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Abstract:This paper presents numerical simulation of the Susceptible-Exposed-Infectious-Quarantined-Recovered
network model taking into account the community structure of the population. Numerical simulation of the dis-
ease transmission within and across the communities has been carried out. The effects of neighborhood radius,
transmission rate and quarantine rate on the disease transmission are investigated.

Key–Words:complex network, genetic algorithm, community detection, disease transmission, multi-group epidemic
model, network modularity,SEIQRnetwork model

1 Introduction

It has been realized that the compartmental models
do not reasonably reflect the real transmission of epi-
demic due to the uniform mixing assumption, i.e., all
susceptible individuals are able to catch the disease
with the same infection rate. The structure of human
community has a direct impact to the disease prolif-
eration. However, it has been ignored in many mod-
els. Recently, the existing models typically focus on
the simulation using the combination of mathematical
models and complex networks [9, 10]. It is shown that
the contacts among people in the same community oc-
cur a lot more than those among people among differ-
ent communities. The way to study the transmission
of epidemic should consider the community structure
and the interaction of people in the communities. For
community establishment in the network, most of re-
cent algorithms for constructing a network use the net-
work modularity as a practical measure to find clear
partitions (communities) of the network [1, 5]. For
the application of complex network in epidemiology,
many researchers have proposed epidemic network
models in a discrete space domain [3, 8]. Jumpen
et. al. (2011) proposed SEIQR-SIS epidemic network
model and its stability [2]. Nodes in their network
were classified into hubs and people, and they found
that hubs had significant effect on the disease trans-
mission. However, none of these extensions had con-
sidered the role of community structure to the disease
transmission on the network. The aforementioned re-
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searches show that the development of proper epi-
demic network model is still worldwide active.

We propose a social network using GA to detect
a suitable community of a people node in order to
mimic the real structure of human society. Section
2 presents an implemented GA-Network algorithm, a
community detection method. In section 3, the SEIQR
network model is introduced and used in conjunction
with the constructed GA-Network to simulate the dis-
ease transmission. Then, some numerical results are
given in section 4, followed by conclusion in section
5.

2 GA-Network algorithm
To mimic the social activities, a complex network with
communities is proposed for the study of the SEIQR
disease transmission. We have developed the follow-
ing algorithm to generate the network in which any
node can be reached by other nodes. The network
consists of a number of people nodes with connect-
ing links within a unit square region.

Let N , n andM be total numbers of people nodes,
chromosomes and possible communities, respectively.
The GA-Network algorithm is presented as follows.

Step 1. Locate the positions ofN people nodes ran-
domly in a unit square region by setting the short-
est distance among people nodes.

Step 2. Determine neighbors of a people node using a
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contact radiusRc and generate connecting links
between the node and its neighbors.

Step 3. Determine communities of all people nodes
based on the connecting links using GA proposed
by Tasgin [4] as follows:

(i) Initialization: There aren chromosomes
and each chromosome containsN cells
stored the community identification called
“CommID” of N people nodes. These
chromosomes of the node community are
generated by selecting randomly CommID
to some selected nodes and also to all their
neighbors, and then to other nodes.

(ii) Selection: We select two chromosomes
called as a source chromosome (CS) and a
destination chromosome (CD) as follows:
(a) Calculate modularity(H) of the chro-

mosomes by the expression:

H =
∑

g

[
eg
e

−

(
deg

2e

)2
]
, (1)

wheree andeg denote respectively the
total number of edges in the network
and the number of edges in commu-
nity g, anddeg represents the sum of
degreeski of the vertices of commu-
nity g.

(b) Select two chromosomes having the
highest modularity.

(iii) Crossover: We randomly select CommID
named as ID-select. We then check the val-
ues in any cells inCS . If there are ID-
select, then the values in the corresponding
cells ofCD are changed to be ID-select.

(iv) Mutation: A node may be put into a ran-
dom community in the network.

(v) Clean-up: A node having the highest com-
munity variance(CV ) is eliminated from
the network.
(a) Calculate community variance for

each nodei in the network by the ex-
pression:

CV (i) =

∑

(i,j)∈E

f(i, j)

deg(i)
, (2)

whereE is the set of all edges in the
network and

f(i, j) =

{

1, CommID (i) 6= CommID (j)

0, otherwise.

(b) Delete a node with the highest community vari-
ance.

(vi) Repetition: The process is repeated from
(ii) to (v) until the network modularity is
between 0.3 and 0.7 exhibiting a good com-
munity structure. It is noted thatH = 0
if a community has no within-community
edges whilstH = 1 when all nodes are put
into a single community [4, 7].

Finally, the chromosome with the highest modu-
larity representing the suitable network structure
is selected for studying the disease transmission.

3 The SEIQR-Network model

The SEIQR-Network model has been developed
to study the spread of the infectious disease based
on SEIQR dynamics and multi-group structure in
the complex network. This section illustrates the
SEIQR-Network model and proposes an algorithm
for the simulation of SEIQR-Network model on
GA-Network presented in section 2.

In the model, there areM communities where the
ith community hasNi people nodes. As can be seen in
Figure 1 considering theith community, the total pop-
ulation sizeNi(t) is divided into five distinct epidemi-
ological subclasses of individuals which are suscepti-
bleSi(t), exposedEi(t), infectiousIi(t), quarantined
Qi(t) and recoveredRi(t).

Figure 1: Progression diagram for the SEIQR disease
transmission.

Figure 1 can be inferentially interpreted to the system
of ordinary differential equations as follows.
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For i = 1, 2, . . . ,M ,

dSi

dt
= Ai −

M∑

j=1

[
βijEj + β̃ijIj

Ni

]
Si − µiSi,

dEi

dt
=

M∑

j=1

[
βijEj + β̃ijIj

Ni

]
Si − (αi + κi + µi)Ei,

dIi
dt

= αiEi − (γi + δi + µi)Ii, (3)

dQi

dt
= δiIi − (εi + µi)Qi,

dRi

dt
= κiEi + γiIi + εiQi − µiRi

whereNi = Si +Ei + Ii +Qi +Ri. The outbreak of
the disease on the complex network occurs when an
infectious and exposed individuals transmit the dis-
ease to its susceptible neighbors via the edges with an
infection rateβ. It has been recognized that the trans-
mission probability in the same community is higher
than that between communities. Thus, the transmis-
sion probability within a community is assigned to
be higher the transmission probability between com-
munities. After the susceptible individuals receive an
amount of virus, their status become exposed.
From the system (3), the particular assumptions for
the model are described as follows:

(i) Indices i, j, k = 1, 2, . . . ,M present theith, jth

andkth communities of the sub-classesS, E, I,
Q andR.

(ii) All parameters are non-negative constants de-
fined as follows:

(a) αi is the rate at which an exposed individu-
alsEi(t) becomes infected individualIi(t);

(b) δi is the rate that individualsIi(t) moves to
the quarantined individualQi(t);

(c) κi, γi andεi are the rates at which individ-
uals in theEi(t), Ii(t) andQi(t) classes
change their status to be inRi(t).

(iii) The model (3) is considered with a recruitment-
death demographic structure such that

M∑

i=1

dNi

dt
=

M∑

i=1

(Ai − µiNi), (4)

Ai is a constant recruitment in theith community
such thatAi = biSi(0), wherebi andµi are the
natural birth and death rates.

(iv) βij andβik are the probabilities of catching the
disease per contact to the infectious or exposed
person, separately considered in two cases:

βij =

{
βhigh wheni = j (intra-community)

βlow wheni 6= j (inter-community)
(5)

andβik is defined as the same sense asβij .

The system (3) is now considered in a social com-
plex network. Letτ be the maximum time for the
simulation, and△t be the time step. Using the for-
ward difference technique,we simulate the spread of
the disease based on the SEIQR dynamics by the fol-
lowing algorithm.

Step 1. At initial time stept = 0, there areN people
nodes including a few infected nodes sayη in the
infectious class (I-class) andN−η people nodes
in the susceptible class (S-class).

Step 2. Sett = t+△t.

Step 3. Updating stage of people nodes based on their
neighbor status according to the progression dia-
gram as shown in Figure 1.

Step 4. Repeating Steps 2 and 3 until theτ reaches or
there is no infectious and quarantined node in the
network.

4 Numerical results and discussion
A test example is given to study the spreading of
SEIQR-influenza infections in the GA network having
1,000 people nodes in 20 communities (M = 20). To
understand how the disease spreads on the real-world
population network, we first set five infectious nodes
randomly and then simulate the SEIQR epidemic on
the network over time using the SEIQR network al-
gorithm presented in section 3, and set△t = 1 day,
βhigh = 2βlow andβ = β̃. All other model parameters
are the same for every communities. For the disease
having incubation period of1/α days and sick period
of 1/γ days, an exposed individual becomes an in-
fectious individual at the transfer rateα and an infec-
tious individual recovers at the transfer rateγ. From
then, some infectious individuals are quarantined with
the rateδ in order to reduce an infection. Finally,
infectious and quarantined individuals recover when
they reach the sick period. In Figure 2, the disease
transmission at three different times on the complex
network is presented in which square nodes represent
people in the largest community and circle nodes are
in other communities.
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(a) t = 0 day

(b) t = 10 days

(c) t = 15 days

Figure 2: The disease transmission on the complex
network at three different times.

Table 1: Values of parameters used in simulation.

Biological Description Value

Rc Neighborhood contact radius 0.06
α Transfer rate at whichE becomesI 1/4
β Transmission rate 0.02
γ Transfer rate at whichI becomesR 1/6
δ Quarantine rate 1/10
κ Transfer rate at whichE becomesR 0.02
ε Transfer rate at whichQ becomesR 1
µ Natural death rate 0

Figure 3 presents theS, E, I andQ profiles cor-
responding to the neighborhood contact radiusRc of
0.06, the transmission rateβ of 0.002 and the quar-
antine rateδ of 0.1. The dark blue line represents the
average proportion of each individual and a number of
gray lines illustrate the proportion of each individual
obtained from 30 runs.

The effects of model parameters includingRc,
β and δ on the disease transmission are investi-
gated. Four neighborhood contact radii includingRc

of 0.060, 0.065 and 0.070 are considered.
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(d) Quarantined Individuals

Figure 3: The profiles of the proportion ofS, E, I and
Q against time (day) from 30 runs of simulation.

Table 2: Effect ofRc on Network Properties

Rc 0.055 0.060 0.065 0.070
|E| 4422 4841 6066 6879
k̄ 9 10 12 14
Cl 0.5164 0.5306 0.5461 0.5589
d̄ 8.5643 8.0927 7.1170 6.6882
H 0.4255 0.4499 0.4548 0.4677

It is found thatRc has significant effects on the
properties of the network. That is an increase ofRc
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heightens the number of edges (|E|) , the average de-
gree (̄k), the clustering coefficient (Cl), the network
modularity (H) but lessens the average vertex-vertex
distance (̄d) as shown in Table 2. As can be seen in
Figure 4, a little change inRc gives a small effect on
the disease transmission.
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Figure 4: The effect of the neighborhood contact ra-
diusRc on the disease spread.

To investigate the impact of transmission rate,β,
on the spreading behavior of the disease, we choose
three values ofβ including 0.002, 0.003 and 0.004
and other values of parameters are fixed. As shown
in Figure 5, higher value ofβ yields higher proportion
of infectious individuals. An increase ofβ from 0.002

to 0.004 causes the growth in the proportion of infec-
tious individuals, e.g., at 30 days from approximately
0.01 to 0.12.
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Figure 5: The effect of transmission rateβ on the dis-
ease spread.

Isolation strategy is a vital approach to decrease
the number of infectious individuals. Four values
of the quarantine rate are chosen to investigate its
impact on the disease transmission withβ value of
0.003. The results in Figure 6 indicate that an in-
crease of the quarantine rate decreases the proportion
of infectious individuals. Asδ increases from 0.05 to
0.20, the maximum proportion of infectious individu-
als drops from 0.065 to 0.030. In this study, we vali-
date the results obtained from the model correspond-
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ing toβ = 0.0035, Rc = 0.065, δ = 0.1 with the ac-
tual influenza cases in Thailand during July-October,
2011. Figure 7 indicates that our model can capture
the spreading behavior of the influenza in Thailand.
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Figure 6: The effect of quarantine rateδ to the propor-
tion of infectious individuals.
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Figure 7: Comparison of disease spread between the
simulation result and actual data reported by Centre
of Epidemiological Information Bureau of Epidemiol-
ogy, Ministry of Public Health of Thailand from July-
October, 2011.

5 Conclusion
The appropriate structure of social complex network
have been organized by the community detection
method based on genetic algorithm. A constructed
network is then cooperated with the SEIQR-Network
model to study the spreading behavior of an epidemic.
The simulated results point that our network model
with the community structure can capture and reason-
ably describe the essential feature of disease transmis-
sion as expected. It shows that the transmission rate
and the quarantine rate have significant effects on the
disease transmission. An increase of the quarantine
rate leads to a decrease of the number of the infection.
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