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Abstract:  In article an application of a feed-forward artificial neural network (ANN), trained on experimental 

sample, for an estimation of reactivity of organic molecules in radical reactions is considered. Results of 

training and a prediction of the network are discussed. 
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1 Introduction 
Currently artificial neural network (ANN) is 

widely used in solving applied problems of 

automated processing of scientific data. The main 

fields of ANN application in chemical and 

biochemical studies are given in a review [1]. Most 

works in this area are devoted to the correlation 

between the structure of chemical compounds and 

the physicochemical properties or biological activity 

they showed. In the physical chemistry, the main 

directions of ANN application are the simulation of 

chemical processes and the simulation of the 

dynamic properties of the molecules and the 

systems.  

On the one hand, the physical chemistry of 

radical reactions accumulated large amount of 

experimental data on the reactivity (specific reaction 

rate or activation energies) of molecules in radical 

reactions [2, 3]. On the other hand, the experiments 

to quantify the reactivity of molecules in radical 

reactions are an expensive and time-consuming task. 

Carrying out the quantum chemical calculations is 

time consuming, and the resulting data for these 

calculations are not sufficiently reliable. Therefore, 

the development of ANN based on existing 

experimental data to predict the reactivity of organic 

molecules in radical reactions is the vital task. 

Knowledge of the reactivity of organic molecules 

in the radical reactions is necessary for the 

development of new organic materials, the design of 

new drugs, design of technological processes, 

planning and conducting a scientific experiment, the 

training of students and graduate students. 

This paper discusses the use of feed-forward 

artificial neural network to predict the reactivity of 

organic molecules in the bimolecular radical 

reactions in the liquid phase. 

 

 

2 Problem Formulation 
Experimentally, the activation energy (Е) or a 

classical potential barrier (Ee) determines the 

reactivity of organic molecules in a radical reaction: 

 

)(5.0 RThLEE ie −−= ν , (1) 

 

νi is a frequency of the stretching vibrations for the 

bond being broken, R is the gas constant, h is the 

Planck constant, L is the Avogadro number, and T is 

the reaction temperature (K). 

Specific rate constant (k) of chemical reaction is 

calculated by the formula: 

 

)/exp(0 RTEnAk −=  (2) 

 

where: A0 is collision frequency per one reaction 

linkage, n is the number of equireactive bonds in a 

molecule. 

When designing the information space for 

ANN predictions of the reactivity the functional 

relationship between the reactivity of the 

chemical reaction and the thermochemical 

properties (enthalpy of reaction - ∆H) is used. 

N.N. Semenov was the first to pay attention to 

the functional relationship between the reactivity 
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and reaction enthalpy (known as Polanyi – 

Semenov’s ratio [4]): 

 

HBE ∆−= γ  (3) 

 

where B and γ – empirical coefficients. 

The works [5, 6] proposed the empirical models 

of elementary radical reaction, which allowed 

constructing non-linear correlation dependences 

between the classical potential barrier of the radical 

reaction and its thermochemical properties: 

• approximation of the above mentioned 

dependence in the work [5] by the parabola: 

 

eeee EHEbr −∆−=α  (4) 

 

• approximation of the above mentioned 

dependence in the work [6] in the form of the 

tacitly set curve: 
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Under the proposed empirical models assuming 

the harmonic stretching vibrations, the reaction of 

the radical abstraction R°⋅ + R1H � RH +R°1  

(where R°⋅and R°1  
 
 - alkyl radicals, and RH and 

R1H – hydrocarbon molecules) has the following 

parameters [5]: 

1. Enthalpy ∆He = Di - Df + 0.5 (hLνi - hLνf) 

including the energy difference of zero-point 

vibrations of broken and formed bonds (it represents 

a change in the potential energy of the system). Here 

νi – frequency of vibration of the molecule along the 

broken bond, νf – frequency of vibration of the 

molecule along the formed bond, Di – - bond 
dissociation energy of the broken bond, Dei = Di + 

0.5hLνi, Df – bond dissociation energy of the formed 

bond, Def = Df  + 0,5hLνf. 

2. The classical potential barrier of the activation Ee 

(1), which includes the zero-point energy of the 

broken bond. 

3. The parameters b = π(2µi)
1/2νi и bf = π(2µf)

1/2νf, 

that describe the potential energy dependence of the 

atoms vibration amplitude along the breaking (i) and 

forming (f) valence linkage. 2b
2
 – the force constant 

of the linkage, µi – the reduced mass of the atoms 

due to breaking bond, µf – the reduced mass of the 

atoms due to forming bond. 

4. The parameter re, which is the integrated 

stretching of breaking and forming bonds in the 

transition state. 

5. The parameter α (α2
 which is equal to the ratio of 

force constants of breaking and forming bonds). 

6. Pre-exponential factor A0 per equireactive bond in 

the molecule. 

According to statistically determined value of 
bre, based on formula (4), it is possible to estimate 

the value of the classical potential barrier by the 

formula: 

 

( )
( ) 




























 ∆
−−−

−
=

2
2111

21 ebr

eHebr
eE αα

α
 (6) 

 

Thus, we can assume that the dependence of the 

classical potential barrier Ee of the thermochemical 

characteristics of the reagents and the kinetic 

characteristics of the radical reactions can be 

represented as the functional relation: 
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0
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Then the task of ANN works in predicting the 

values of the classical potential barrier Ee as a 

functional relation of the thermochemical and 

kinetic characteristics of the reagents with 

subsequent calculation of the activation energies and 

specific reaction rate by the formulae (1) and (2) 

reduce to the approximation of unknown functional 

relation (7). 

 

 

3 Artificial Neural Networks for the 

Prediction of Reactivity of Molecules 
To approximate the dependence (7) we used 

feed-forward artificial neural network [7] with a 

typical architecture shown in Fig. 1. We used 

the ANN having four inputs, 3 inner layers, 

each of 7 neurons and one output. 
 

 
 

Fig.1. Typical architecture of feed-forward 

artificial neural network. 
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ANN work is set by the formulae: 
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where the index i will always denote the input 

number, j — number of neurons in the layer, l — 

number of the layer; xijl — i- th input of j-th neuron 

in the layer l; wijl — weighting factor of the i-th 

input neuron number j in layer l; NETjl — signal 

NET j-th neuron in layer l; OUTjl — the output 

signal of the neuron; θjl — the threshold of neuron j 

in the layer l; xjl — the input column vector of the 

layer l. 

ANN input vector is set as the vector x0={T, Dei, 

Def, nA0, α}, output data is equal to Еe. 

The method of back propagation of the error [7] 

was used as training procedure. Activation function 

is a sigmoid function and is set by the following 

formula: 
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The parameter β > 0 was chosen experimentally. 

For ANN training 3000 iterations were required 

on training set of 295 samples. Training set was 

constructed from the elemental radical reactions R
’
 

+ RH in the liquid phase, where R
’ 
 - a radical and 

RH – a hydrocarbon molecule. 

Table 1 shows the comparison of the predictions 

of the values of the classical potential barrier of the 

reaction using ANN (EANN), the experimental values 

of activation energy (E) and the values calculated by 

the formula (6) of the classical potential barrier (Ee). 

 

Table 1. Training results of ANN 

Reaction Е Ее ЕANN 

СH3 + CH2ClBr 27.17 36.57 30.97 

C6H5 + (CH3)4C 23.82 43.17 19.00 

CCl3 + CH3(CH2)5CH3 46.88 67.35 52.35 

CH3 + cyclo-[(CH2)6] 44.17 46.80 42.13 

C6H5 + cyclo -[(CH2)5] 27.99 31.04 27.48 

CH3 + cyclo-

[CH(CH3)(CH2)4] 

30.23 39.67 33.18 

CCl3 + C6H5CH3 44.30 52.62 40.88 

C6H5 + C6H5CH3 20.67 24.45 16.01 

 

The error of the values prediction of the classical 

potential barrier of the radical reaction using ANN 

in the control sample (of 20 samples) was 3.34 ± 2.0 

kJ / mol, which is within the experimental error (± 4 

kJ / mol). The error of values prediction of the 

classical potential barrier for the radical reaction (6) 

on the same control sample was 9.5 ± 7.0 kJ / mol. 

ANN predicts better than the calculation by formula 

(6). This is due to the size of the statistical error bre, 

which defines the class of radical reactions. Thus, 

the ANN better approximates the functional 

dependence (7) by calculating the weight matrix 

relations. 

 

 

4 Conclusion 
It was the first time when feed-forward ANN 

was used for the approximation on the experimental 

data of the functional dependence of the classical 

potential barrier of the chemical reaction from the 

thermochemical characteristics of the reagents and 

reaction kinetic parameters. 

The results of the prediction of the reactivity of 

liquid-phase reactions of the hydrocarbons with 

hydrocarbon radicals are within the limits of the 

experimental error. 

 

 

References: 

[1] X1. I.I. Baskin, V.A. Palyunin, N.S. Zefirov 

Application of artificial neural networks in 

chemical and biochemical studies, Bulletin of 

Moscow University. Chemistry Series. 1999. Т. 

40. No. 5. С. 323-326. (in Russian) 

[2] X2. E.T. Denisov, V.E. Tumanov, T.G. 

Denisova, T.I. Drozdov, T.S. Pokidova The 

implementation of the Bank of kinetic constants 

of radical liquid-phase reactions on IBM PC / 

AT. The Institute of Chemical Physics 

Chernogolovka. Preprint. 1992. 58 p. (in 

Russian) 

Mathematical Modelling and Simulation in Applied Sciences

ISBN: 978-1-61804-086-2 64



[3] X3. Mallard W.G., Westley F., Herron J.T., 

Hampson R.F. NIST Chemical Kinetics 

Database - Ver. 6.0. NIST Standard Reference 

Data. 1994. Gaithersburg, MD.  

[4] X4. N.N. Semenov, About Some Problems of 

Chemical Kinetics and Reactivity. Publisher 

Academy of Sciences of the USSR. Moscow. 

1958. - 686 p.  

[5] X5. E.T. Denisov New empirical models of 

free radical abstraction reactions. Uspekhi 

Khimii. 1997. V. 66. N. 10. p. 953-971. 

[6] X6. E.T. Denisov, V.E. Tumanov Transition-

State Model as the Result of 2 Morse Terms 

Crossing Applied to Atomic-Hydrogen 

Reactions. Zhurnal Fizicheskoi Khimii. 1994. 

V. 68. No. 4. p. 719-725.  

[7] X7. I. Gladyshev. Analysis and processing of 

the data: special guide. St. Petersburg: Piter 

2001. 752 p. (in Russian) 

Mathematical Modelling and Simulation in Applied Sciences

ISBN: 978-1-61804-086-2 65




