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Abstract: - This study examines the long-memory properties of German energy price indices (specifically, 

import and export prices, as well as producer and consumer prices) for hard coal, lignite, mineral oil and natural 

gas adopting a fractional integration modelling framework.  The results suggest nonstationary long memory in 

the series (with orders of integration equal to or higher than 1) when breaks are not allowed for. However, 

when breaks are taken into account, and permitting autocorrelated disturbances, evidence of mean reversion is 

found in practically all cases. 
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1 Introduction 
Given the fact that energy price shocks have often 

triggered economic crises, there is considerable 

interest in modelling appropriately the behaviour of 

energy prices. Previous research on the oil industry 

has investigated long-memory properties in the case 

of oil consumption (Mohn and Osmundsen, 2008; 

Lean and Smyth, 2009), returns on oil investment 

(Boone, 2001) and oil exhaustion (Karbassi et al. 

2007; Tsoskounoglou et al. 2008; Höök and 

Aleklett, 2008), and energy prices (Serletis, 1992; 

Lien and Root, 1999; Elder and Serletis, 2008; Kang 

et al., 2009). However, there are no existing studies 

on the degree of persistence of energy prices also 

allowing for possible breaks in the data. The layout 

of the paper is the following. Section 2 briefly 

reviews the previous literature. Section 2 outlines 

the methodology. Section 3 discusses the data and 

the empirical findings. Section 4 provides some 

concluding remarks. 

 

 

2 Methodology 
One characteristic of many economic time series is 

their nonstationary nature. There exist a variety of 

models to describe such nonstationarity. Until the 

1980s a standard approach was to impose a 

deterministic (linear or quadratic) function of time 

assuming that the residuals from the regression 

model were stationary I(0). Later on, and especially 

after the seminal work of Nelson and Plosser 

(1982), a wide consensus was reached that the 
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nonstationary component of most series was 

stochastic, and models with unit roots (or first 

differences, I(1)) were commonly adopted with and 

without deterministic trends. However, the I(1) case 

is merely one particular model to describe such 

behaviour. In fact, the degree of differentiation 

required to obtain I(0) stationarity is not necessarily 

an integer but could be any point on the real line. In 

such a case, the process is said to be fractionally 

integrated or I(d). The I(d) model can be expressed 

in the form 

)1(,...,1,0t,ux)L1( tt
d   

where L is the lag-operator (Lxt = xt-1) and ut is I(0) 

defined, for the purpose of the present study, as a 

covariance stationary process with spectral density 

function that is positive and finite at the zero 

frequency. 

Note that the polynomial (1–L)
d
 in equation 

(1) can be expressed in terms of its Binomial 

expansion, such that, for all real d, 
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In this context, d plays a crucial role since it 

indicates the degree of dependence of the time 

series: the higher the value of d is, the higher the 

level of association will be between the 

observations. The above process also admits an 

infinite Moving Average (MA) representation such 

that  
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and Γ(▪) representing the Gamma function. Thus, 

the impulse responses are also clearly affected by 

the magnitude of d, and the higher the value of d is, 

the higher the responses will be. In this context, if d 

is smaller than 1, the series is mean reverting, with 

shocks having temporary effects, and disappearing 

at a relatively slow rate (hyperbolically) in the long 

1run. On the other hand, if d ≥  1, shocks have 

permanent effects unless policy actions are taken. 

Processes with d > 0 in (1) display the property of 

“long memory”, which is characterised by the 

spectral density function of the process being 

unbounded at the origin.  

In this study, we estimate the fractional 

differencing parameter d using the Whittle function 

in the frequency domain (Dahlhaus, 1989) but also 

employ a testing procedure developed by Robinson 

(1994), which has been shown to be the most 

efficient one in the context of fractional integration 

against local alternatives. This method, based on the 

Lagrange Multiplier (LM) principle, tests the null 

hypothesis Ho: d = do in (1) for any real value do, 

where xt in (1) can be the errors in a regression 

model of the form: 

)2(,...,2,1t,xzy tt
T

t   

where yt is the observed time series, β is a (kx1) 

vector of unknown coefficients, and zt is a set of 

deterministic terms that might include an intercept 

(i.e., zt = 1), an intercept with a linear time trend (zt 

= (1, t)
T
), or any other type of deterministic 

processes such as dummy variables to examine the 

possible presence of outliers/breaks. Other 

parametric methods such as Sowell’s (1992) 

maximum likelihood estimator in the time domain, 

and Beran’s (1995) least squares approach produced 

essentially the same results.  

 However, it has been argued in recent years 

that fractional integration may be a spurious 

phenomenon caused by the presence of breaks in the 

data (see, e.g., Cheung, 1993; Diebold and Inoue, 

2001; Giraitis et al., 2001; Mikosch and Starica, 

2004; Granger and Hyung, 2004). Thus, we also 

employed a procedure that determines endogenously 

the number of breaks and the break dates in the 

series, allowing for different fractional differencing 

parameters in each sub-sample. This method, due to 

Gil-Alana (2008), is based on minimising the 

residual sum of the squares at different break dates 

and different (possibly fractional) differencing 

parameters. Specifically, the following model is 

considered: 
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 where nb is the number of breaks, yt is the observed 

time series, the i's are the coefficients on the 

deterministic terms, the di’s are the orders of 

integration for each sub-sample, and the Tb
i
’s 

correspond to the unknown break dates. Note that 

given the difficulties in distinguishing between 

models with fractional orders of integration and 

Mathematical Modelling and Simulation in Applied Sciences

ISBN: 978-1-61804-086-2 39



those with broken deterministic trends, it is 

important to consider estimation procedures for 

fractional unit roots in the presence of broken 

deterministic terms. 

 

 

3 Data and empirical results 
In this study, we investigate persistence in German 

energy prices. The data are available from 

Statistisches Bundesamt:. Each series consists of 

monthly observations, ranging from January 2000 to 

August 2011.  

Tables 1 – 3 display the estimates of d (and 

the corresponding 95% confidence band) in the 

model given by equations (2) and (1) with zt ( 1, t)
T
, 

t ≥  1, 0 otherwise, i.e., 

,...,2,1t,ux)L1(

)4(,xty

tt
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assuming that ut in (4) is white noise (in Table 1), 

weakly autocorrelated as in the model of Bloomfield 

(1973) (in Table 2), and a seasonal (monthly) AR(1) 

process (in Table 3). The Bloomfield model 

employed in Table 2 is a non-parametric approach 

that approximates ARMA structures with a small 

number of parameters and that has been widely 

employed in the context of fractional integration   

Table 1: Estimates of d for white noise 

disturbances 

 No regressors An intercept A linear time trend 

HC-IP 1.139 (1.01, 1.29) 1.307  (1.16,  1.50) 1.308 (1.16,  1.50) 

HC-PP 1.137 (1.03, 1.27) 1.263  (1.14,  1.40) 1.263 (1.14,  1.40) 

HC-CP 0.971 (0.86, 1.12) 1.168  (1.06,  1.34) 1.185 (1.07,  1.35) 

L-PP 0.974 (0.87, 1.10) 0.999  (0.87,  1.18) 0.999 (0.86,  1.18) 

L-CP 0.971 (0.87, 1.12) 1.105  (0.93,  1.33) 1.108 (0.93,  1.33) 

MO-IP 1.198 (1.06, 1.37) 1.311  (1.15,  1.50) 1.313 (1.15,  1.51) 

MO-PP 1.297 (1.14, 1.49) 1.539  (1.34,  1.78) 1.542 (1.34,  1.79) 

NG-IP 1.333 (1.23, 1.45) 1.568  (1.46,  1.69) 1.567 (1.46,  1.69) 

NG-PP 1.100 (1.01, 1.23) 1.202  (1.10,  1.31) 1.199 (1.10,  1.31) 

NG-CP 1.024 (0.92, 1.15) 1.195  (1.09,  1.32) 1.189 (1.09,  1.31) 

NG-EP 1.169 (1.07, 1.29) 1.296 (1.18,  1.44) 1.293 (1.17,  1.43) 

In parentheses the 95% band for the values of d. In bold the best model 

specification. 

 

All three tables report the results for the three 

standard cases of no regressors, an intercept and an 

intercept with a linear trend. Starting with the case 

of white noise disturbances (in Table 1), we notice 

that most of the estimates of d are above 1. In fact, 

the unit root null hypothesis is rejected in the 

majority of cases and the only evidence of unit roots 

is found in the two lignite series and also for the 

consumer prices of hard coal and natural gas in the 

case of no regressors. As for the deterministic terms, 

the time trend appears not be statistically significant 

in any case, the intercept being sufficient to describe 

the deterministic component. 

Table 2: Estimates of d with Bloomfield 

disturbances 

 No regressors An intercept A linear time trend 

HC-IP 1.027  (0.81, 1.32) 1.012  (0.82, 1.29) 0.808  (1.01,  1.29) 

HC-PP 1.129  (0.92, 1.41) 1.192  (0.90,  1.55) 1.193  (0.93,  1.55) 

HC-CP 0.921  (0.73, 1.17) 1.049  (0.92,  1.28) 1.072  (0.89,  1.31) 

L-PP 0.939  (0.77, 1.16) 0.801  (0.67,  0.99) 0.760  (0.60,  0.99) 

L-CP 0.899  (0.71, 1.18) 0.834  (0.72,  1.18) 0.699  (0.39,  1.17) 

MO-IP 0.997  (0.76, 1.39) 0.949  (0.67,  1.42) 0.957  (0.66,  1.46) 

MO-PP 0.998  (0.74, 1.35) 0.789  (0.56,  1.15) 0.809  (0.53,  1.16) 

NG-IP 1.580  (1.29, 1.95) 1.850  (1.41,  2.41) 1.819  (1.41,  2.44) 

NG-PP 1.282  (1.04, 1.60) 1.678  (1.22,  2.19) 1.649  (1.20,  2.18) 

NG-CP 1.032  (0.83, 1.28) 1.302  (1.01,  1.68) 1.294  (1.01,  1.69) 

NG-EP 1.267  (1.01, 1.61) 1.182  (0.79,  1.55) 1.172  (0.85,  1.53) 

 

Table 3: Estimates of d with seasonal 

monthly AR disturbances 

 No regressors An intercept A linear time trend 

HC-IP 1.126 (1.00, 1.28) 1.294  (1.14, 1.49) 1.295  (1.14, 1.49) 

HC-PP 1.121 (1.02, 1.25) 1.239  (1.11, 1.39) 1.239  (1.11, 1.39) 

HC-CP 0.971 (0.85, 1.12) 1.147  (1.03, 1.31) 1.159  (1.04, 1.32) 

L-PP 0.973 (0.86, 1.10) 0.987  (0.87, 1.15) 0.985  (0.86, 1.15) 

L-CP 0.971 (0.85, 1.12) 0.931  (0.80, 1.16) 0.938  (0.79, 1.16) 

MO-IP 1.202 (1.06, 1.38) 1.314  (1.15, 1.50) 1.316  (1.15, 1.51) 

MO-PP 1.297 (1.14, 1.49) 1.535  (1.34, 1.78) 1.538  (1.34, 1.79) 

NG-IP 1.332 (1.23, 1.45) 1.544  (1.43, 1.68) 1.545  (1.43, 1.68) 

NG-PP 1.110 (1.01, 1.22) 1.197  (1.10, 1.31) 1.193  (1.10, 1.30) 

NG-CP 1.027 (0.92, 1.16) 1.193  (1.09, 1.32) 1.188  (1.08, 1.31) 

NG-EP 1.177 (1.07, 1.31) 1.263  (1.14, 1.41) 1.259  (1.14, 1.41) 

 

Concerning the results based on autocorrelated 

(Bloomfield) errors, the estimates are generally 

smaller than in the previous case of white noise 

errors. Here only one series exhibits mean reversion 

(i.e., with the estimated value of d being strictly 

below 1), namely producer prices for lignite. For the 

other lignite series (consumer prices) and the two 
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prices for mineral oil, the estimates are also below 1 

but the unit root null cannot be rejected at the 5% 

level. For the three hard coal series, the estimates 

are above 1 and the unit root cannot be rejected; 

finally, for the four natural gas series, the estimates 

are strictly above unity. 

 When assuming seasonal AR(1) 

disturbances, the results are completely in line with 

those reported in Table 1 for the white noise case: 

for the two lignite prices, the estimates of d are 

below 1 and the unit root cannot be rejected, and for 

the remaining series the estimates are above 1 and 

the unit root is rejected in favour of higher orders of 

integration. 

 The results so far provide little evidence of 

mean reversion in German energy prices. Next we 

examine the possibility of breaks in the data. Here 

we employ the procedure developed by Gil-Alana 

(2008) briefly described in the previous section. 

Table 4 displays the parameter estimates under the 

assumption of white noise errors. We find a single 

break in all except one series: lignite with producer 

prices, where two breaks are detected. Regarding 

the fractional differencing parameters, all of them 

are above 1, the only exception being again lignite 

with producer prices during the first and third 

subsamples, with orders of integration below 1.  As 

for the breaks, they take place in January 2002 for 

lignite consumer prices; in January 2007 for hard 

coal consumer prices and lignite producer prices; at 

the end of 2008 / beginning of 2009 for the producer 

prices of hard coal and lignite and the two mineral 

oil series; finally, in April 2009 for the four natural 

gas series. These dates might reflect the lagged 

effects of the oil crisis of the second half of 2008. 

 Table 5 concerns the case of AR(1) error 

terms. Here we obtain the most interesting results 

since all the fractional differencing parameters are 

strictly below 1 implying mean reverting behaviour. 

Not surprisingly, the same number of breaks and the 

same break dates as in the previous case of white 

noise errors are found, and several diagnostic tests 

carried out on the residuals indicate that in all cases 

this specification is more adequate to describe the 

behaviour of the series than that based on 

uncorrelated disturbances. For many of the 

subsamples the estimates are strictly below the unit 

root, although the AR coefficients are very large 

(thus indicating a high degree of persistence) in all 

cases.  We notice orders of integration strictly 

smaller than one in the two subsamples for the cases 

of producer and consumer prices of hard coal; 

consumer prices of lignite, and also for the 

consumer, producer and export prices of natural gas. 

For the remaining series we find at least one 

subsample also displaying mean reversion. 

 The most interesting lesson learned from the 

above results is that the presence of structural breaks 

is an important issue when modelling energy prices: 

if breaks exist but are not modelled, we find strong 

evidence of nonstationary behaviour with orders of 

integration which are equal to or higher than 1, 

implying lack of mean reverting behaviour. 

However, when the breaks are taken into account, 

this evidence disappears and the series appear to be 

mean reverting, with the effects of the shocks 

disappearing relatively fast in all cases. 

Table 4: Estimates for the different s1ubsamples 

with white noise errors 
 

Series 

Number 

of 

breaks 

Estimates of d Intercepts 

d1 d2 d3 α1 α2 α3 

H-IP 1 

(Dec.08

) 

1.482 1.247 --- 72.58 

(17.31) 

200.41 

(28.97) 

--- 

H-PP 1 

n.09) 

1.287 1.251 

 

--- 54.76 

(14.96) 

155.64 

(29.31) 

--- 

H-CP 1 

(Jan.07) 

1.244 1.355 

 

--- 92.36 

(265.9) 

104.56 

(213.7) 

--- 

L-PP 2  

(Jan.07 / 

Jan.09) 

 

0.787 

 

0.954 

 
0.78 

95.36 

(112.5) 

107.91 

(92.15) 

107.9 

(82.6) 

L-CP 1 

(Jan.02) 

1.482 1.196 --- 94.12 

(254.7) 

96.51 

(261.2) 

--- 

M-IP 1 

(Oct.08) 

1.147 1.252 --- 57.58 

(8.94) 

132.43 

(15.02) 

--- 

M-PP 1 

(Aug.08

) 

1.383 1.007  

--- 

61.32 

(11.68) 

194.80 

(16.79) 

--- 

N-IP 1 

(Apr.09) 

1.631 1.418 --- 46.10 

(17.77) 

142.26 

(39.60) 

--- 

N-PP 1 

(Apr.09) 

1.237 1.205 --- 58.91 

(22.05) 

150.19 

(38.00) 

--- 

N-CP 1 

(Apr.09) 

1.232 1.297 --- 68.90 

(37.716) 

132.19 

(111.97) 

--- 

NG-

EP 

1 

(Apr.09) 

1.218 1.373 --- 56.14 

(14.696) 

15.79 

(27.937) 

--- 

In parentheses, in the second column the break date; in the third and 

fourth  

 

 

4 Conclusions 

In this paper, we have examined the degree of 

persistence in various monthly energy prices in 

Germany. For this purpose, we have employed 

fractional integration or I(d) models, first without 

breaks and then allowing for structural breaks at 

unknown dates. In the former case, the orders of 

integration of the series are found to be equal to or 

higher than 1, thus providing strong evidence 

against mean reversion. However, when endogenous 

tests for breaks are carried out, the results indicate 

that there is a single break in all but one series, 

namely the producer prices of lignite for which two 

breaks are detected. If the disturbances are modelled 

as autocorrelated the orders of integration are found 

to be smaller than 1 in practically all cases, implying 

that mean reversion occurs and therefore the effects 

of shocks disappear in the long run. 
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Table 5: Estimates for the different subsamples 

with AR(1) errors 
Series Number 

of 

breaks 

Estimates of d Intercepts 

d1 

 AR  

d2 

(AR  

d3 

AR  

α1 

t-val 

α2 

t-val 

α3 

tval 

H-IP 1 

Dec.08 

0.817 

(0.72) 

0.485 

(0.73) 

 

--- 75.355 

(12.229) 

194.79 

(30.256) 

--- 

H-PP 1 

Jan.09 

0.367 

(0.94) 

0.396 

(0.84) 

--- 86.670 

(23.380) 

148.18 

(28.900) 

--- 

H-CP 1 

Jan.07 

0.329 

(0.95) 

0.264 

(0.97) 

-- 95.705 

(421.01) 

109.71 

(319.02) 

--- 

 

L-PP 

2 

(Jan.07 / 

Jan.09) 

0.113 

(0.89) 

 

xxx 

 

X 

98.366 

(484.5) 

 

xxx 

 

X 

L-CP 1 

Jan.02 

0.698 

(0.66) 

0.373 

(0.93) 

-- 94.040 

(207.0) 

99.958 

(446.9) 

--- 

M-IP 1 

Oct.08 

0.767 

(0.44) 

0.479 

(0.77) 

-- 62.731 

(9.61) 

126.15 

(18.24) 

--- 

M-PP 1 

Aug.08 

0.592 

(0.78) 

0.822 

(0.76) 

-- 74.789 

(11.51) 

184.54 

(14.07) 

--- 

N-IP 1 

Apr.09 

0.751 

(0.80) 

0.617 

(0.80) 

-- 54.487 

(11.36) 

134.98 

(28.11) 

---- 

N-PP 1 

Apr.09 

0.212 

(0.91) 

0.617 

(0.59) 

-- 103.45 

(55.94) 

143.19 

(33.46) 

--- 

N-CP 1 

Apr.09 

0.217 

(0.98) 

0.318 

(0.84) 

--- 101.70 

(91.45) 

123.48 

(103.1) 

--- 

N-EP 1 

Apr.09 

0.116 

(0.98) 

0.205 

(0.82) 

-- 106.42 

(52.43) 

130.82 

(36.32) 

--- 

In parentheses, in the second column the break date; in the third and 

fourth columns they are the estimated AR coefficients, and in the sixth 
and seventh  columns the t-values. xxx indicates that convergence is not 

achieved. 

 

Compared to the existing literature, the contribution 

of the present study is therefore threefold. First, it 

carries out a thorough analysis of persistence in 

German energy prices, whilst previous studies had 

not estimated long‐memory models. By adopting a 

fractional integration framework, we allow for a 

more general and flexible specification than the 

classical models based on integer degrees of 

differentiation. Second, it shows that the inclusion 

of breaks is crucial in the present context, since it 

produces evidence of mean reversion not found 

otherwise. Third, it examines various German 

energy prices by source, unlike most previous 

studies only analysing prices for one source of 

energy or focusing on OPEC or other groups of 

countries. The results are policy relevant, since a 

priori knowledge of the persistence behaviour of 

energy prices by source enables policy makers to 

design appropriate allocative strategies. They are 

also useful for German industries with a significant 

share of energy consumption and a consequent 

strong interest in long-run energy price movements. 
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