
An Investigation of Approaches to Set Up a Kanban Board, and of

Tools to Manage it

ERIKA CORONA, FILIPPO EROS PANI

Department of Electric and Electronic Engineering, Agile Group

University of Cagliari

Piazza d‟Armi, 09123 Cagliari

ITALY

{erika.corona, filippo.pani}@diee.unica.it http://agile.diee.unica.it

Abstract: - This paper presents a survey with the intent to address a series of issues of the Lean-Kanban

approach in the software development, and specifically the guidelines and tools used to set-up a Kanban board.

Following the Lean principles, a software process can be broken down into steps and managed with a Kanban

approach. Despite the recent increase of interest on the subject, there is no standard definition of Kanban

system for software development, and the specific practices of Kanban have not yet been rigorously defined.

The purpose of this work is a rigorous analysis of the available information, through research questions and

answers, to show the state-of the-art about how Kanban approach is presented and used, in particular those

related to the Kanban board management, and to study how they are addressed in practice. We used the

methods of Evidence-based software engineering, performing a systematic review of the available information.

In our opinion, the information gathered might be very useful to people considering Kanban board adoption,

and to the whole community of agile developers practicing Lean-Kanban system approach.

Key-Words: - Kanban, Lean, software development, agile methodologies.

1 Introduction
Agile Methodologies is a name referring to a set of

practices and processes for software development

that have been created by experienced practitioners

[1]. Traditional software engineering is said to

advocate extensive planning, up-front analysis and

design, and codified processes to make development

an efficient and predictable activity. By contrast,

AMs address the challenge of an unpredictable

world by relying on „„people and their creativity

rather than on processes” [2]. In contrast to

traditional software development processes, where

work is typically broken down into a series of

sequential steps, agile methods rely on short,

iterative cycles and close collaboration between the

customers and the development team [3][4].

Very recently, it seems that the application to

software of Lean approach and its concepts and

practices is becoming increasingly popular. As

reported by Hibbs C., Jewett S. and Sullivan M. [5],

it is only recently that the Lean principles have been

applied to software development. In the beginning it

all started with Lean manufacturing [6]; Lean strives

to deliver value to the customer more efficiently by

finding and eliminating waste (the impediments to

productivity and quality). In 2003, Mary and Tom

Poppendieck published the first book about applying

Lean principles to software development [7]. They

identified seven key lean principles: eliminate

waste
1
, build quality in, create knowledge, defer

commitment, deliver fast, respect people and

optimize the whole.

Perhaps the most important Lean activity is to

build a value stream map. This means to break down

a process into individual steps, and identify which

steps add value and which steps do not, thus adding

to the waste (muda). The goal, then, is to eliminate

the waste and improve the value-added steps

(kaizen). An important lean tool helping to manage

the work flow is the concept of pull system, which

is usually visualized using a Kanban board.

In general, we can define the Kanban software

process as a WIP (Work In Process) limited pull

system visualized by the Kanban board.
Recently, the Kanban approach applied to

software development, seem to be one of the hottest

topics of Lean. In the recent 3-4 years, Kanban has

been applied to software process, and is becoming

the key Lean practice in this field. A correct use of

1Waste in software development: partially done work; extra

processes; extra features; task switching; waiting; motion;

defects [10].

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 53

the Kanban board helps to minimize WIP, to

highlight the constraints, and to coordinate the team

work. However, Lean is more than Kanban, and

more Lean practices should be used, together with

Kanban, to take full advantage of the application of

Lean to software development.

Kanban systems are an approach to scheduling

work. Kanban shares with typical AMs the fact that

requirements are expressed in atomic features (also

known as user stories, work items, Minimum

Marketable Features, or MMF), to be implemented

incrementally.

Kanban systems focus on a continuous flow of

work, and disregard fixed iterations. When needed,

the team chooses a subset of features from the

backlog and moves them to the Kanban board.

Then, it develops these features one after the other.

Work is delivered as soon as it's ready, and the team

only works on one – or very few – feature at a time.

The growing interest on Kanban software

development is demonstrated by the publication of

various books, and by the proliferation of Web sites

on the subject in the past couple of years. In his

recent book, David J. Anderson describes about how

to apply Kanban concepts to systems and software

development [8]. Corey Ladas, in his book

Scrumban, writes about the fusion of Scrum and

Kanban practices [9]. A third book on the subject is

Kanban and Scrum making the most of both, by H.

Kniberg and M. Skarin, also availabile online [10].

This book analyzes both approaches through

practical charts and examples.
However, we stress that, despite the recent

increase of interest on the subject, there is no

standard definition of Kanban system for software

development. Moreover, the specific practices of

Kanban – how to specify a feature, which activities

best represent the software process, how to represent

tasks, how to deal with exceptions and emergencies,

and so on – have not yet been rigorously defined.
The purpose of this work is the analysis of the

available information – through Evidence-based

software engineering techniques – to highlight and

discuss the state-of the-art about how Kanban

approach is presented and used.

The paper is organized as follows: in Section 2,

we give an overview of Kanban approach; in

Section 3 we present the methodology followed for

the survey and the related research questions;

Section 4 presents the results and Section 5

concludes the paper.

2 The Kanban Approach

2.1 Kanban Axioms
As reported by Corey Ladas [9], the whole

Lean/Kanban approach is based on two axioms.

The first is: “It is possible to divide the work into

small value adding increments that can be

independently scheduled”. As said before, these

increments can be called features, user stories, work

items, or MMF. From now on, we will use the term

“feature”. This axiom is the same as in AMs, which

in turn are always features-driven.
The second Ladas' axiom is It is possible to

develop any value-adding increment in a continuous

flow from requirement to deployment. Following

this axiom, software development process can be

decomposed in a sequence of well defined activities,

to be performed one after the other by the members

of a feature team on the specific features to be

implemented [11-14]. For instance, a requirement

analysis phase is followed by a design phase, then

by an implementation phase, by a testing phase, by

an integration phase and eventually by a deployment

phase. For the Kanban approach to work, we need

that all features are processed by the same sequence

of steps.
These axioms generally hold, except perhaps at

the beginning of the development of a software

system, when an up-front analysis and architectural

design phase is needed (as for instance explicitly

prescribed in FDD methodology). In the case of

addition of functionalities to an already developed

system, or of maintenance and bug-fixing activities,

these axioms clearly hold.

2.2 Kanban Overview
Kanban - meaning "signboard" - is a concept related

to lean and just in time (JIT) production. According

to Taiichi Ohno, Kanban is one of the means

through which JIT is achieved [15]. Kanban is not

an inventory control system, but it can be

considered as a system for visualizing work, making

it flow, reducing waste, and maximizing customer

value. It is a pull system, because it uses the rate of

demand to control the rate of production, passing

demand from the end customer up through the chain

of customer-store processes.

In practice, setting up a Kanban system, also in

the light of Ladas' axioms, typically includes the

following steps:

 Map the flow, finding the activities.

 Express the requirements through a set of

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 54

features.

 Depending on the activities and the team

composition, devise a maximum limit for the

features under work in each activity.

 Set-up the Kanban board, highlighting the

activities and how deal with specific issues. For

instance: input queue, slack buffers and “Done”

buffers; task management within activities;

multi-project management through lanes or

other means; high-priority features, special

cause circumstances in which it is allowed to

break limits; management of bugs, and of

features to rework before their release

 Devise the policy to assign developers to

activities and tasks, and to deal with issues

related to flow (blocks, tuning of limits, etc.).

 Decide the format and typical scheduling of

meetings. For instance: daily stand-up meeting;

meetings with customer and product owner;

planning meetings; review meetings, including

process improvement meetings.
 Devise how releases of single features, and of

working versions of the system, are delivered.

 Devise the specific technical practices to use

(design, programming, testing, etc.).

 Decide what tools, statistical methods and

diagrams to use to manage the process.

As said before, there is no a standard, or at least

a commonly shared way, to perform these tasks. The

aim of the followings of this paper is to highlight the

specific Kanban issues, in particular those related to

the Kanban board management, and study how they

are addressed in practice, through a survey.

3 Method
Evidence-based software engineering (EBSE)

aims to apply an evidence-based approach to

software engineering research and practice. This

research follows Kitchenham‟s methodological

guide-lines for systematic reviews [16]. The

research questions (RQs) of this review are the

following:

Q1. What are the main characteristics of the

Kanban boards actually used?

Q2. What are the main activities defining the

software process, and what are their typical limits to

limit WIP (for a typical development team)?

Q3. What is the information typically shown on

the cards representing the work units?

Q4. What diagrams/statistics are used for a

quantitative process management?

A systematic literature review (SLR) is the main

method of synthesis for supporting EBSE. We

performed a qualitative survey, covering both the

literature and the main websites on the topic, with

the aim to answer the research questions. Usually,

surveys similar to the presented one are performed

through an SLR of scientific papers that appeared in

the literature on the subject [16]. The Kanban

approach in software development, however, is still

in its infancy, and there is almost no paper at present

published in the scientific literature. Moreover,

information about how a software development

approach is applied inside an organization is often

considered confidential, and it is not easy to obtain

such information through interviews. consequently,

our sources were the three books published on the
subject so far [8], [9] and [10], and the documents

available on the Web. In particular, we performed

the Web survey starting from:

• the Web sites of the well known organizations

working on Kanban (Limited Wip Society [17],

Lean Software and Systems Consortium), and

the links found there;

• the results of Web searches in the main search

engines, with the keywords: “Lean”, “Kanban”,

“software development”.

We used as information sources the documents

and the presentations found on these Web sites and

the relevant Web pages. The survey was conducted

through the analysis of various Kanban Boards

reported in figures and photos, together with the

analysis of the related text. All data obtained and

analyzed are reported and discussed in section 4.

3.1 The Issues Studied
Despite its growing adoption, the Kanban system

approach is still in its childhood and, as said before,

there are no standard ways to address some key

issues. In our opinion, the information gathered in

our survey might be very useful to people

considering Kanban adoption, and to the whole

community of agile developers practicing Kanban

system approach.

 In the following of this section, we briefly

discuss what are the issues we considered, and why.

We will focus on describing the visual aspect of the

Kanban board, its activities and the features.

However, one must keep in mind that such a visual

aspect always reflects the practices and the

workflow organization decided by the team.

The Kanban board. The board is the main tool

used to visualize and coordinate teamwork. Its

columns show a sequence of activities, where the

cards representing the features under work are put.

For each activity, there are limits to the number of

features, to obtain an overall limited WIP. The

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 55

activities can be represented by a single column, or

columns for in progress and done features can be

present. An activity can also be preceded or

followed by slack buffer columns, holding the

features to be pulled into the next activity. The
board may also have columns holding the features

not yet under work, to be pulled into the first

activity, and holding the features completed, or live.
Other variants of the Kanban board include

boards with horizontal lanes, representing different

projects, with an emergency lane for urgent features,

with zones holding cards representing bugs or open

issues. The developers are often represented on the

board, using their names or avatars, to highlight the

features they are currently working on.

Feature representation and management. On

the Kanban board, the features are typically

represented using cards. The color of the card may

have a meaning. The information written on the card

is not standard. It may include the starting date, the

due date, if present, the description of the feature, a

priority level, the developer currently working on it,

and other information.

When features represent a substantial amount of

work, they can be divided in tasks, in turn

represented by cards, usually smaller and/or of

different color and attached to a specific zone of the

column of the activity the feature is under work.

Also bugs, rework, acceptance tests related to a

feature can be represented with cards.

When a feature gets stuck in an activity for some

reason related to poor software quality, or undecided

requirements, the work flow can be badly affected.

The way this issue is resolved is often reflected in

the feature representation – for instance it can be

marked with two big red starts, meaning panic [10]

– or in a zone on the board holding these features.

Statistics and diagrams. The use of statistics and

diagrams to monitor the process is integral part of

the Kanban approach. The quantities computed and

monitored, however, may vary. They can be

lead/cycle time, development time, engineering

time, days blocked, number of bugs, throughput,

and so on. These data are usually shown in

diagrams, affixed to the walls of the workplace, or

in any case continuously updated and made public.

The most used diagram is the Cumulative Flow

Diagram (CFD), used to show WIP and average

lead time, and to highlight issues and bottlenecks.

4 Results and Discussion
The first RQ regards the layout of the Kanban

boards actually used by developers. We collected

the following data from 14 observed Kanban boards

[12-14][17-24].

The number of activities ranges from one to six,

with a median of 4 and an average of 3.7. So, the

typical number of activities we found is 4. All

boards but one divide the columns of at least some

activities in two areas: in progress, where the

features under work are put, and done, where the

features completed wait to be pulled to the next

activity. Most boards use also slack buffers before

some activities.

Regarding the queue of the features to be

implemented (Input queue), most boards have a

limit on it, ranging from 2 to 10. The names given to

this queue are very different, for each of the boards

analyzed. On the contrary, most boards have no

limit on the queue of features completed (Output

queue). Also in this case, the names of the queue are

very different from board to board, the most popular

being “Done”.

6 boards on 14 have an “express lane” where

urgent features are put, which can overcome the

limits on the activities. This figure may look low,

but remember that several of the studied boards are

simplified boards, intended for didactic purposes. 5

boards have “lanes”, highlighting features belonging

to different projects which are carried on

concurrently by the team. Only three boards

explicitly show activities divided in task. With this

analysis we have answered Q1.

 Let us now pass to Q2. First, let us note that it is

patent from the board analysis presented previously

that the same concepts are named differently in the

various boards. The same variability can be found in

the names of the activities. So, we tried to put

together the activities that look very similar, albeit

having different names, for instance:

“Development”, “Dev.”, “Code”, “Coding”. For

each activity and for each Kanban board studied, we

collect different main characteristics (buffers and

limit): some activities might refer to the same

activity in different boards – for instance

“Specification” and “Analyze”, “Build” and

“Development”. However, there are boards where

both activities are included, so we did not merge

them in our analysis. Overall, there are the

following broad categories of activities:

Specification/Analysis : this is typically the first

activity. Its limits vary from 1 to 8, with an average

of 3.7, a median equal to 3, and a mode equal to 2.

Since the value 8 seems an outlier, the preferred

limits to this activity are 2 and 3.

Build/Development: this is the activity referring

to actually writing the code. Its limits vary from 2 to

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 56

10. The mean, median and mode of these limits are

all equal to 4.

Test/Acceptance: these activities refer to writing

and/or executing tests on the system. Their limits

vary from 2 to 8, with an average of 3.2, a median

equal to 3, and a mode equal to 2. Also in this case,

the median and the mode look the most

representative values.

Deploy/Release: this is the last typical activity

when a system is developed. Only in four cases

there are explicit limits, ranging from 4 to 6. The

lack of limits is due to the fact that in some

processes release is not really a full-scale activity,

but it refers to the acceptance of the released

features by the product owner, or other stakeholder.

Documentation: in two cases, this activity is

explicitly recorded on the Kanban board. In one of

these board, the limit is 2, while in the other it is not

specified.

 We stress that some Kanban boards are in fact

organized in multiple tiers, and the sequence of

activities is not linear, but activities are part of

higher-level tiers, in turn executed in sequence, or in

other ways. However, we believe that our analysis

summarizes well how Kanban teams divide

development into activities, and give hints on the

possible choices of their limits. So, with its

discussion we believe we answered Q2.

 Regarding the result of the study about how

features are named and represented on cards in the

Kanban board, we were able to get information only

on five different boards, because in the other boards

we considered, the cards were only sketched

[8][13][14][19][22]. All feature cards show a

description of the feature, the date the feature

entered the system, and are related with the

developer in charge of it, often represented with

another card, or a “stick avatar”. All examined

boards make use of cards of different colors to

highlight the kind of feature; some of them use also

cards of different size, typically to discriminate

between the features and the tasks obtained by

decomposing the features, bugs, issues and the like.

Some cards use smaller sticker cards on them, to

denote issues or their state, and some cards allow to

show specific states of the feature, such as high

priority, late or blocked. With this analysis we

answered Q3.

Let us now pass to Q4: for each Kanban

implementation studied we figured out what kind of

quantitative tools were used by the associated team.

This analysis was not simple, because in many

presentations the main goal was to describe the

Kanban approach and the board, with minimal or no

emphasis on these tools.

Overall, we were able to find information only in

seven sources, on overall 14 considered, about

statistics used by the analyzed Kanban

implementations [8][10][11][19][21][25][26]. All

authors use the Cumulative Flow Diagram, which is

one of the distinctive characteristics of the Kanban

approach, and the Lead time per feature statistics.

Some authors use the diagram showing the

throughput of the development process, that is the

number of features (weighted with the needed

effort) completed per week or per month). Other

statistics are used, but are less spread. This answers

Q4.

We believe we shown the most comprehensive

comparison of Kanban tools available to date.

5 Conclusion
Agile development methodologies have gained

significant adoption in a variety of software

development domains. Nowadays, the fastest

growing AM is perhaps the Lean approach, using

the Kanban board for its practical implementation.

However, despite the strong increase of interest on

Lean-Kanban, there is no standard definition of

Kanban system for software development, and the

specific practices of Kanban have not yet been

rigorously defined. To address this issue, in this

work we presented a rigorous analysis of the

available information, through research questions

and answers, to show the state-of the-art about how

Lean-Kanban approach is presented and used. In

particular, we formulated and answered four

research questions related to the Kanban board

management, the use of diagrams and statistical

tools. We used the methods of Evidence-based

software engineering, performing a systematic

review of the available information.

We examined 14 different Kanban boards, looking

for similarities and differences in the board layout,

and in the activities used for decomposing the

software development work. We also analysed how

work items, or features, are graphically represented

in cards on the boards, and which graphical and

statistical tools are typically used by Lean-Kanban

teams. The results from this review can help both

insiders‟ and outsiders‟ perception and

understanding of how the Lean-Kanban approach is
actually implemented. This information, derived

from literature and Web site analysis has the

potential to suggest possible directions for Lean

development standardization and improvement, and

to be useful to people considering Kanban adoption.

As further works, the Kanban Approach can be

evaluate as a process using simulation modeling

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 57

approach for software development [27], useful to

better understand the process and to evaluate its

effectiveness [28], and as a products measuring

new metrics [29] and analyzing the evolution of the

system [30]. We also intend to analyze and compare

software tools for managing virtual Kanban boards.

References:

[1] Manifesto for Agile Software Development,

www.agilemanifesto.org/

[2] Dyba T., Dingsøyr T., Empirical studies of

agile software development: A systematic

review. Information and Software Technology,

Vol. 50, nos. 9/10, 2008, pp. 833-859.

[3] Abrahamsson P., Warsta J., Siponen M.T. and

Ronkainen J., New Directions on Agile

Methods: A Comparative Analysis. In:

Proceedings of the International Conference on

Software Engineering, Portland, Oregon, USA,

2003.

[4] Beck K., Extreme Programming Explained:

Embrace Change, second ed., Addison-Wesley,

2004.

[5] Hibbs C., Jewett S. and Sullivan M., The Art of

the software Development, O'Reilly, 2009.

[6] Womack J.P., Jones D.T., Roos D., The

machine that Changed the World,

Simon&Shuster, 1990.

[7] Poppendieck M. and Poppendieck T., Lean

software development: An agile toolkit,

Addison Wesley, 2003.

[8] Anderson D.J., Kanban: Successful

Evolutionary Change for Your Technology

Business, Blue Hole Press, 2010.

[9] Ladas C., Scrumban, Modus Cooperandi Press,

2008.

[10] Kniberg H. and Skarin M., Kanban and Scrum

making the most of both, C4Media Inc, 2010.

[11] leansoftwareengineering.com

[12] www.lostechies.com

[13] agileconsulting.blogspot.com/

[14] www.crisp.se/

[15] Ohno T., Just-In-Time for Today and

Tomorrow, Productivity Press, 1988.

[16] Kitchenham, B. and Charters, S., Guidelines

for performing Systematic Literature Reviews

in Software Engineering. Engineering 2, 2007.

[17] www.limitedwipsociety.org

[18] Anderson D.: Kanban Primer, Better Software,

January/February 2009

[19] ninjaferret.co.uk

[20] leanandkanban.wordpress.com

[21] blog.brodzinski.com

[22] www.agileproductdesign.com

[23] Sundén J., Hammarberg M. and Achouiantz

C.,www.slideshare.net/marcusoftnet/kanbanboa

rds

[24] blog.crisp.se/mattiasskarin/2010/12/03/129136

1993216.html

[25] manicprogrammer.com/cs/blogs/willeke

[26] availagility.co.uk/

[27] Turnu, I., Melis, M., Cau, A., Setzu, A.,

Concas, G., Mannaro, K., Modeling and

simulation of open source development using

an agile practice, Journal of Systems

Architecture 52 (11), 2006, pp. 610-618.

[28] Melis, M., Turnu, I., Cau, A., Concas, G.:

Evaluating the impact of test-first programming

and pair programming through software

process simulation, Software Process

Improvement and Practice 11 (4), 2006, pp.

345-360.

[29] Concas, G., Marchesi, M., Murgia, A., Pinna,

S., Tonelli, R.: Assessing traditional and new

metrics for object-oriented systems,

Proceedings International Conference on

Software Engineering, 2010, pp. 24-31,

[30] Turnu, I., Concas, G., Marchesi, M., Pinna, S.,

Tonelli, R.: A modified Yule process to model

the evolution of some object-oriented system

properties, Information Sciences 181 (4), 2001,

pp. 883-902.

Recent Researches in Communications, Signals and Information Technology

ISBN: 978-1-61804-081-7 58

