

vendor’s product specification) (T1.1). 

- The capability in providing additional functions 

that support finding specific vulnerabilities 

(T1.2). 

- The capability of detecting known existing 

vulnerabilities in the Web application: the types 

of vulnerability that can be detected from a 

specific Web application (T2). 

- The scanning coverage. Here, we try to discover 

the scanners’ vulnerability database from which 

a scanner can perform automatic scanning 

(T3.1). We also need other evaluation parameters 

on runtime scanning to determine the actual 

scanning coverage. 

- The positive detection ratio versus negative 

detection ratio with the aid of manual scans 

(T3.2). 

- The specific tests that a scanner performs on a 

Web application in order to detect vulnerability 

(T4). 

- The import-export capability: a scanner may 

perform better if it is able to import pre-scanning 

settings from and/or export post-scanning results 

to other analysis tools (T5). 

Default settings are used for all scanners to 

remove the dependency on testing expertise. For 

example, when scanners are selectively combined to 

get more coverage or additional tools used to 

strengthen scanning results (an external proxy tool 

and/or a search engine’s database may be used to 

establish a thorough map and UI of a Web 

application during pre-scanning stage).  

In next section, we present our test environment 

set-up for the experiments. 

 

 

4 Experimental Set-up 
 

4.1 Platform 
The test environment is illustrated in Fig. 1. 

- In-house environment: comprised of a LAN of 4 

computers:  

o Server: We deployed virtual machine-based 

servers on the available hardware. Installed 

server platforms include: 

 Windows XP SP3 with WAMP 

(Windows-based Apache, MySQL, and 

PHP) 

 Windows 2003 Server/Windows 2008 

Server 

 Linux Server (Ubuntu) in PC1 

 A dedicated Solaris machine and other 

OS images (e.g. FreeBSD, Vyatta 

firewall OS) are installed for later 

usage. 

o Security prevention is disabled to minimize 

false negatives in the experiments. 

Specifically, we do not use IDS, IPS, filters 

or honeypot systems. Firewalls (mostly 

personal OS-integrated firewall) are 

disabled. In case a firewall is enabled, 

default settings are used with considerations 

for test applications and scanners, network 

connection, protocol and opened ports. 

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 212



o Client: the scanners are installed in 

machines that play client-role/attack role. 

Client OSs include: 

 Windows XP SP3 

 Windows 7 Ultimate (evaluation) 

 Images of Ubuntu-based BackTrack, 

Samurai Web Testing Framework, 

BackBox or Fedora-based system are 

used interchangeably depending on the 

required open source scanners / tools. 

o DNS: a DNS server is used when a domain 

name is assigned to the deployed Web 

application (or Website). In this case, the 

servers at PC1 and PC2 will be named 

accordingly without altering the intranet 

configuration. Scanning is performed either 

with domain names or IP addresses. 

- Online environment: vulnerability-ready Web 

applications are deployed as test-cases. Hence, 

we can perform scanning flexibly against these 

applications without violating and raising 

sensitive security considerations. For these 

applications, all we need is a computer with 

internet access and scanners installed. 
 

 

4.2 Target Applications 

After setting up the test environment, we 

installed the scanners and performed scanning 

on the pre-configured Web applications. For 

each test, only specified applications were installed 

and verified for proper operation in the test 

environment. Applications that were not needed for 

current tests were not installed to minimize potential 

noise and detection inaccuracies.  

Some research projects (OWASP, MOTH) 

provided system images for fast test-case 

deployment. However, this was limited to only 

certain Web applications/sites.  

The two categories of Web application test-cases 

used in our evaluation required different settings 

and configurations:  

- In-house Web applications/sites: For these test-

cases, we set up the required execution 

configurations, installed and deployed the test-

cases in the test environment. 

o OWASP Broken Web Apps and MOTH 

were deployed using the virtual machine 

images alluded to previously.  

o Vulnerable versions of applications/sites for 

which vulnerabilities have been confirmed 

with reference to the CVE or OWASP 

database are deployed separately.  

o Note: It would be likely that the updated 

and/or patched versions of these vulnerable 

applications are already remediated from 

their original specified vulnerabilities. 

Hence, the applications’ update function 

was disabled to prevent automatic and 

manual updates/upgrades. 

- Existing online vulnerability-ready Web 

applications/sites include those at:  

o zero.webappsecurity.com,  

o demo.testfire.net,  

o testphp.acunetix.com,  

o testasp.acunetix.com,  

o testaspnet.acunetix.com,  

o crackme.cenzic.com. 

Internet 
 

DNS 

Solaris 10/Sparc 

Windows XP SP3 
VMWare workstation 

Windows 2008 Server 

Windows XP SP3/Windows 7 
Virtual machine 

Intranet 
(NTU) 

 

PC1 PC2 

SUN 

LT1 

Campus/Internet access 

Test access (private) 

Wireless access 

Fig. 1 Test Environment 

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 213



4.3 Scanners 
Our experiments evaluate the following scanners: 

- Commercial scanners (all run on Windows-based 

platform) 

o IBM AppScan  

o Acunetix  

o WebSecurity 

o Netsparker Community Edition 

- Open-source scanners (Windows-based and 

Linux-based installation) 

o Sqlmap 

o Sqlninja 

o Sqlbrute 

In our experiments, we also installed 

HPWebInspect. However, because its evaluation 

version allows scanning on only one pre-defined test 

Website provided by the vendor 

(zero.webappsecurity.com), we could not use 

HPWebInspect on the other Web application test-

casess installed in our test environment. Hence, we 

only used it to verify the scan results at 

zero.webappsecurity.com and exclude HP 

WebInpect in other Web application tests. 

For a separate, informal evaluation of test results 

reliability, we performed scanning tests with sqlmap 

scanner which: 

- Allows import of search database from a search 

engine (googledork).  

- Scans specific web pages (links) with 

parameterized tests. 

The comparison and analysis of test results are 

presented in the next section. 

 

  

5 Test Results Evaluation 
We observed that the SQLI-based Web application 

scanning results varied with different scanners. We 

grouped detected SQLI vulnerabilities into the 

following SQLI types: 

- Inline SQLI (Or generic SQLI if the scanner 

does not state specific SQLI type) 

- Inferential SQLI (Boolean-Based Blind SQL) 

- AND/OR time-based blind (such as detected by 

sqlmap and sqlninja on testasp.vulnweb.com) 

- Stack queries (detected by sqlmap on 

testasp.vulnweb.com) 

- Related vulnerability of SQLI includes all 

scanner warning messages stating that SQLI 

may be detected and verification is needed, or 

Authentication Bypass Using SQL Injection (in 

AppScan) 

The detected SQLI vulnerabilities are confirmed 

by scanners using different injection strings. It 

appears that each scanner uses its own injection 

string set or has generated the injection strings using 

different patterns (Table 1 illustrates with some 

results). 

The scanners execute SQLI probes with different 

injection string sets in different trials. 

 
Table 1. SQLI detection at testasp.vulnweb.com 

SQLI type Scanner Injectable Location and injection string 
Inline SQL 
Injection 
Error-
based 

Acunetix /Login.asp?RetURL=/Default.asp?  
parameter: tfUPass, tfUName 

 tfUPass=' 
tfUPass=acunetix'" 
tfUPass=\' 
tfUName=\' 
tfUname=' 
tfUname=acunetix'" 

Netsparker 
Community 
Edition 

tfUName='+ (select convert(int,CHAR(95)+ 
CHAR(33)+CHAR(64)+CHAR(50)+CHAR(100)+ 
CHAR(105)+CHAR(108)+CHAR(101)+CHAR(109)+ 
CHAR(109)+CHAR(97)) FROM syscolumns) +' 
 
tfUPass='+ (select convert(int,CHAR(95)+CHAR(33)+ 
CHAR(64)+CHAR(50)+CHAR(100)+CHAR(105)+ 
CHAR(108)+CHAR(101)+CHAR(109)+CHAR(109)+ 
CHAR(97)) FROM syscolumns) +' 

IBM 
AppScan 

tfUName=ht&tfUPass=ht%27%3B 
tfUName=ht&tfUPass=ht%uFF07 
tfUName=ht&tfUPass=ht' 

WebSecuri
ty 

POST http://testasp.vulnweb.com/Login.asp? 
RetURL=%2FDefault%2Easp%3F HTTP/1.1 
 
tfUName=Abc123&tfUPass=' 
tfUName='&tfUPass=Fr3d1ee! 

Inferential 
(a.k.a. 
Boolean-
Based 
Blind SQL) 

Netsparker 
Community 
Edition 

tfUName=' OR 'ns'='ns 
tfUPass=' OR 'ns'='ns 

Sqlmap tfUname=-6532' OR  
NOT 7373=7373--&tfUpass=123&Login=Submit 
tfUname=abc&tfUpass=123'))) AND 3880=3880--  
AND ((('HIdE' LIKE 'HIdE&Login=Submit 
 

IBM 
AppScan 

tfUName=ht%27+and+ 
%27foobar%27%3D%27foobar&tfUPass=ht 
tfUName=%27+%2B+%27%27+%2B+%27ht&tfUPass=ht 
tfUName=ht%27+and+%27foobar%27 
%3D%27foobar%27+--&tfUPass=ht 

AND/OR 
time-based 
blind 

Sqlninja tfUName=admin';__SQL2INJECT__&tfUPass=admin 
 
 

 

5.1 Site discovery and exploration 
In order to perform automatic scanning effectively, 

site structure (or site map) exploration and 

discovery are required. Site explorer can be a web 

proxy or a web crawler (spider), and they are either 

integrated modules of a scanner or 3
rd

 party tool 

whose scanning results can be imported or called by 

the scanner under evaluation. 

The performance of automatic SQLI scanning, 

and vulnerability scanning in general, depends on 

how detail a site explorer can obtain from a website. 

In our experiment with commercial tools, we 

observed that at least one scanner, Acunetix, did not 

discover two pages (/forgot1.asp, /join1.asp) in a 

website (zero.webappsecurity.com) while those 

pages were detected by other scanners and some 

even successfully detected SQLI vulnerability. 

Some other applications (e.g. Damn Vulnerability 

Web Application) that require user authentication 

into the main login page blocks the automatic 

crawler. For such situations, we use man-in-the-

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 214



middle proxy or crawler which is proxy-capable to 

provide authentication support to assist in the site 

mapping. 

Without crawling capability, proxies will have to 

build a site map from intercepted interactions 

between a client (usually the tester’s host) and 

server. Mapping accuracy will then be dependent on 

the comprehensiveness and effectiveness of the 

monitoring. The proxy may miss some Web pages 

and in turn, the vulnerability scanner which uses the 

proxy’s site map result will ignore those pages. 

Recent Web applications, particularly Web 

service (e.g. Java-based) applications, use 

techniques that hide the actual pages from a crawler. 

End users usually see only the main Web page and 

the embedded interactive objects are responsible for 

UI tasks. Furthermore, typical crawlers/proxies can 

only detect a few less detailed Web pages. In such 

cases, a crawler and/or proxy with Web service 

detection capability is required. However, only a 

few of such tools are available. For example, we 

have HP WebInspect, IBM AppScan with Web 

service scanning. WebScarab proxy recently added 

Web service capture. 

For blind test on Web applications, automatic 

site discovery should include the following:  

- Traditional site exploration. 

- Interactive objects detection. 

- Interaction case generation or 

- Interaction detection via proxy or traffic 

monitoring. 

 

 

5.2 Variants of Scan 
As alluded to previously, different scanners generate 

different requests/responses to the same suspected 

location. As a consequence,  

- Request/response sets (SQLI probe sets) may be 

fixed and preset (e.g. the fixed sets employed by 

most of the commercial scanners – see Table 2). 

- A probe set can be extended if a confirmed 

vulnerability in a specific application is added to 

scanner’s scanning database (e.g. in Acunetix). 

- Not all scanners successfully probe the same 

SQLI vulnerabilities at the same location. 

- Not all scanners successfully probe the same 

SQLI types at the same location. 

- Tester may use his/her own testing with favourite 

cheat sheets (such as [13-15] or self created) to 

verify the SQLI existence and confirm possible 

attack(s). 

- In our experiments, we observed that no two 

scanners use same injection strings in their SQLI 

tests. However, the injection strings are 

generated for certain principal SQLI types (such 

as blind injection, error-based injection, or 

related SQLI inference) based on the valid SQL 

grammar. 

- If we combine the scanners’ request sets, we can 

also infer / determine different variants of SQL 

Injection at one location. 

We suggest that SQLI research should consider 

the capability of generating context-aware, 

grammar-based injection strings based on the 

analysis of existing injection sets (scanners’ 

database, SQLI cheat sheets), and the Web 

application’s mapped structure. 

 
Table 2. IBM AppScan regular SQLI and blind SQLI 

vulnerabilities injection strings 
WF’SQL 
“Probe;A--B 

‘ having 1=1-- 

1 having 1=1-- 
\’ having 1=1-
- 

) having 1=1--  
%a5’ having 
1=1— 

|vol 

‘| ‘vol 

“| “vol 

||vol 

‘+ “+ ‘ 

‘+ ‘somechars  

somechars’+’  

somechars’||’ 

‘||’somechars 

‘||’ 

or 7659=7659 

and 7659=7659 

 
 

and 0=7659 
/**/or/**/7659=765
9 
/**/and/**/7659=76
59 

/**/and/**/0=7659 

‘ 

‘; 

) 

\’ 

; 

\” 

“’ 

“ 
‘ and 
‘barfoo’=’foobar’ -- 
‘ or 
‘foorbar’=’foorbar 
‘ and 
‘foorbar’=’foobar’ -- 
‘ and 
‘barfoo’=’foobar’) -- 
‘ and 
‘barfoo’=’foobar 

 

‘ or 
‘foobar’=’foobar’ -
- 
‘ or 
‘’foobar’=’foobar’) 
-- 
‘ and 
‘foobar’=’foobar 
‘ and 
‘foobar’=’foobar’) 
-- 
‘ exec master.. 
xp_cmdshell ‘vol’-- 
‘; select * from 
dbo.sysdatabases-
- 
‘; select 
@@version,1,1,1-- 
‘; select * from 
master..sysmessag
es-- 
‘; select * from 
sys.dba_users-- 

 

 

 
 

 

 

6 Conclusion 
Our experimental evaluation and analysis on black-

box Web application vulnerability scanners, 

focusing on SQLI vulnerability detection discovered 

that most contemporary scanners focus on fixed and 

known vulnerabilities. Hence, scanning capability is 

bounded within the existing known patterns of 

vulnerability knowledge and disclosed attacks. 

Besides, the indicated limitation in Web application 

structure discovery in pre-scanning step also 

restrains effective scanning. We specified two new 

issues that need further research in next stage. This 

include improving the site discovery and context-

aware injection set generation for SQLI scanning 

and detection.  

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 215



References: 

[1] L. Suto. (2007). Analyzing the Effectiveness 

and Coverage of Web Application Security 

Scanners. [Online]. 2007(5-Oct), doi: 

Available: http://ha.ckers.org/blog/20071014/ 

web-application-scanning-depth-statistics/ 

[2] L. Suto. (2010, 27 April 2011). Analyzing The 

Accuracy and Time Costs of Web Application 

Security Scanners. doi: Available: 

http://www.ntobjectives.com/files/Accuracy_an

d_Time_Costs_of_Web_App_Scanners.pdf 

[3] "SQL Injection: Are Your Web Application 

Vulnerable?," SPI Labs, White Paper 2002. 

[4] Z. Su and G. Wassermann, "The Essence of 

Command Injection Attacks in Web 

Applications," in the Conference record of the 

33rd ACM SIGPLAN-SIGACT Symposium on 

Principles of Programming Languages 

Charleston, South Carolina, USA, 2006, pp. 

372-382, doi: 1111037.1111070. 

[5] N. Jovanovic, C. Kruegel, and E. Kirda, "Static 

Analysis for Detecting Taint-style 

Vulnerabilities in Web Applications," Journal 

of Computer Security, vol. 18, 2010, pp. 861-

907, doi: 10.3233/JCS-2009-0385. 

[6] "SQL Injection Signature Evasion Whitepaper: 

The Wrong Solution to the Right Problem," 

Imperva, White Paper 2005. 

[7] D. Das, U. Sharma, and D. K. Bhattacharyya, 

"An Approach to Detection of SQL Injection 

Attack Based on Dynamic Query Matching," 

International Journal of Computer 

Applications, vol. 1, 2010, doi:  

[8] C. Cerrudo, "Manipulating Microsoft SQL 

Server Using SQL Injection," Application 

Security Inc., Presentation. 

[9] K. Kemalis and T. Tzouramanis, "SQL-IDS: A 

Specification-Based Approach for SQL-

Injection Detection," in the ACM symposium on 

Applied computing (SAC), 2008, doi: 

10.1145/1363686.1364201. 

[10] K.V.N.Sunitha and M. Sridevi, "Automated 

Detection System for SQL Injection Attack," 

International Journal of Computer Science and 

Security (IJCSS), vol. 4, 2010, pp. 426-435, 

doi:  

[11] P. Bisht, P.Madhusudan, and V. N. 

Venkatakrishnan, "CANDID: Dynamic 

Candidate Evaluations for Automatic 

Prevention of SQL Injection Attacks," TISSEC, 

2009, doi:  

[12] B. Indrani and E. Ramaraj, "X-Log 

Authentication Technique to Prevent SQL 

Injection Attacks," International Journal of 

Information Technology and Knowledge 

Management, vol. 4, January-June 2011, pp. 

323-328, doi:  

[13] pentestmonkey. MySQL SQL Injection Cheat 

Sheet. Available: http://pentestmonkey.net/ 

cheat-sheet/sql-injection/mysql-sql-injection-

cheat-sheet. Last accessed: August 2011.   

[14] F. Mavituna. SQL Injection Cheat Sheet (Ver. 

1.4 ed.). Available: http://ferruh.mavituna.com/ 

sql-injection-cheatsheet-oku/. Last accessed: 

August 2011.   

[15] RSnake. SQL Injection Cheat Sheet: ESP: for 

Filter Evasion. Available: http://ha.ckers.org/ 

sqlinjection/. Last accessed: August 2011. 

  

 

 

Latest Advances in Information Science and Applications

ISBN: 978-1-61804-092-3 216

http://www.ntobjectives.com/files/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
http://www.ntobjectives.com/files/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
http://ha.ckers.org/sqlinjection/
http://ha.ckers.org/sqlinjection/



